1
|
de la Rosa Vázquez J, Lee A. Role of the C-terminal domain in modifying pH-dependent regulation of Ca v1.4 Ca 2+ channels. Channels (Austin) 2025; 19:2473074. [PMID: 40116026 PMCID: PMC11934190 DOI: 10.1080/19336950.2025.2473074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
In the retina, Ca2+ influx through Cav1.4 Ca2+ channels triggers neurotransmitter release from rod and cone photoreceptors. Changes in extracellular pH modify channel opening, enabling a feedback regulation of photoreceptor output that contributes to the encoding of color and contrast. However, the mechanisms underlying pH-dependent modulation of Cav1.4 are poorly understood. Here, we investigated the role of the C-terminal domain (CTD) of Cav1.4 in pH-dependent modulation of Ba2+ currents (IBa) in HEK293T cells transfected with the full length CaV1.4 (FL) or variants lacking portions of the CTD due to alternative splicing (Δe47) or a disease-causing mutation (K1591X). While extracellular alkalinization caused an increase in IBa for each variant, the magnitude of this increase was significantly diminished (~40-50%) for both CTD variants; K1591X was unique in showing no pH-dependent increase in maximal conductance. Moreover, the auxiliary α2δ-4 subunit augmented the pH sensitivity of IBa, as compared to α2δ-1 or no α2δ, for FL and K1591X but not Δe47. We conclude that the CTD and α2δ-4 are critical determinants of pH-dependent modulation of Cav1.4 and may influence the processing of visual information in normal and diseased states of the retina.
Collapse
Affiliation(s)
- Juan de la Rosa Vázquez
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| | - Amy Lee
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Zhao J, Chen Y, Tang Y, Li B, Wang Q, Wang J, Gao X, Zhang Y, Wang J, Lei Z, Li C, Wang C. Tandem Dual-Ratiometric SERS Probe Enables Raman Imaging of Neurological pH Fluctuations in Epilepsy. Angew Chem Int Ed Engl 2025:e202504822. [PMID: 40192228 DOI: 10.1002/anie.202504822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/17/2025]
Abstract
An imbalance of brain pH is closely associated with biochemical reactions, ion regulation, and electrical activity, serving as a hallmark for various neurological disorders. High-resolution imaging of pH fluctuations in brain disease is crucial for understanding pathological processes. However, current pH probes are inadequate for this purpose due to poor blood-brain barrier (BBB) penetration or insufficient specificity. Herein, we reported a tandem dual-ratiometric surface-enhanced Raman scattering (SERS) probe, RHP@AuS, capable of crossing the BBB to address these challenges. RHP@AuS leveraged dendrimers for the facile one-step synthesis of SERS probes, significantly enhancing signal intensity and reproducibility. RHP@AuS can be sequentially activated by neuroinflammation-associated H2O2 and pH, exhibiting highly selective ratiometric responses to pH fluctuations in brain disease. Dynamic SERS imaging revealed that during neuronal epileptic activity, inflammation increased and local pH dropped sharply to around 6.6. Building on these findings, a drug combination with dual neuroinflammation-mitigating and pH-regulating properties was developed, effectively alleviating epilepsy in mouse models. This study opens new avenues for developing imaging probes for the brain and deepens our understanding of the roles of pH in neurological disorders.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
| | - Yuncan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yurui Tang
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
| | - Bohan Li
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Junfeng Wang
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
| | - Xihui Gao
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunle Zhang
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
| | - Jing Wang
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
| | - Zuhai Lei
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Cong Li
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
| | - Cong Wang
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
- Greater Bay Area Institute of Precision Medicine, Fudan University, Guangzhou, 511462, China
| |
Collapse
|
3
|
Dmitriev AV, Linsenmeier RA. pH in the vertebrate retina and its naturally occurring and pathological changes. Prog Retin Eye Res 2025; 104:101321. [PMID: 39608565 PMCID: PMC11711014 DOI: 10.1016/j.preteyeres.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This review summarizes the existing information on the concentration of H+ (pH) in vertebrate retinae and its changes due to various reasons. Special features of H+ homeostasis that make it different from other ions will be discussed, particularly metabolic production of H+ and buffering. The transretinal distribution of extracellular H+ concentration ([H+]o) and its changes under illumination and other conditions will be described in detail, since [H+]o is more intensively investigated than intracellular pH. In vertebrate retinae, the highest [H+]o occurs in the inner part of the outer nuclear layer, and decreases toward the RPE, reaching the blood level on the apical side of the RPE. [H+]o falls toward the vitreous as well, but less, so that the inner retina is acidic to the vitreous. Light leads to complex changes with both electrogenic and metabolic origins, culminating in alkalinization. There is a rhythm of [H+]o with H+ being higher during circadian night. Extracellular pH can potentially be used as a signal in intercellular volume transmission, but evidence is against pH as a normal controller of fluid transport across the RPE or as a horizontal cell feedback signal. Pathological and experimentally created conditions (systemic metabolic acidosis, hypoxia and ischemia, vascular occlusion, excess glucose and diabetes, genetic disorders, and blockade of carbonic anhydrase) disturb H+ homeostasis, mostly producing retinal acidosis, with consequences for retinal blood flow, metabolism and function.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Neurobiology, Northwestern University, Evanston, IL, USA; Department of Ophthalmology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Eraky AM, Yerramalla Y, Khan A, Mokhtar Y, Wright A, Alsabbagh W, Franco Valle K, Haleem M, Kennedy K, Boulware C. Complexities, Benefits, Risks, and Clinical Implications of Sodium Bicarbonate Administration in Critically Ill Patients: A State-of-the-Art Review. J Clin Med 2024; 13:7822. [PMID: 39768744 PMCID: PMC11678678 DOI: 10.3390/jcm13247822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Sodium bicarbonate has been used in the treatment of different pathologies, such as hyperkalemia, cardiac arrest, tricyclic antidepressant toxicity, aspirin toxicity, acute acidosis, lactic acidosis, diabetic ketoacidosis, rhabdomyolysis, and adrenergic receptors' resistance to catecholamine in patients with shock. An ongoing debate about bicarbonate's efficacy and potential harm has been raised for decades because of the lack of evidence supporting its potential efficacy. Despite the guidelines' restrictions, sodium bicarbonate has been overused in clinical practice. The overuse of sodium bicarbonate could be because of the desire to correct the arterial blood gas parameters rapidly instead of achieving homeostasis by treating the cause of the metabolic acidosis. Moreover, it is believed that sodium bicarbonate may reverse acidosis-induced myocardial depression, hemodynamic instability, ventricular arrhythmias, impaired cellular energy production, resistance to catecholamines, altered metabolism, enzyme suppression, immune dysfunction, and ineffective oxygen delivery. On the other hand, it is crucial to pay attention to the potential harm that could be caused by excessive sodium bicarbonate administration. Sodium bicarbonate may cause paradoxical respiratory acidosis, intracellular acidosis, hypokalemia, hypocalcemia, alkalosis, impaired oxygen delivery, cerebrospinal fluid acidosis, and neurologic dysfunction. In this review, we discuss the pathophysiology of sodium bicarbonate-induced adverse effects and potential benefits. We also review the most recent clinical trials, observational studies, and guidelines discussing the use of sodium bicarbonate in different pathologies.
Collapse
Affiliation(s)
- Akram M. Eraky
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
- Graduate Medical Education, Kansas City University, Kansas City, MO 64106, USA
| | - Yashwanth Yerramalla
- Pulmonology and Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Adnan Khan
- Pulmonology and Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Yasser Mokhtar
- Pulmonology and Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Alisha Wright
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
| | - Walaa Alsabbagh
- Internal Medicine, Northern General Hospital, Sheffield S5 7AU, UK;
| | - Kevin Franco Valle
- Anesthesiology Department, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mina Haleem
- Nephrology Unit, Department of Clinical and Experimental Internal Medicine, Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt;
| | - Kyle Kennedy
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
| | - Chad Boulware
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
| |
Collapse
|
5
|
Morikawa R, Rodrigues TM, Schreyer HM, Cowan CS, Nadeau S, Graff-Meyer A, Patino-Alvarez CP, Khani MH, Jüttner J, Roska B. The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision. Neuron 2024; 112:3715-3733.e9. [PMID: 39317184 PMCID: PMC11602199 DOI: 10.1016/j.neuron.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Feedback at the photoreceptor synapse is the first neuronal circuit computation in vision, which influences downstream activity patterns within the visual system. Yet, the identity of the feedback signal and the mechanism of synaptic transmission are still not well understood. Here, we combined perturbations of cell-type-specific genes of mouse horizontal cells with two-photon imaging of the result of light-induced feedback in cones and showed that the electrogenic bicarbonate transporter Slc4a5, but not the electroneutral bicarbonate transporter Slc4a3, both expressed specifically in horizontal cells, is necessary for horizontal cell-to-cone feedback. Pharmacological blockage of bicarbonate transporters and buffering pH also abolished the feedback but blocking sodium-proton exchangers and GABA receptors did not. Our work suggests an unconventional mechanism of feedback at the first visual synapse: changes in horizontal cell voltage modulate bicarbonate transport to the cell, via Slc4a5, which leads to the modulation of feedback to cones.
Collapse
Affiliation(s)
- Rei Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | | | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Sarah Nadeau
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Facility for Advanced Imaging and Microscopy, Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | | | | | - Josephine Jüttner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
6
|
Ivica J, Kejzar N, Ho H, Stockwell I, Kuchtiak V, Scrutton AM, Nakagawa T, Greger IH. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Nat Struct Mol Biol 2024; 31:1601-1613. [PMID: 39138332 PMCID: PMC11479944 DOI: 10.1038/s41594-024-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission.
Collapse
Affiliation(s)
- Josip Ivica
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Nejc Kejzar
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hinze Ho
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Imogen Stockwell
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Viktor Kuchtiak
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alexander M Scrutton
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Ingo H Greger
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
7
|
Didan Y, Ghomlaghi M, Nguyen LK, Ng DCH. Stress pathway outputs are encoded by pH-dependent clustering of kinase components. Nat Commun 2024; 15:6614. [PMID: 39103333 DOI: 10.1038/s41467-024-50638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.
Collapse
Affiliation(s)
- Yuliia Didan
- School of Biomedical Science, Faculty of Medicine, University of Queensland; St Lucia, Brisbane, Australia
| | - Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Dominic C H Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland; St Lucia, Brisbane, Australia.
| |
Collapse
|
8
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Durbin R, Renden R. Basal lamina: A novel pH regulator at the neuromuscular junction. Sci Prog 2024; 107:368504231225066. [PMID: 38196184 PMCID: PMC10777786 DOI: 10.1177/00368504231225066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Proton concentration can change within the cleft during synaptic activity due to vesicular release and Ca2+ extrusion from cellular compartments. These changes within the synaptic cleft can impact neural activity by proton-dependent modulation of ion channel function. The pH transient differs in magnitude and direction between synapses, requiring different synapse types to be measured to generate a complete understanding of this mechanism and its impacts on physiology. With a focus on the mouse neuromuscular junction (NMJ), the recently published "Postsynaptic Calcium Extrusion at the Mouse Neuromuscular Junction Alkalinizes the Synaptic Cleft" measured synaptic cleft pH at a cholinergic synapse and found a biphasic pH transient. The study demonstrated that the changes in proton concentration found were due to postsynaptic signaling when measuring pH at the muscle membrane, despite the expectation of a presynaptic contribution. This result suggests a diffusional barrier within the NMJ isolates pH transients to presynaptic versus postsynaptic compartments. Generating a Donnan equilibrium that impacts protons, evidence suggests the basal lamina may be a key regulator of pH at the NMJ. Exploring synaptic pH, proton regulating factors, and downstream pH transient effects at presynaptic versus postsynaptic membranes may lead to new insight for a variety of diseases.
Collapse
Affiliation(s)
- Ryan Durbin
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| |
Collapse
|
10
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
11
|
Kim MH, Strazza P, Puthussery T, Gross OP, Taylor WR, von Gersdorff H. Functional maturation of the rod bipolar to AII-amacrine cell ribbon synapse in the mouse retina. Cell Rep 2023; 42:113440. [PMID: 37976158 PMCID: PMC11560284 DOI: 10.1016/j.celrep.2023.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Retinal ribbon synapses undergo functional changes after eye opening that remain uncharacterized. Using light-flash stimulation and paired patch-clamp recordings, we examined the maturation of the ribbon synapse between rod bipolar cells (RBCs) and AII-amacrine cells (AII-ACs) after eye opening (postnatal day 14) in the mouse retina at near physiological temperatures. We find that light-evoked excitatory postsynaptic currents (EPSCs) in AII-ACs exhibit a slow sustained component that increases in magnitude with advancing age, whereas a fast transient component remains unchanged. Similarly, paired recordings reveal a dual-component EPSC with a slower sustained component that increases during development, even though the miniature EPSC (mEPSC) amplitude and kinetics do not change significantly. We thus propose that the readily releasable pool of vesicles from RBCs increases after eye opening, and we estimate that a short light flash can evoke the release of ∼4,000 vesicles onto a single mature AII-AC.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Paulo Strazza
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Teresa Puthussery
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Owen P Gross
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Physics, Reed College, Portland, OR 97202, USA
| | - W Rowland Taylor
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Maurer M, Lazaridis T. Transmembrane β-Barrel Models of α-Synuclein Oligomers. J Chem Inf Model 2023; 63:7171-7179. [PMID: 37963823 DOI: 10.1021/acs.jcim.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The aggregation of α-synuclein is implicated in a number of neurodegenerative diseases, such as Parkinson's and Multiple System Atrophy, but the role of these aggregates in disease development is not clear. One possible mechanism of cytotoxicity is the disturbance or permeabilization of cell membranes by certain types of oligomers. However, no high-resolution structure of such membrane-embedded complexes has ever been determined. Here we construct and evaluate putative transmembrane β-barrels formed by this protein. Examination of the α-synuclein sequence reveals two regions that could form membrane-embedded β-hairpins: 64-92 (the NAC), and 35-56, which harbors many familial Parkinson's mutations. The stability of β-barrels formed by these hairpins is examined first in implicit membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and hydrated for at least 10 μs. A 35-56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated for at least 10 μs. Possible implications of these findings for α-synuclein pathology are discussed.
Collapse
Affiliation(s)
- Manuela Maurer
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| |
Collapse
|
13
|
Ferguson R, Miyagishima KJ, Nadal-Nicolas FM, Li W. Characterizing the rod pathway in cone-dominated thirteen-lined ground squirrels. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1271882. [PMID: 38974057 PMCID: PMC11182244 DOI: 10.3389/fopht.2023.1271882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
AII-amacrine cells (AIIs) are widely accepted as a critical element of scotopic pathways mediating night vision in the mammalian retina and have been well-characterized in rod-dominant mice, rabbits, and non-human primates. The rod pathway is characteristic of all mammalian eyes, however, the anatomic and physiologic role of AIIs and the rod pathways in cone dominant thirteen-lined ground squirrels (TLGS) is limited. Here, we employed both immunohistochemistry and electrophysiological approaches to investigate the morphology of AIIs and functional aspects of the rod pathway in TLGS. In all TLGS retinas examined, putative AIIs were calretinin-positive and exhibited connections to rod bipolar cells with decreased cell density and expanded arborization. Notably, AIIs retained connections with each other via gap junctions labeled with Connexin36. Comparisons between single photoreceptor recordings and full-field electroretinograms revealed scotopic ERG responses were mediated by both rods and cones. Thus, the components of the rod pathway are conserved in TLGS and rod signals traverse the retina in these cone-dominant animals. AIIs are sparsely populated, matching the diminished rod and rod bipolar cell populations compared to rod-dominant species. The infrequent distribution and lateral spacing of AII's indicate that they probably do not play a significant role in cone signaling pathways that encode information at a finer spatial scale. This contrasts with the mouse retina, where they significantly contribute to cone signaling pathways. Therefore, the AII's original function is likely that of a 'rod' amacrine cell, and its role in cone pathways in the mouse retina might be an adaptive feature stemming from its rod dominance.
Collapse
Affiliation(s)
- Riley Ferguson
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiyoharu J. Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco M. Nadal-Nicolas
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Durbin RJ, Heredia DJ, Gould TW, Renden RB. Postsynaptic Calcium Extrusion at the Mouse Neuromuscular Junction Alkalinizes the Synaptic Cleft. J Neurosci 2023; 43:5741-5752. [PMID: 37474311 PMCID: PMC10423045 DOI: 10.1523/jneurosci.0815-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Neurotransmission is shaped by extracellular pH. Alkalization enhances pH-sensitive transmitter release and receptor activation, whereas acidification inhibits these processes and can activate acid-sensitive conductances in the synaptic cleft. Previous work has shown that the synaptic cleft can either acidify because of synaptic vesicular release and/or alkalize because of Ca2+ extrusion by the plasma membrane ATPase (PMCA). The direction of change differs across synapse types. At the mammalian neuromuscular junction (NMJ), the direction and magnitude of pH transients in the synaptic cleft during transmission remain ambiguous. We set out to elucidate the extracellular pH transients that occur at this cholinergic synapse under near-physiological conditions and identify their sources. We monitored pH-dependent changes in the synaptic cleft of the mouse levator auris longus using viral expression of the pseudoratiometric probe pHusion-Ex in the muscle. Using mice from both sexes, a significant and prolonged alkalization occurred when stimulating the connected nerve for 5 s at 50 Hz, which was dependent on postsynaptic intracellular Ca2+ release. Sustained stimulation for a longer duration (20 s at 50 Hz) caused additional prolonged net acidification at the cleft. To investigate the mechanism underlying cleft alkalization, we used muscle-expressed GCaMP3 to monitor the contribution of postsynaptic Ca2+ Activity-induced liberation of intracellular Ca2+ in muscle positively correlated with alkalization of the synaptic cleft, whereas inhibiting PMCA significantly decreased the extent of cleft alkalization. Thus, cholinergic synapses of the mouse NMJ typically alkalize because of cytosolic Ca2+ liberated in muscle during activity, unless under highly strenuous conditions where acidification predominates.SIGNIFICANCE STATEMENT Changes in synaptic cleft pH alter neurotransmission, acting on receptors and channels on both sides of the synapse. Synaptic acidification has been associated with a myriad of diseases in the central and peripheral nervous system. Here, we report that in near-physiological recording conditions the cholinergic neuromuscular junction shows use-dependent bidirectional changes in synaptic cleft pH-immediate alkalinization and a long-lasting acidification under prolonged stimulation. These results provide further insight into physiologically relevant changes at cholinergic synapses that have not been defined previously. Understanding and identifying synaptic pH transients during and after neuronal activity provides insight into short-term synaptic plasticity synapses and may identify therapeutic targets for diseases.
Collapse
Affiliation(s)
- Ryan J Durbin
- Integrative Neuroscience Graduate Program, University of Nevada, Reno, Reno, Nevada 89557
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Dante J Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Thomas W Gould
- Integrative Neuroscience Graduate Program, University of Nevada, Reno, Reno, Nevada 89557
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Robert B Renden
- Integrative Neuroscience Graduate Program, University of Nevada, Reno, Reno, Nevada 89557
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| |
Collapse
|
15
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
16
|
Abstract
Voltage-gated Ca2+ (Cav) channels play pivotal roles in regulating gene transcription, neuronal excitability, and neurotransmitter release. To meet the spatial and temporal demands of visual signaling, Cav channels exhibit unusual properties in the retina compared to their counterparts in other areas of the nervous system. In this article, we review current concepts regarding the specific subtypes of Cav channels expressed in the retina, their intrinsic properties and forms of modulation, and how their dysregulation could lead to retinal disease.
Collapse
Affiliation(s)
- Brittany Williams
- Department of Cell Biology & Physiology, Carolina Institute for Developmental Disabilities, and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J Wesley Maddox
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| | - Amy Lee
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| |
Collapse
|
17
|
Wen X, Liao P, Luo Y, Yang L, Yang H, Liu L, Jiang R. Tandem pore domain acid-sensitive K channel 3 (TASK-3) regulates visual sensitivity in healthy and aging retina. SCIENCE ADVANCES 2022; 8:eabn8785. [PMID: 36070380 PMCID: PMC9451158 DOI: 10.1126/sciadv.abn8785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Retinal ganglion cells (RGCs) not only collect but also integrate visual signals and send them from the retina to the brain. The mechanisms underlying the RGC integration of synaptic activity within retinal circuits have not been fully explored. Here, we identified a pronounced expression of tandem pore domain acid-sensitive potassium channel 3 (TASK-3), a two-pore domain potassium channel (K2P), in RGCs. By using a specific antagonist and TASK-3 knockout mice, we found that TASK-3 regulates the intrinsic excitability and the light sensitivity of RGCs by sensing neuronal activity-dependent extracellular acidification. In vivo, the blockade or loss of TASK-3 dampened pupillary light reflex, visual acuity, and contrast sensitivity. Furthermore, overexpressing TASK-3 specifically in RGCs using an adeno-associated virus approach restored the visual function of TASK-3 knockout mice and aged mice where the expression and function of TASK-3 were reduced. Thus, our results provide evidence that implicates a critical role of K2P in visual processing in the retina.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Longqian Liu
- Department of Ophthalmology, Department of Optometry and Visual Science, Laboratory of Optometry and Vision Sciences, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Fillafer C, Koll YS, Schneider MF. Lipid Membrane State Change by Catalytic Protonation and the Implications for Synaptic Transmission. MEMBRANES 2021; 12:5. [PMID: 35054529 PMCID: PMC8781637 DOI: 10.3390/membranes12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
In cholinergic synapses, the neurotransmitter acetylcholine (ACh) is rapidly hydrolyzed by esterases to choline and acetic acid (AH). It is believed that this reaction serves the purpose of deactivating ACh once it has exerted its effect on a receptor protein (AChR). The protons liberated in this reaction, however, may by themselves excite the postsynaptic membrane. Herein, we investigated the response of cell membrane models made from phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidic acid (PA) to ACh in the presence and absence of acetylcholinesterase (AChE). Without a catalyst, there were no significant effects of ACh on the membrane state (lateral pressure change ≤0.5 mN/m). In contrast, strong responses were observed in membranes made from PS and PA when ACh was applied in presence of AChE (>5 mN/m). Control experiments demonstrated that this effect was due to the protonation of lipid headgroups, which is maximal at the pK (for PS: pKCOOH≈5.0; for PA: pKHPO4-≈8.5). These findings are physiologically relevant, because both of these lipids are present in postsynaptic membranes. Furthermore, we discussed evidence which suggests that AChR assembles a lipid-protein interface that is proton-sensitive in the vicinity of pH 7.5. Such a membrane could be excited by hydrolysis of micromolar amounts of ACh. Based on these results, we proposed that cholinergic transmission is due to postsynaptic membrane protonation. Our model will be falsified if cholinergic membranes do not respond to acidification.
Collapse
|
19
|
Reznikov LR. To alkalinize or acidify, that is the question. Biophys J 2021; 120:5436-5437. [PMID: 34798062 DOI: 10.1016/j.bpj.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, Florida.
| |
Collapse
|
20
|
Ponomareva D, Petukhova E, Bregestovski P. Simultaneous Monitoring of pH and Chloride (Cl -) in Brain Slices of Transgenic Mice. Int J Mol Sci 2021; 22:13601. [PMID: 34948398 PMCID: PMC8708776 DOI: 10.3390/ijms222413601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl-]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl-]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl-]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl-, K+, Na+) and synaptic stimulation of Shaffer's collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl- and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl- and pH.
Collapse
Affiliation(s)
- Daria Ponomareva
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Piotr Bregestovski
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| |
Collapse
|
21
|
Feghhi T, Hernandez RX, Stawarski M, Thomas CI, Kamasawa N, Lau AWC, Macleod GT. Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft. Biophys J 2021; 120:5575-5591. [PMID: 34774503 DOI: 10.1016/j.bpj.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
At chemical synapses, synaptic vesicles release their acidic contents into the cleft, leading to the expectation that the cleft should acidify. However, fluorescent pH probes targeted to the cleft of conventional glutamatergic synapses in both fruit flies and mice reveal cleft alkalinization rather than acidification. Here, using a reaction-diffusion scheme, we modeled pH dynamics at the Drosophila neuromuscular junction as glutamate, ATP, and protons (H+) were released into the cleft. The model incorporates bicarbonate and phosphate buffering systems as well as plasma membrane calcium-ATPase activity and predicts substantial cleft acidification but only for fractions of a millisecond after neurotransmitter release. Thereafter, the cleft rapidly alkalinizes and remains alkaline for over 100 ms because the plasma membrane calcium-ATPase removes H+ from the cleft in exchange for calcium ions from adjacent pre- and postsynaptic compartments, thus recapitulating the empirical data. The extent of synaptic vesicle loading and time course of exocytosis have little influence on the magnitude of acidification. Phosphate but not bicarbonate buffering is effective at suppressing the magnitude and time course of the acid spike, whereas both buffering systems are effective at suppressing cleft alkalinization. The small volume of the cleft levies a powerful influence on the magnitude of alkalinization and its time course. Structural features that open the cleft to adjacent spaces appear to be essential for alleviating the extent of pH transients accompanying neurotransmission.
Collapse
Affiliation(s)
- Touhid Feghhi
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Roberto X Hernandez
- Integrative Biology & Neuroscience Graduate Program, Florida Atlantic University, Boca Raton, Florida; International Max Planck Research School for Brain and Behavior, Jupiter, Florida; Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - A W C Lau
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Gregory T Macleod
- Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida; Wilkes Honors College, Florida Atlantic University, Jupiter, Florida; Brain Institute, Florida Atlantic University, Jupiter, Florida; Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.
| |
Collapse
|
22
|
Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner. Proc Natl Acad Sci U S A 2021; 118:2106694118. [PMID: 34732574 DOI: 10.1073/pnas.2106694118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
Collapse
|
23
|
Alijevic O, Peng Z, Kellenberger S. Changes in H +, K +, and Ca 2+ Concentrations, as Observed in Seizures, Induce Action Potential Signaling in Cortical Neurons by a Mechanism That Depends Partially on Acid-Sensing Ion Channels. Front Cell Neurosci 2021; 15:732869. [PMID: 34720879 PMCID: PMC8553998 DOI: 10.3389/fncel.2021.732869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are activated by extracellular acidification. Because ASIC currents are transient, these channels appear to be ideal sensors for detecting the onset of rapid pH changes. ASICs are involved in neuronal death after ischemic stroke, and in the sensation of inflammatory pain. Ischemia and inflammation are associated with a slowly developing, long-lasting acidification. Recent studies indicate however that ASICs are unable to induce an electrical signaling activity under standard experimental conditions if pH changes are slow. In situations associated with slow and sustained pH drops such as high neuronal signaling activity and ischemia, the extracellular K+ concentration increases, and the Ca2+ concentration decreases. We hypothesized that the concomitant changes in H+, K+, and Ca2+ concentrations may allow a long-lasting ASIC-dependent induction of action potential (AP) signaling. We show that for acidification from pH7.4 to pH7.0 or 6.8 on cultured cortical neurons, the number of action potentials and the firing time increased strongly if the acidification was accompanied by a change to higher K+ and lower Ca2+ concentrations. Under these conditions, APs were also induced in neurons from ASIC1a-/- mice, in which a pH of ≤ 5.0 would be required to activate ASICs, indicating that ASIC activation was not required for the AP induction. Comparison between neurons of different ASIC genotypes indicated that the ASICs modulate the AP induction under such changed ionic conditions. Voltage-clamp measurements of the Na+ and K+ currents in cultured cortical neurons showed that the lowering of the pH inhibited Na+ and K+ currents. In contrast, the lowering of the Ca2+ together with the increase in the K+ concentration led to a hyperpolarizing shift of the activation voltage dependence of voltage-gated Na+ channels. We conclude that the ionic changes observed during high neuronal activity mediate a sustained AP induction caused by the potentiation of Na+ currents, a membrane depolarization due to the changed K+ reversal potential, the activation of ASICs, and possibly effects on other ion channels. Our study describes therefore conditions under which slow pH changes induce neuronal signaling by a mechanism involving ASICs.
Collapse
Affiliation(s)
- Omar Alijevic
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Sierksma MC, Borst JGG. Using ephaptic coupling to estimate the synaptic cleft resistivity of the calyx of Held synapse. PLoS Comput Biol 2021; 17:e1009527. [PMID: 34699519 PMCID: PMC8570497 DOI: 10.1371/journal.pcbi.1009527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/05/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
At synapses, the pre- and postsynaptic cells get so close that currents entering the cleft do not flow exclusively along its conductance, gcl. A prominent example is found in the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB), where the presynaptic action potential can be recorded in the postsynaptic cell in the form of a prespike. Here, we developed a theoretical framework for ephaptic coupling via the synaptic cleft, and we tested its predictions using the MNTB prespike recorded in voltage-clamp. The shape of the prespike is predicted to resemble either the first or the second derivative of the inverted presynaptic action potential if cleft currents dissipate either mostly capacitively or resistively, respectively. We found that the resistive dissipation scenario provided a better description of the prespike shape. Its size is predicted to scale with the fourth power of the radius of the synapse, explaining why intracellularly recorded prespikes are uncommon in the central nervous system. We show that presynaptic calcium currents also contribute to the prespike shape. This calcium prespike resembled the first derivative of the inverted calcium current, again as predicted by the resistive dissipation scenario. Using this calcium prespike, we obtained an estimate for gcl of ~1 μS. We demonstrate that, for a circular synapse geometry, such as in conventional boutons or the immature calyx of Held, gcl is scale-invariant and only defined by extracellular resistivity, which was ~75 Ωcm, and by cleft height. During development the calyx of Held develops fenestrations. We show that these fenestrations effectively minimize the cleft potentials generated by the adult action potential, which might otherwise interfere with calcium channel opening. We thus provide a quantitative account of the dissipation of currents by the synaptic cleft, which can be readily extrapolated to conventional, bouton-like synapses.
Collapse
Affiliation(s)
- Martijn C. Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Mango D, Nisticò R. Neurodegenerative Disease: What Potential Therapeutic Role of Acid-Sensing Ion Channels? Front Cell Neurosci 2021; 15:730641. [PMID: 34690702 PMCID: PMC8531221 DOI: 10.3389/fncel.2021.730641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic pH shift occurs in many physiological neuronal activities such as synaptic transmission and synaptic plasticity but also represents a characteristic feature of many pathological conditions including inflammation and ischemia. Neuroinflammation is a complex process that occurs in various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and Huntington’s disease. Acid-sensing ion channels (ASICs) represent a widely expressed pH sensor in the brain that play a key role in neuroinflammation. On this basis, acid-sensing ion channel blockers are able to exert neuroprotective effects in different neurodegenerative diseases. In this review, we discuss the multifaceted roles of ASICs in brain physiology and pathology and highlight ASIC1a as a potential pharmacological target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
26
|
Grabner CP, Moser T. The mammalian rod synaptic ribbon is essential for Ca v channel facilitation and ultrafast synaptic vesicle fusion. eLife 2021; 10:63844. [PMID: 34617508 PMCID: PMC8594941 DOI: 10.7554/elife.63844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal ‘no light detected’ they release glutamate continually to activate post-synaptic receptors. When light is detected glutamate release pauses. How a rod’s individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild-type and ribbonless (Ribeye-ko) mice. Wild-type rods filled with high (10 mM) or low (0.5 mM) concentrations of the Ca2+-buffer EGTA created a readily releasable pool (RRP) of 87 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ<0.4 ms. The lower concentration of EGTA accelerated Cav channel opening and facilitated release kinetics. In contrast, ribbonless rods created a much smaller RRP of 22 SVs, and they lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. These release deficits caused a sharp attenuation of rod-driven scotopic light responses. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.
Collapse
Affiliation(s)
- Chad Paul Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
28
|
Malchow RP, Tchernookova BK, Choi JIV, Smith PJS, Kramer RH, Kreitzer MA. Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy-H . Front Cell Neurosci 2021; 15:693095. [PMID: 34539347 PMCID: PMC8446203 DOI: 10.3389/fncel.2021.693095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell-mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.
Collapse
Affiliation(s)
- Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ji-in Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Peter J. S. Smith
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| |
Collapse
|
29
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
30
|
Blaustein M, Wirth S, Saldaña G, Piantanida AP, Bogetti ME, Martin ME, Colman-Lerner A, Uchitel OD. A new tool to sense pH changes at the neuromuscular junction synaptic cleft. Sci Rep 2020; 10:20480. [PMID: 33235222 PMCID: PMC7687886 DOI: 10.1038/s41598-020-77154-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Synaptic transmission triggers transient acidification of the synaptic cleft. Recently, it has been shown that pH affects the opening of postsynaptic channels and therefore the production of tools that allow to study these behaviors should result of paramount value. We fused α-bungarotoxin, a neurotoxin derived from the snake Bungarus multicinctus that binds irreversibly to the acetylcholine receptor extracellular domain, to the pH sensitive GFP Super Ecliptic pHluorin, and efficiently expressed it in Pichia pastoris. This sensor allows synaptic changes in pH to be measured without the need of incorporating transgenes into animal cells. Here, we show that incubation of the mouse levator auris muscle with a solution containing this recombinant protein is enough to fluorescently label the endplate post synaptic membrane. Furthermore, we could physiologically alter and measure post synaptic pH by evaluating changes in the fluorescent signal of pHluorin molecules bound to acetylcholine receptors. In fact, using this tool we were able to detect a drop in 0.01 to 0.05 pH units in the vicinity of the acetylcholine receptors following vesicle exocytosis triggered by nerve electrical stimulation. Further experiments will allow to learn the precise changes in pH during and after synaptic activation.
Collapse
Affiliation(s)
- Matías Blaustein
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. .,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), FCEN, UBA, C1428EHA, Buenos Aires, Argentina.
| | - Sonia Wirth
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), FCEN, CONICET-UBA, Buenos Aires, Argentina
| | - Gustavo Saldaña
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET-UBA, Buenos Aires, Argentina
| | - María Eugenia Martin
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. .,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Tchernookova BK, Gongwer MW, George A, Goeglein B, Powell AM, Caringal HL, Leuschner T, Phillips AG, Schantz AW, Kiedrowski L, Chappell R, Kreitzer MA, Malchow RP. ATP-mediated increase in H + flux from retinal Müller cells: a role for Na +/H + exchange. J Neurophysiol 2020; 125:184-198. [PMID: 33206577 DOI: 10.1152/jn.00546.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small alterations in extracellular H+ can profoundly alter neurotransmitter release by neurons. We examined mechanisms by which extracellular ATP induces an extracellular H+ flux from Müller glial cells, which surround synaptic connections throughout the vertebrate retina. Müller glia were isolated from tiger salamander retinae and H+ fluxes examined using self-referencing H+-selective microelectrodes. Experiments were performed in 1 mM HEPES with no bicarbonate present. Replacement of extracellular sodium by choline decreased H+ efflux induced by 10 µM ATP by 75%. ATP-induced H+ efflux was also reduced by Na+/H+ exchange inhibitors. Amiloride reduced H+ efflux initiated by 10 µM ATP by 60%, while 10 µM cariporide decreased H+ flux by 37%, and 25 µM zoniporide reduced H+ flux by 32%. ATP-induced H+ fluxes were not significantly altered by the K+/H+ pump blockers SCH28080 or TAK438, and replacement of all extracellular chloride with gluconate was without effect on H+ fluxes. Recordings of ATP-induced H+ efflux from cells that were simultaneously whole cell voltage clamped revealed no effect of membrane potential from -70 mV to 0 mV. Restoration of extracellular potassium after cells were bathed in 0 mM potassium produced a transient alteration in ATP-dependent H+ efflux. The transient response to extracellular potassium occurred only when extracellular sodium was present and was abolished by 1 mM ouabain, suggesting that alterations in sodium gradients were mediated by Na+/K+-ATPase activity. Our data indicate that the majority of H+ efflux elicited by extracellular ATP from isolated Müller cells is mediated by Na+/H+ exchange.NEW & NOTEWORTHY Glial cells are known to regulate neuronal activity, but the exact mechanism(s) whereby these "support" cells modulate synaptic transmission remains unclear. Small changes in extracellular levels of acidity are known to be particularly powerful regulators of neurotransmitter release. Here, we show that extracellular ATP, known to be a potent activator of glial cells, induces H+ efflux from retinal Müller (glial) cells and that the bulk of the H+ efflux is mediated by Na+/H+ exchange.
Collapse
Affiliation(s)
| | | | - Alexis George
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Brock Goeglein
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Alyssa M Powell
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | | | - Thomas Leuschner
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Anna G Phillips
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Adam W Schantz
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Lech Kiedrowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Spot Cells LLC, Chicago, Illinois
| | - Richard Chappell
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York.,Eugene Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Barnes S, Grove JCR, McHugh CF, Hirano AA, Brecha NC. Horizontal Cell Feedback to Cone Photoreceptors in Mammalian Retina: Novel Insights From the GABA-pH Hybrid Model. Front Cell Neurosci 2020; 14:595064. [PMID: 33328894 PMCID: PMC7672006 DOI: 10.3389/fncel.2020.595064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it’s being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl− and HCO3− permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3− efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.
Collapse
Affiliation(s)
- Steven Barnes
- Doheny Eye Institute, Los Angeles, CA, United States.,Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
33
|
Theparambil SM, Hosford PS, Ruminot I, Kopach O, Reynolds JR, Sandoval PY, Rusakov DA, Barros LF, Gourine AV. Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat Commun 2020; 11:5073. [PMID: 33033238 PMCID: PMC7545092 DOI: 10.1038/s41467-020-18756-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain cells continuously produce and release protons into the extracellular space, with the rate of acid production corresponding to the levels of neuronal activity and metabolism. Efficient buffering and removal of excess H+ is essential for brain function, not least because all the electrogenic and biochemical machinery of synaptic transmission is highly sensitive to changes in pH. Here, we describe an astroglial mechanism that contributes to the protection of the brain milieu from acidification. In vivo and in vitro experiments conducted in rodent models show that at least one third of all astrocytes release bicarbonate to buffer extracellular H+ loads associated with increases in neuronal activity. The underlying signalling mechanism involves activity-dependent release of ATP triggering bicarbonate secretion by astrocytes via activation of metabotropic P2Y1 receptors, recruitment of phospholipase C, release of Ca2+ from the internal stores, and facilitated outward HCO3- transport by the electrogenic sodium bicarbonate cotransporter 1, NBCe1. These results show that astrocytes maintain local brain extracellular pH homeostasis via a neuronal activity-dependent release of bicarbonate. The data provide evidence of another important metabolic housekeeping function of these glial cells.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Olga Kopach
- Institute of Neurology, University College London, London, UK
| | | | | | | | | | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
34
|
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020; 193:101802. [PMID: 32413398 PMCID: PMC7331944 DOI: 10.1016/j.pneurobio.2020.101802] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K+, Ca2+ and Mg2+) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K+ buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K+ is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
35
|
Alkalinization of the Synaptic Cleft during Excitatory Neurotransmission. J Neurosci 2020; 40:6267-6269. [PMID: 32801127 DOI: 10.1523/jneurosci.0914-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022] Open
|
36
|
Jang IS, Nakamura M, Kubota H, Noda M, Akaike N. Extracellular pH modulation of excitatory synaptic transmission in hippocampal CA3 neurons. J Neurophysiol 2020; 123:2426-2436. [PMID: 32401126 DOI: 10.1152/jn.00013.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, the effect of extracellular pH on glutamatergic synaptic transmission was examined in mechanically dissociated rat hippocampal CA3 pyramidal neurons using a whole-cell patch-clamp technique under voltage-clamp conditions. Native synaptic boutons were isolated without using any enzymes, using a so-called "synapse bouton preparation," and preserved for the electrical stimulation of single boutons. Both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) were found to decrease and increase in response to modest acidic (~pH 6.5) and basic (~pH 8.5) solutions, respectively. These changes in sEPSC frequency were not affected by the addition of TTX but completely disappeared by successive addition of Cd2+. However, changes in sEPSC amplitude induced by acidic and basic extracellular solutions were not affected by the addition of neither TTX nor Cd2+. The glutamate-induced whole-cell currents were decreased and increased by acidic and basic solutions, respectively. Acidic pH also decreased the amplitude and increased the failure rate (Rf) and paired-pulse rate (PPR) of glutamatergic electrically evoked excitatory postsynaptic currents (eEPSCs), while a basic pH increased the amplitude and decreased both the Rf and PPR of eEPSCs. The kinetics of the currents were not affected by changes in pH. Acidic and basic solutions decreased and increased voltage-gated Ca2+ but not Na+ channel currents in the dentate gyrus granule cell bodies. Our results indicate that extracellular pH modulates excitatory transmission via both pre- and postsynaptic sites, with the presynaptic modulation correlated to changes in voltage-gated Ca2+ channel currents.NEW & NOTEWORTHY The effects of external pH changes on spontaneous, miniature, and evoked excitatory synaptic transmission in CA3 hippocampal synapses were examined using the isolated nerve bouton preparation, which allowed for the accurate regulation of extracellular pH at the synapses. Acidification generally reduced transmission, partly via effects on presynaptic Ca2+ channel currents, while alkalization generally enhanced transmission. Both pre- and postsynaptic sites contributed to these effects.
Collapse
Affiliation(s)
- Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hisahiko Kubota
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, Kumamoto, Japan.,Research Division of Neurophysiology, Kitamoto Hospital, Saitama, Japan
| |
Collapse
|
37
|
Rook ML, Musgaard M, MacLean DM. Coupling structure with function in acid-sensing ion channels: challenges in pursuit of proton sensors. J Physiol 2020; 599:417-430. [PMID: 32306405 DOI: 10.1113/jp278707] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a class of trimeric cation-selective ion channels activated by changes in pH within the physiological range. They are widely expressed in the central and peripheral nervous systems where they participate in a range of physiological and pathophysiological situations such as learning and memory, pain sensation, fear and anxiety, substance abuse and cell death. ASICs are localized to cell bodies and dendrites, including the postsynaptic density, and within the last 5 years several examples of proton-evoked ASIC excitatory postsynaptic currents have emerged. Thus, ASICs have become bona fide neurotransmitter-gated ion channels, activated by the smallest neurotransmitter possible: protons. Here we review how protons are thought to drive the conformational changes associated with ASIC activation and desensitization. In particular, we weigh the evidence for and against the so-called 'acidic pocket' being a vital proton sensor and discuss the emerging role of the β11-12 linker as a desensitization switch or 'molecular clutch'. We also examine how proton-induced conformational changes pose unique challenges to classical molecular dynamics simulations, as well as some possible solutions. Given the emergence of new methodologies and structures, the coming years will probably see many advances in the study of acid-sensing ion channels.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON, K1N 6N5, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
38
|
Neuronal Glutamatergic Synaptic Clefts Alkalinize Rather Than Acidify during Neurotransmission. J Neurosci 2020; 40:1611-1624. [PMID: 31964719 DOI: 10.1523/jneurosci.1774-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non-ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of female Drosophila larvae, we observed alkaline spikes of over 1 log unit during fictive locomotion in vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+ movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+ antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+ channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non-ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses.SIGNIFICANCE STATEMENT Neurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity.
Collapse
|
39
|
Vincent PFY, Cho S, Tertrais M, Bouleau Y, von Gersdorff H, Dulon D. Clustered Ca 2+ Channels Are Blocked by Synaptic Vesicle Proton Release at Mammalian Auditory Ribbon Synapses. Cell Rep 2019; 25:3451-3464.e3. [PMID: 30566869 DOI: 10.1016/j.celrep.2018.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
A Ca2+ current transient block (ICaTB) by protons occurs at some ribbon-type synapses after exocytosis, but this has not been observed at mammalian hair cells. Here we show that a robust ICaTB occurs at post-hearing mouse and gerbil inner hair cell (IHC) synapses, but not in immature IHC synapses, which contain non-compact active zones, where Ca2+ channels are loosely coupled to the release sites. Unlike ICaTB at other ribbon synapses, ICaTB in mammalian IHCs displays a surprising multi-peak structure that mirrors the EPSCs seen in paired recordings. Desynchronizing vesicular release with intracellular BAPTA or by deleting otoferlin, the Ca2+ sensor for exocytosis, greatly reduces ICaTB, whereas enhancing release synchronization by raising Ca2+ influx or temperature increases ICaTB. This suggests that ICaTB is produced by fast multivesicular proton-release events. We propose that ICaTB may function as a submillisecond feedback mechanism contributing to the auditory nerve's fast spike adaptation during sound stimulation.
Collapse
Affiliation(s)
- Philippe F Y Vincent
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Soyoun Cho
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68131, USA; The Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Margot Tertrais
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Yohan Bouleau
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | | | - Didier Dulon
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France.
| |
Collapse
|
40
|
Contini D, Holstein GR, Art JJ. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. J Physiol 2019; 598:853-889. [PMID: 31623011 DOI: 10.1113/jp278680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In central regions of vestibular semicircular canal epithelia, the [K+ ] in the synaptic cleft ([K+ ]c ) contributes to setting the hair cell and afferent membrane potentials; the potassium efflux from type I hair cells results from the interdependent gating of three conductances. Elevation of [K+ ]c occurs through a calcium-activated potassium conductance, GBK , and a low-voltage-activating delayed rectifier, GK(LV) , that activates upon elevation of [K+ ]c . Calcium influx that enables quantal transmission also activates IBK , an effect that can be blocked internally by BAPTA, and externally by a CaV 1.3 antagonist or iberiotoxin. Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, suggesting that the outward rectification observed for GK(LV) may result largely from a potassium-sensitive relief of Ca2+ inactivation of the channel pore selectivity filter. Potassium sensitivity of hair cell and afferent conductances allows three modes of transmission: quantal, ion accumulation and resistive coupling to be multiplexed across the synapse. ABSTRACT In the vertebrate nervous system, ions accumulate in diffusion-limited synaptic clefts during ongoing activity. Such accumulation can be demonstrated at large appositions such as the hair cell-calyx afferent synapses present in central regions of the turtle vestibular semicircular canal epithelia. Type I hair cells influence discharge rates in their calyx afferents by modulating the potassium concentration in the synaptic cleft, [K+ ]c , which regulates potassium-sensitive conductances in both hair cell and afferent. Dual recordings from synaptic pairs have demonstrated that, despite a decreased driving force due to potassium accumulation, hair cell depolarization elicits sustained outward currents in the hair cell, and a maintained inward current in the afferent. We used kinetic and pharmacological dissection of the hair cell conductances to understand the interdependence of channel gating and permeation in the context of such restricted extracellular spaces. Hair cell depolarization leads to calcium influx and activation of a large calcium-activated potassium conductance, GBK , that can be blocked by agents that disrupt calcium influx or buffer the elevation of [Ca2+ ]i , as well as by the specific KCa 1.1 blocker iberiotoxin. Efflux of K+ through GBK can rapidly elevate [K+ ]c , which speeds the activation and slows the inactivation and deactivation of a second potassium conductance, GK(LV) . Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, consistent with a K+ -dependent relief of Ca2+ inactivation of GK(LV) . As a result, this potassium-sensitive hair cell conductance pairs with the potassium-sensitive hyperpolarization-activated cyclic nucleotide-gated channel (HCN) conductance in the afferent and creates resistive coupling at the synaptic cleft.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| | - Gay R Holstein
- Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY, 10029, USA
| | - Jonathan J Art
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, 808 S. Wood St, Chicago, IL, 60612, USA
| |
Collapse
|
41
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
42
|
Cakir Z, Yildirim C, Buran I, Önalan EE, Bal R. Acid-sensing ion channels (ASICs) influence excitability of stellate neurons in the mouse cochlear nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:769-781. [PMID: 31451914 DOI: 10.1007/s00359-019-01365-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent and proton-gated channels. In this study, we aimed to test the hypothesis whether ASICs might be involved in modifying the excitability of stellate cells in the cochlear nucleus (CN). We determined gene expressions of ASIC1, ASIC2 and ASIC3 in the CN of BALB/mice. ASIC currents in stellate cells were characterized by using whole-cell patch-clamp technique. In the voltage-clamp experiments, inward currents were recorded upon application of 2-[N-Morpholino ethanesulfonic acid]-normal artificial cerebrospinal fluid (MES-aCSF), whose pH 50 was 5.84. Amiloride inhibited the acid-induced currents in a dose-dependent manner. Inhibition of the ASIC currents by extracellular Ca2+ and Pb2+ (10 μM) was significant evidence for the existence of homomeric ASIC1a subunits. ASIC currents were increased by 20% upon extracellular application of Zn2+ (300 μM) (p < 0.05, n = 13). In current-clamp experiments, application of MES-aCSF resulted in the depolarization of stellate cells. The results show that the ASIC currents in stellate cells of the cochlear nucleus are carried largely by the ASIC1a and ASIC2a channels. ASIC channels affect the excitability of the stellate cells and therefore they appear to have a role in the processing of auditory information.
Collapse
Affiliation(s)
- Ziya Cakir
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Caner Yildirim
- Department of Physiology, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Ilay Buran
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
43
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
44
|
Grassmeyer JJ, Cahill AL, Hays CL, Barta C, Quadros RM, Gurumurthy CB, Thoreson WB. Ca 2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. eLife 2019; 8:e45946. [PMID: 31172949 PMCID: PMC6588344 DOI: 10.7554/elife.45946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
To encode light-dependent changes in membrane potential, rod and cone photoreceptors utilize synaptic ribbons to sustain continuous exocytosis while making rapid, fine adjustments to release rate. Release kinetics are shaped by vesicle delivery down ribbons and by properties of exocytotic Ca2+ sensors. We tested the role for synaptotagmin-1 (Syt1) in photoreceptor exocytosis by using novel mouse lines in which Syt1 was conditionally removed from rods or cones. Photoreceptors lacking Syt1 exhibited marked reductions in exocytosis as measured by electroretinography and single-cell recordings. Syt1 mediated all evoked release in cones, whereas rods appeared capable of some slow Syt1-independent release. Spontaneous release frequency was unchanged in cones but increased in rods lacking Syt1. Loss of Syt1 did not alter synaptic anatomy or reduce Ca2+ currents. These results suggest that Syt1 mediates both phasic and tonic release at photoreceptor synapses, revealing unexpected flexibility in the ability of Syt1 to regulate Ca2+-dependent synaptic transmission.
Collapse
Affiliation(s)
- Justin J Grassmeyer
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| | - Asia L Cahill
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cassandra L Hays
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cody Barta
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaUnited States
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
45
|
Mango D, Nisticò R. Acid-Sensing Ion Channel 1a Is Involved in N-Methyl D-Aspartate Receptor-Dependent Long-Term Depression in the Hippocampus. Front Pharmacol 2019; 10:555. [PMID: 31178731 PMCID: PMC6537656 DOI: 10.3389/fphar.2019.00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are largely expressed in the mammalian nervous system. ASIC1a is highly permeable to Ca2+ and are involved in many physiological processes, including synaptic plasticity, learning, and memory. To clarify the role of ASIC1a in synaptic transmission and plasticity, we investigated N-methyl D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the CA1 region of the hippocampus. We found that: (1) ASIC1a mediates a component of ASIC1a excitatory postsynaptic currents (EPSCs); (2) ASIC1a plays a role in electrical LTD induced by LFS protocol both in P13-18 and P30-40 animals; (3) ASIC1a is involved in chemical LTD induced by brief bath application of NMDA both in P13-18 and P30-40 animals; and finally (4) a functional interaction between ASIC1a and NMDA receptors occurs during LTD. These findings suggest a new role for ASIC1a in specific forms of synaptic plasticity in the mouse hippocampus.
Collapse
Affiliation(s)
- D Mango
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
| | - R Nisticò
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Biology, School of Pharmacy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
46
|
Ali SO, Fessas P, Kaggie JD, Zaccagna F, Houston G, Reid S, Graves MJ, Gallagher FA. Evaluation of the sensitivity of R 1ρ MRI to pH and macromolecular density. Magn Reson Imaging 2019; 58:156-161. [PMID: 30771445 PMCID: PMC6422633 DOI: 10.1016/j.mri.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
The tumor microenvironment is characteristically acidic and this extracellular acidosis is known to play a role in carcinogenesis and metastasis and can affect tumor chemosensitivity and radiosensitivity. Intracellular pH has been used as a possible biomarker of salvageable tissue in ischemic stroke. A non-invasive MRI-based approach for the determination and imaging of cerebral pH would be a powerful tool in cancer diagnosis and monitoring, as well as stroke treatment planning. Several pH-based MRI imaging approaches have been proposed but for these to be useful, disentangling the effects of pH from other parameters which may affect the measured MRI signal is crucial to ensure accuracy and specificity. R1 relaxation in the rotating frame (R1ρ) is an example of a method that has been proposed to probe pH in vivo using MRI. In this study, we have investigated the relationship between R1ρ, pH, and macromolecular density in vitro using phantoms and in human volunteers. Here we show that the rate of R1ρ relaxation (=1/T1ρ) varies with pH but only in the presence of macromolecules. At constant pH, phantom macromolecular density inversely correlated with R1ρ. R1ρ imaging of the normal human brain demonstrated regional heterogeneity with significant differences between structurally distinct regions, which are likely to be independent of pH. For example, R1ρ was higher in the basal ganglia compared to grey matter and higher in grey matter compared to white matter. We conclude that R1ρ cannot be reliably used to image tissue pH without deconvolution from the effects of local tissue macromolecular composition.
Collapse
Affiliation(s)
- Syed O Ali
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Rd, Cambridge CB2 0SP, United Kingdom
| | - Petros Fessas
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Rd, Cambridge CB2 0SP, United Kingdom
| | - Joshua D Kaggie
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ.
| | - Fulvio Zaccagna
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ
| | | | - Scott Reid
- GE Healthcare, Amersham, United Kingdom, HP7 9JQ
| | - Martin J Graves
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ
| | - Ferdia A Gallagher
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ.
| |
Collapse
|
47
|
González-Inchauspe C, Gobetto MN, Uchitel OD. Modulation of acid sensing ion channel dependent protonergic neurotransmission at the mouse calyx of Held. Neuroscience 2019; 439:195-210. [PMID: 31022462 DOI: 10.1016/j.neuroscience.2019.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/18/2022]
Abstract
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. It has been reported that homomeric ASIC-1a channels are expressed in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H+ from synaptic vesicles activates postsynaptic ASIC-1a channels in mice up to 3 weeks old. This generates synaptic currents (ASIC1a-SCs) that add to the glutamatergic excitatory postsynaptic currents (EPSCs). Here we report that neuromodulators like histamine and natural products like lactate and spermine potentiate ASIC1a-SCs in an additive form such that excitatory ASIC synaptic currents as well as the associated calcium influx become significantly large and physiologically relevant. We show that ASIC1a-SCs enhanced by endogenous neuromodulators are capable of supporting synaptic transmission in the absence of glutamatergic EPSCs. Furthermore, at high frequency stimulation (HFS), ASIC1a-SCs contribute to diminish short term depression (STD) and their contribution is even more relevant at early stages of development. Since ASIC channels are present in almost all types of neurons and synaptic vesicles content is acid, the participation of protons in synaptic transmission and its potentiation by endogenous substances could be a general phenomenon across the central nervous system. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Carlota González-Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET. Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria. (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Natalia Gobetto
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET. Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria. (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET. Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria. (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
48
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
49
|
Localizing Proton-Mediated Inhibitory Feedback at the Retinal Horizontal Cell-Cone Synapse with Genetically-Encoded pH Probes. J Neurosci 2018; 39:651-662. [PMID: 30504272 DOI: 10.1523/jneurosci.1541-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition in the vertebrate retina depends on a negative feedback synapse between horizontal cells (HCs) and rod and cone photoreceptors. A change in pH is thought to be the signal for negative feedback, but its spatial profile in the synaptic cleft is unknown. Here we use three different membrane proteins, each fused to the same genetically-encoded pH-sensitive Green Fluorescent Protein (GFP) (pHluorin), to probe synaptic pH in retina from transgenic zebrafish (Danio rerio) of either sex. We used the cone transducin promoter to express SynaptopHluorin (pHluorin on vesicle-associated membrane protein (VAMP2)) or CalipHluorin (pHluorin on an L-type Ca2+ channel) and the HC-specific connexin-55.5 promoter to express AMPApHluorin (pHluorin on an AMPA receptor). Stimulus light led to increased fluorescence of all three probes, consistent with alkalinization of the synaptic cleft. The receptive field size, sensitivity to surround illumination, and response to activation of an alien receptor expressed exclusively in HCs, are consistent with lateral inhibition as the trigger for alkalinization. However, SynaptopHluorin and AMPApHluorin, which are displaced farther from cone synaptic ribbons than CalipHluorin, reported a smaller pH change. Hence, unlike feedforward glutamatergic transmission, which spills over to allow cross talk between terminals in the cone network, the pH change underlying HC feedback is compartmentalized to individual synaptic invaginations within a cone terminal, consistent with private line communication.SIGNIFICANCE STATEMENT Lateral inhibition (LI) is a fundamental feature of information processing in sensory systems, enhancing contrast sensitivity and enabling edge discrimination. Horizontal cells (HCs) are the first cellular substrate of LI in the vertebrate retina, but the synaptic mechanisms underlying LI are not completely understood, despite decades of study. This paper makes a significant contribution to our understanding of LI, by showing that each HC-cone synapse is a "private-line" that operates independently from other HC-cone connections. Using transgenic zebrafish expressing pHluorin, a pH-sensitive GFP variant spliced onto three different protein platforms expressed either in cones or HCs we show that the feedback pH signal is constrained to individual cone terminals, and more stringently, to individual synaptic contact sites within each terminal.
Collapse
|
50
|
Kisiel M, Jatczak-Śliwa M, Mozrzymas JW. Protons modulate gating of recombinant α 1β 2γ 2 GABA A receptor by affecting desensitization and opening transitions. Neuropharmacology 2018; 146:300-315. [PMID: 30326242 DOI: 10.1016/j.neuropharm.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023]
Abstract
Protons are potent modulators of GABAA receptors (GABAARs) and α1Phe64 residue was implicated in their pH sensitivity. Recently, we have demonstrated that this residue is involved in flipping transitions which precede channel opening. We thus re-addressed the mechanism of GABAAR modulation by protons by considering the gating scheme extended by flipping. The impact of pH changes was examined on currents mediated by wild-type α1β2γ2 receptors or by their α1Phe64Leu or α1Phe64Cys mutants and elicited by saturating concentrations of full (GABA) or partial (piperidine-4-sulfonic acid) agonists. To describe the impact of extracellular pH on receptor gating, we combined macroscopic analysis of currents elicited by rapid agonist applications with single-channel studies. Acidification (pH 6.0) increased current amplitudes (in the case of leucine mutants effect was stronger when P4S was used) and decreased the rate and the extent of desensitization whereas alkalization (pH 8.0) had the opposite but weaker effect. Deactivation kinetics for wild-type receptors was slowed down by acidification while in the case of mutants this effect was observed upon alkalization. Moreover, α1Phe64 mutations enhanced GABAAR sensitivity to alkaline pH. Single-channel analysis revealed that acidification prolonged burst durations and affected shut but not open time distributions. Model simulations for macroscopic and single-channel activity indicated a novel mechanism in which protons primarily affected opening and desensitization rates but not flipping/unflipping. This evidence for the impact of protons on the receptor gating together with previously demonstrated effect on the agonist binding, point to a complex effect of extracellular pH on GABAAR macromolecule.
Collapse
Affiliation(s)
- Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| | - Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Molecular Physiology and Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| |
Collapse
|