1
|
Shen Y, Luo X, Liu S, Shen Y, Nawy S, Shen Y. Rod bipolar cells dysfunction occurs before ganglion cells loss in excitotoxin-damaged mouse retina. Cell Death Dis 2019; 10:905. [PMID: 31787761 PMCID: PMC6885518 DOI: 10.1038/s41419-019-2140-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/29/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Progressive degeneration of retinal ganglion cells (RGCs) will cause a blinding disease. Most of the study is focusing on the RGCs itself. In this study, we demonstrate a decline of the presynaptic rod bipolar cells (RBCs) response precedes RGCs loss and a decrease of protein kinase Cα (PKCα) protein expression in RBCs dendrites, using whole-cell voltage-clamp, electroretinography (ERG) measurements, immunostaining and co-immunoprecipitation. We present evidence showing that N-methyl D-aspartate receptor subtype 2B (NR2B)/protein interacting with C kinase 1 (PICK1)-dependent degradation of PKCα protein in RBCs contributes to RBCs functional loss. Mechanistically, NR2B forms a complex with PKCα and PICK1 to promote the degradation of PKCα in a phosphorylation- and proteasome-dependent manner. Similar deficits in PKCα expression and response sensitivity were observed in acute ocular hypertension and optic never crush models. In conclusion, we find that three separate experimental models of neurodegeneration, often used to specifically target RGCs, disrupt RBCs function prior to the loss of RGCs. Our findings provide useful information for developing new diagnostic tools and treatments for retinal ganglion cells degeneration disease.
Collapse
Affiliation(s)
- Yumeng Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xue Luo
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shiliang Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Ying Shen
- Medical School, Zhejiang University, Hangzhou, 310053, Zhejiang Province, China
| | - Scott Nawy
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
2
|
Neurochemical correlates of functional plasticity in the mature cortex of the brain of rodents. Behav Brain Res 2017; 331:102-114. [DOI: 10.1016/j.bbr.2017.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023]
|
3
|
Mohammadi E, Shamsizadeh A, Salari E, Fatemi I, Allahtavakoli M, Roohbakhsh A. Effect of TPMPA (GABACreceptor antagonist) on neuronal response properties in rat barrel cortex. Somatosens Mot Res 2017; 34:108-115. [DOI: 10.1080/08990220.2017.1317240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Mohammadi
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Salari
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
A Mammalian Retinal Ganglion Cell Implements a Neuronal Computation That Maximizes the SNR of Its Postsynaptic Currents. J Neurosci 2016; 37:1468-1478. [PMID: 28039376 DOI: 10.1523/jneurosci.2814-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023] Open
Abstract
Neurons perform computations by integrating excitatory and inhibitory synaptic inputs. Yet, it is rarely understood what computation is being performed, or how much excitation or inhibition this computation requires. Here we present evidence for a neuronal computation that maximizes the signal-to-noise power ratio (SNR). We recorded from OFF delta retinal ganglion cells in the guinea pig retina and monitored synaptic currents that were evoked by visual stimulation (flashing dark spots). These synaptic currents were mediated by a decrease in an outward current from inhibitory synapses (disinhibition) combined with an increase in an inward current from excitatory synapses. We found that the SNR of combined excitatory and disinhibitory currents was voltage sensitive, peaking at membrane potentials near resting potential. At the membrane potential for maximal SNR, the amplitude of each current, either excitatory or disinhibitory, was proportional to its SNR. Such proportionate scaling is the theoretically best strategy for combining excitatory and disinhibitory currents to maximize the SNR of their combined current. Moreover, as spot size or contrast changed, the amplitudes of excitatory and disinhibitory currents also changed but remained in proportion to their SNRs, indicating a dynamic rebalancing of excitatory and inhibitory currents to maximize SNR.SIGNIFICANCE STATEMENT We present evidence that the balance of excitatory and disinhibitory inputs to a type of retinal ganglion cell maximizes the signal-to-noise ratio power ratio (SNR) of its postsynaptic currents. This is significant because chemical synapses on a retinal ganglion cell require the probabilistic release of transmitter. Consequently, when the same visual stimulus is presented repeatedly, postsynaptic currents vary in amplitude. Thus, maximizing SNR may be a strategy for producing the most reliable signal possible given the inherent unreliability of synaptic transmission.
Collapse
|
5
|
Grimes WN, Zhang J, Tian H, Graydon CW, Hoon M, Rieke F, Diamond JS. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold. J Neurophysiol 2015; 114:341-53. [PMID: 25972578 DOI: 10.1152/jn.00017.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABA(A)Rs are enriched at one synapse while more slowly activating GABA(C)Rs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca(2+)-activated K(+) channels help to regulate GABA release from A17 varicosities and limit GABA(C)R activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night.
Collapse
Affiliation(s)
- William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland; Department of Physiology and Biophysics, Howard Hughes Medical Institute at the University of Washington, Seattle, Washington; and
| | - Jun Zhang
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Hua Tian
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Cole W Graydon
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Fred Rieke
- Department of Physiology and Biophysics, Howard Hughes Medical Institute at the University of Washington, Seattle, Washington; and
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland;
| |
Collapse
|
6
|
Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate. Proc Natl Acad Sci U S A 2015; 112:E1559-68. [PMID: 25775587 DOI: 10.1073/pnas.1421535112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As with other retinal cell types, retinal ganglion cells (RGCs) arise from multipotent retinal progenitor cells (RPCs), and their formation is regulated by a hierarchical gene-regulatory network (GRN). Within this GRN, three transcription factors--atonal homolog 7 (Atoh7), POU domain, class 4, transcription factor 2 (Pou4f2), and insulin gene enhancer protein 1 (Isl1)--occupy key node positions at two different stages of RGC development. Atoh7 is upstream and is required for RPCs to gain competence for an RGC fate, whereas Pou4f2 and Isl1 are downstream and regulate RGC differentiation. However, the genetic and molecular basis for the specification of the RGC fate, a key step in RGC development, remains unclear. Here we report that ectopic expression of Pou4f2 and Isl1 in the Atoh7-null retina using a binary knockin-transgenic system is sufficient for the specification of the RGC fate. The RGCs thus formed are largely normal in gene expression, survive to postnatal stages, and are physiologically functional. Our results indicate that Pou4f2 and Isl1 compose a minimally sufficient regulatory core for the RGC fate. We further conclude that during development a core group of limited transcription factors, including Pou4f2 and Isl1, function downstream of Atoh7 to determine the RGC fate and initiate RGC differentiation.
Collapse
|
7
|
Dagar S, Nagar S, Goel M, Cherukuri P, Dhingra NK. Loss of photoreceptors results in upregulation of synaptic proteins in bipolar cells and amacrine cells. PLoS One 2014; 9:e90250. [PMID: 24595229 PMCID: PMC3942420 DOI: 10.1371/journal.pone.0090250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Deafferentation is known to cause significant changes in the postsynaptic neurons in the central nervous system. Loss of photoreceptors, for instance, results in remarkable morphological and physiological changes in bipolar cells and horizontal cells. Retinal ganglion cells (RGCs), which send visual information to the brain, are relatively preserved, but show aberrant firing patterns, including spontaneous bursts of spikes in the absence of photoreceptors. To understand how loss of photoreceptors affects the circuitry presynaptic to the ganglion cells, we measured specific synaptic proteins in two mouse models of retinal degeneration. We found that despite the nearly total loss of photoreceptors, the synaptophysin protein and mRNA levels in retina were largely unaltered. Interestingly, the levels of synaptophysin in the inner plexiform layer (IPL) were higher, implying that photoreceptor loss results in increased synaptophysin in bipolar and/or amacrine cells. The levels of SV2B, a synaptic protein expressed by photoreceptors and bipolar cells, were reduced in whole retina, but increased in the IPL of rd1 mouse. Similarly, the levels of syntaxin-I and synapsin-I, synaptic proteins expressed selectively by amacrine cells, were higher after loss of photoreceptors. The upregulation of syntaxin-I was evident as early as one day after the onset of photoreceptor loss, suggesting that it did not require any massive or structural remodeling, and therefore is possibly reversible. Together, these data show that loss of photoreceptors results in increased synaptic protein levels in bipolar and amacrine cells. Combined with previous reports of increased excitatory and inhibitory synaptic currents in RGCs, these results provide clues to understand the mechanism underlying the aberrant spiking in RGCs.
Collapse
Affiliation(s)
- Sushma Dagar
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | - Saumya Nagar
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | - Manvi Goel
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | | | | |
Collapse
|
8
|
Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci 2013; 33:10972-85. [PMID: 23825403 DOI: 10.1523/jneurosci.1241-13.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha/Y-type retinal ganglion cells encode visual information with a receptive field composed of nonlinear subunits. This nonlinear subunit structure enhances sensitivity to patterns composed of high spatial frequencies. The Y-cell's subunits are the presynaptic bipolar cells, but the mechanism for the nonlinearity remains incompletely understood. We investigated the synaptic basis of the subunit nonlinearity by combining whole-cell recording of mouse Y-type ganglion cells with two-photon fluorescence imaging of a glutamate sensor (iGluSnFR) expressed on their dendrites and throughout the inner plexiform layer. A control experiment designed to assess iGluSnFR's dynamic range showed that fluorescence responses from Y-cell dendrites increased proportionally with simultaneously recorded excitatory current. Spatial resolution was sufficient to readily resolve independent release at intermingled ON and OFF bipolar terminals. iGluSnFR responses at Y-cell dendrites showed strong surround inhibition, reflecting receptive field properties of presynaptic release sites. Responses to spatial patterns located the origin of the Y-cell nonlinearity to the bipolar cell output, after the stage of spatial integration. The underlying mechanism differed between OFF and ON pathways: OFF synapses showed transient release and strong rectification, whereas ON synapses showed relatively sustained release and weak rectification. At ON synapses, the combination of fast release onset with slower release offset explained the nonlinear response of the postsynaptic ganglion cell. Imaging throughout the inner plexiform layer, we found transient, rectified release at the central-most levels, with increasingly sustained release near the borders. By visualizing glutamate release in real time, iGluSnFR provides a powerful tool for characterizing glutamate synapses in intact neural circuits.
Collapse
|
9
|
Tanaka M, Tachibana M. Independent control of reciprocal and lateral inhibition at the axon terminal of retinal bipolar cells. J Physiol 2013; 591:3833-51. [PMID: 23690563 DOI: 10.1113/jphysiol.2013.253179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bipolar cells (BCs), the second order neurons in the vertebrate retina, receive two types of GABAergic feedback inhibition at their axon terminal: reciprocal and lateral inhibition. It has been suggested that two types of inhibition may be mediated by different pathways. However, how each inhibition is controlled by excitatory BC output remains to be clarified. Here, we applied single/dual whole cell recording techniques to the axon terminal of electrically coupled BCs in slice preparation of the goldfish retina, and found that each inhibition was regulated independently. Activation voltage of each inhibition was different: strong output from a single BC activated reciprocal inhibition, but could not activate lateral inhibition. Outputs from multiple BCs were essential for activation of lateral inhibition. Pharmacological examinations revealed that composition of transmitter receptors and localization of Na(+) channels were different between two inhibitory pathways, suggesting that different amacrine cells may mediate each inhibition. Depending on visual inputs, each inhibition could be driven independently. Model simulation showed that reciprocal and lateral inhibition cooperatively reduced BC outputs as well as background noise, thereby preserving high signal-to-noise ratio. Therefore, we conclude that excitatory BC output is efficiently regulated by the dual operating mechanisms of feedback inhibition without deteriorating the quality of visual signals.
Collapse
Affiliation(s)
- Masashi Tanaka
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
10
|
|
11
|
Buldyrev I, Taylor WR. Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol 2012; 591:303-25. [PMID: 23045347 DOI: 10.1113/jphysiol.2012.243113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lateral inhibition produces the centre-surround organization of retinal receptive fields, in which inhibition driven by the mean luminance enhances the sensitivity of ganglion cells to spatial and temporal contrast. Surround inhibition is generated in both synaptic layers; however, the synaptic mechanisms within the inner plexiform layer are not well characterized within specific classes of retinal ganglion cell. Here, we compared the synaptic circuits generating concentric centre-surround receptive fields in ON and OFF brisk-sustained ganglion cells (BSGCs) in the rabbit retina. We first characterized the synaptic inputs to the centre of ON BSGCs, for comparison with previous results from OFF BSGCs. Similar to wide-field ganglion cells, the spatial extent of the excitatory centre and inhibitory surround was larger for the ON than the OFF BSGCs. The results indicate that the surrounds of ON and OFF BSGCs are generated in both the outer and the inner plexiform layers. The inner plexiform layer surround inhibition comprised GABAergic suppression of excitatory inputs from bipolar cells. However, ON and OFF BSGCs displayed notable differences. Surround suppression of excitatory inputs was weaker in ON than OFF BSGCs, and was mediated largely by GABA(C) receptors in ON BSGCs, and by both GABA(A) and GABA(C) receptors in OFF BSGCs. Large ON pathway-mediated glycinergic inputs to ON and OFF BSGCs also showed surround suppression, while much smaller GABAergic inputs showed weak, if any, spatial tuning. Unlike OFF BSGCs, which receive strong glycinergic crossover inhibition from the ON pathway, the ON BSGCs do not receive crossover inhibition from the OFF pathway. We compare and discuss possible roles for glycinergic inhibition in the two cell types.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Casey Eye Institute, Department of Ophthalmology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
12
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
13
|
Schwartz G, Rieke F. Perspectives on: information and coding in mammalian sensory physiology: nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2. ACTA ACUST UNITED AC 2012; 138:283-90. [PMID: 21875977 PMCID: PMC3171084 DOI: 10.1085/jgp.201110629] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Greg Schwartz
- Howard Hughes Medical Institute and Department of Physiology and Biophysics, University of Washington, Seattle, USA
| | | |
Collapse
|
14
|
Abstract
AbstractFeedback is a ubiquitous feature of neural circuits in the mammalian central nervous system (CNS). Analogous to pure electronic circuits, neuronal feedback provides either a positive or negative influence on the output of upstream components/neurons. Although the particulars (i.e., connectivity, physiological encoding/processing/signaling) of circuits in higher areas of the brain are often unclear, the inner retina proves an excellent model for studying both the anatomy and physiology of feedback circuits within the functional context of visual processing. Inner retinal feedback to bipolar cells is almost entirely mediated by a single class of interneurons, the amacrine cells. Although this might sound like a simple circuit arrangement with an equally simple function, anatomical, molecular, and functional evidence suggest that amacrine cells represent an extremely diverse class of CNS interneurons that contribute to a variety of retinal processes. In this review, I classify the amacrine cells according to their anatomical output synapses and target cell(s) (i.e., bipolar cells, ganglion cells, and/or amacrine cells) and discuss specifically our current understandings of amacrine cell-mediated feedback and output to bipolar cells on the synaptic, cellular, and circuit levels, while drawing connections to visual processing.
Collapse
|
15
|
Abstract
In the retina, light onset hyperpolarizes photoreceptors and depolarizes ON bipolar cells at the sign inverting photoreceptor-ON bipolar cell synapse. Transmission at this synapse is mediated by a signaling cascade comprised of mGluR6, a G-protein containing G(αo), and the cation channel TRP melastatin 1 (TRPM1). This system is thought to be common to both the rod- and ON-cone-driven pathways, which control vision under scotopic and photopic conditions, respectively. In this study, we present evidence that the rod pathway is uniquely susceptible to modulation by PKCα at the rod-rod bipolar cell synapse. Decreased production of DAG (an activator of PKC) by inhibition of PIP₂ (phosphatidylinositol-4,5-bisphosphate) hydrolysis caused depression of the TRPM1 current. Conversely, addition of a DAG analog, 2-acetyl-1-oleoyl-sn-glycerol (OAG), potentiated the current in rod bipolar cells but not in ON-cone bipolar cells. The potentiating effects of OAG were absent both in mutant mice that lack PKCα expression and in wild-type mice in which enzymatic activity of PKCα was pharmacologically inhibited. In addition, we found that, like other members of the TRPM subfamily, TRPM1 current is susceptible to voltage-independent inhibition by intracellular magnesium, and that modulation by PKCα relieves this inhibition, as the potentiating effects of OAG are absent in low intracellular magnesium. We conclude that activation of PKCα initiates a modulatory mechanism at the rod-rod bipolar cell synapse whose function is to reduce inhibition of the TRPM1 current by magnesium, thereby increasing the gain of transmission at this synapse.
Collapse
|
16
|
Abstract
In the vertebrate visual system, ON cells respond to positive contrasts and OFF cells respond to negative contrasts, and thus both ON and OFF cells exhibit rectification. We investigated the retinal circuits by which the ON pathway rectifies the OFF pathway. White noise was projected onto an in vitro preparation of the mammalian retina and excitatory currents were recorded from retinal ganglion cells under whole-cell voltage clamp. Currents in OFF cells were more rectified than those in ON cells: thus, currents in ON cells were able to signal both positive and negative contrasts, but currents in OFF cells were virtually restricted to negative contrasts. Blocking signals in the ON pathway derectified currents in OFF ganglion cells, thus allowing them to be modulated by positive contrasts, indicating that the ON pathway normally rectifies currents in OFF ganglion cells. Such cross-rectification from ON to OFF pathways required intact glycinergic inhibition, indicating that a glycinergic amacrine cell, most likely the AII amacrine cell, allows the ON bipolar cell to hyperpolarize the OFF bipolar cell close to the threshold for transmitter release, thus rectifying excitatory currents in the OFF ganglion cell. Asymmetrical rectification of ON and OFF cells may be an adaptation to natural scenes that have more contrast levels below the mean than above. Thus, in order for ON and OFF pathways to encode an equal number of contrast levels, the ON cells must signal some negative contrasts.
Collapse
|
17
|
Freed MA, Liang Z. Reliability and frequency response of excitatory signals transmitted to different types of retinal ganglion cell. J Neurophysiol 2010; 103:1508-17. [PMID: 20089819 DOI: 10.1152/jn.00871.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The same visual stimulus evokes a different pattern of neural signals each time the stimulus is presented. Because this unreliability reduces visual performance, it is important to understand how it arises from neural circuitry. We asked whether different types of ganglion cell receive excitatory signals with different reliability and frequency content and, if so, how retinal circuitry contributes to these differences. If transmitter release is governed by Poisson statistics, the SNR of the postsynaptic currents (ratio of signal power to noise power) should grow linearly with quantal rate (qr), a prediction that we confirmed experimentally. Yet ganglion cells of the same type receive quanta at different rates. Thus to obtain a measure of reliability independent of quantal rate, we calculated the ratio SNR/qr, and found this measure to be type-specific. We also found type-specific differences in the frequency content of postsynaptic currents, although types whose dendrites branched at nearby levels of the inner plexiform layer (IPL) had similar frequency content. As a result, there was an orderly distribution of frequency response through the depth of the IPL, with alternating layers of broadband and high-pass signals. Different types of bipolar cell end at different depths of the IPL and provide excitatory synapses to ganglion cell dendrites there. Thus these findings indicate that a bipolar cell synapse conveys signals whose temporal message and reliability (SNR/qr) are determined by neuronal type. The final SNR of postsynaptic currents is set by the dendritic membrane area of a ganglion cell, which sets the numbers of bipolar cell synapses and thus the rate at which it receives quanta [SNR = qr x (SNR/qr)].
Collapse
Affiliation(s)
- Michael A Freed
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
18
|
Eggers ED, Lukasiewicz PD. Interneuron circuits tune inhibition in retinal bipolar cells. J Neurophysiol 2009; 103:25-37. [PMID: 19906884 DOI: 10.1152/jn.00458.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While connections between inhibitory interneurons are common circuit elements, it has been difficult to define their signal processing roles because of the inability to activate these circuits using natural stimuli. We overcame this limitation by studying connections between inhibitory amacrine cells in the retina. These interneurons form spatially extensive inhibitory networks that shape signaling between bipolar cell relay neurons to ganglion cell output neurons. We investigated how amacrine cell networks modulate these retinal signals by selectively activating the networks with spatially defined light stimuli. The roles of amacrine cell networks were assessed by recording their inhibitory synaptic outputs in bipolar cells that suppress bipolar cell output to ganglion cells. When the amacrine cell network was activated by large light stimuli, the inhibitory connections between amacrine cells unexpectedly depressed bipolar cell inhibition. Bipolar cell inhibition elicited by smaller light stimuli or electrically activated feedback inhibition was not suppressed because these stimuli did not activate the connections between amacrine cells. Thus the activation of amacrine cell circuits with large light stimuli can shape the spatial sensitivity of the retina by limiting the spatial extent of bipolar cell inhibition. Because inner retinal inhibition contributes to ganglion cell surround inhibition, in part, by controlling input from bipolar cells, these connections may refine the spatial properties of the retinal output. This functional role of interneuron connections may be repeated throughout the CNS.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
19
|
Abstract
The function of the retina is crucial, for it must encode visual signals so the brain can detect objects in the visual world. However, the biological mechanisms of the retina add noise to the visual signal and therefore reduce its quality and capacity to inform about the world. Because an organism's survival depends on its ability to unambiguously detect visual stimuli in the presence of noise, its retinal circuits must have evolved to maximize signal quality, suggesting that each retinal circuit has a specific functional role. Here we explain how an ideal observer can measure signal quality to determine the functional roles of retinal circuits. In a visual discrimination task the ideal observer can measure from a neural response the increment threshold, the number of distinguishable response levels, and the neural code, which are fundamental measures of signal quality relevant to behavior. It can compare the signal quality in stimulus and response to determine the optimal stimulus, and can measure the specific loss of signal quality by a neuron's receptive field for non-optimal stimuli. Taking into account noise correlations, the ideal observer can track the signal-to-noise ratio available from one stage to the next, allowing one to determine each stage's role in preserving signal quality. A comparison between the ideal performance of the photon flux absorbed from the stimulus and actual performance of a retinal ganglion cell shows that in daylight a ganglion cell and its presynaptic circuit loses a factor of approximately 10-fold in contrast sensitivity, suggesting specific signal-processing roles for synaptic connections and other neural circuit elements. The ideal observer is a powerful tool for characterizing signal processing in single neurons and arrays along a neural pathway.
Collapse
Affiliation(s)
- Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
20
|
Abstract
A low-contrast spot that activates just one ganglion cell in the retina is detected in the spike train of the cell with about the same sensitivity as it is detected behaviorally. This is consistent with Barlow's proposal that the ganglion cell and later stages of spiking neurons transfer information essentially without loss. Yet, when losses of sensitivity by all preneural factors are accounted for, predicted sensitivity near threshold is considerably greater than behavioral sensitivity, implying that somewhere in the brain information is lost. We hypothesized that the losses occur mainly in the retina, where graded signals are processed by analog circuits that transfer information at high rates and low metabolic cost. To test this, we constructed a model that included all preneural losses for an in vitro mammalian retina, and evaluated the model to predict sensitivity at the cone output. Recording graded responses postsynaptic to the cones (from the type A horizontal cell) and comparing to predicted preneural sensitivity, we found substantial loss of sensitivity (4.2-fold) across the first visual synapse. Recording spike responses from brisk-transient ganglion cells stimulated with the same spot, we found a similar loss (3.5-fold) across the second synapse. The total retinal loss approximated the known overall loss, supporting the hypothesis that from stimulus to perception, most loss near threshold is retinal.
Collapse
|
21
|
Tokutake Y, Freed MA. Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy. Eur J Neurosci 2008; 28:914-23. [PMID: 18691326 PMCID: PMC2849110 DOI: 10.1111/j.1460-9568.2008.06394.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
According to the 'redundancy reduction' hypothesis, a visual neuron removes correlations from an image to reduce redundancy in the spike train, thus increasing the efficiency of information coding. However, all elaborations of this general hypothesis have treated spatial and temporal correlations separately. To investigate how a retinal ganglion cell responds to combined spatial and temporal correlations, we selected those cells with center-surround receptive field and presented a stimulus with strong spatiotemporal correlations: we presented a random sequence of intensities (of white noise) to the receptive field center and then activated the surround with the same sequence. We found that, for most cells, activating the surround reduced temporal redundancy in the spike train. Although the surround often reduced the information rate of the spike train it always increased the amount of information per spike. However, when the surround was modulated by a different white-noise sequence than the center, eliminating spatial-temporal correlations, the surround no longer reduced redundancy or increased information per spike. The proposed mechanism for redundancy reduction is based on the temporal properties of the center and surround: the surround signal is delayed behind the center signal and subtracted from it; this implements a differentiator which removes low frequencies from the stimulus, thus reducing redundancy in the spike train. These results extend the redundancy reduction hypothesis by indicating that the spatial organization of the receptive field into center and surround can reduce temporal redundancy within the spike train of a ganglion cell.
Collapse
Affiliation(s)
- Yoichiro Tokutake
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
22
|
Petit-Jacques J, Bloomfield SA. Synaptic regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse retina. J Neurophysiol 2008; 100:993-1006. [PMID: 18497354 DOI: 10.1152/jn.01399.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of on-center starburst amacrine cells to steady light stimuli were recorded in the dark-adapted mouse retina. The response to spots of dim white light appear to show two components, an initial peak that correspond to the onset of the light stimulus and a series of oscillations that ride on top of the initial peak relaxation. The frequency of oscillations during light stimulation was three time higher than the frequency of spontaneous oscillations recorded in the dark. The light-evoked responses in starburst cells were exclusively dependent on the release of glutamate likely from presynaptic bipolar axon terminals and the binding of glutamate to AMPA/kainate receptors because they were blocked by 6-cyano-7-nitroquinoxalene-2,3-dione. The synaptic pathway responsible for the light responses was blocked by AP4, an agonist of metabotropic glutamate receptors that hyperpolarize on-center bipolar cells on activation. Light responses were inhibited by the calcium channel blockers cadmium ions and nifedipine, suggesting that the release of glutamate was calcium dependent. The oscillatory component of the response was specifically inhibited by blocking the glutamate transporter with d-threo-beta-benzyloxyaspartic acid, suggesting that glutamate reuptake is necessary for the oscillatory release. GABAergic antagonists bicuculline, SR 95531, and picrotoxin increased the amplitude of the initial peak while they inhibit the frequency of oscillations. TTX had a similar effect. Strychnine, the blocker of glycine receptors did not affect the initial peak but strongly decreased the oscillations frequency. These inhibitory inputs onto the bipolar axon terminals shape and synchronize the oscillatory component.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | |
Collapse
|
23
|
Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 2008; 25:139-53. [PMID: 18442437 DOI: 10.1017/s0952523808080322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To refine inhibitory circuitry models for ON and OFF pathways in zebrafish retina, GABAergic properties of zebrafish bipolar cells were studied with two techniques: whole cell patch responses to GABA puffs in retinal slice, and voltage probe responses in isolated cells. Retinal slices documented predominantly axon terminal responses; isolated cells revealed mainly soma-dendritic responses. In the slice, GABA elicited a conductance increase, GABA responses were more robust at axon terminals than dendrites, and Erev varied with [Cl(-)]in. Axon terminals of ON- and OFF-type cells were similarly sensitive to GABA (30-40 pA peak current); axotomized cells were unresponsive. Bicuculline-sensitive, picrotoxin-sensitive, and picrotoxin-insensitive components were identified. Muscimol was as effective as GABA; baclofen was ineffective. Isolated bipolar cells were either intact or axotomized. Even in cells without an axon, GABA or muscimol (but not baclofen) hyperpolarized dendritic and somatic regions, suggesting significant distal expression. Median fluorescence change for GABA was -0.22 log units (approximately -16 mV); median half-amplitude dose was 0.4 microM. Reduced [Cl(-)]out blocked GABA responses. GABA hyperpolarized isolated ON-bipolar cells; OFF-cells were either unresponsive or depolarized. Hyperpolarizing GABA responses in isolated cells were bicuculline and TPMPA insensitive, but blocked or partially blocked by picrotoxin or zinc. In summary, axon terminals contain bicuculline-sensitive GABAA receptors and both picrotoxin-sensitive and insensitive GABAC receptors. Dendritic processes express zinc- and picrotoxin-sensitive GABAC receptors.
Collapse
|
24
|
Abstract
The expression of GABA(C) receptors has long been regarded as a specific property of bipolar cells in the inner retina where they control the information transfer from bipolar to retinal ganglion cells. A number of recent anatomical and physiological studies, however, have provided evidence that GABA(C) receptors are also expressed in many brain structures apart from the retina. The presence of GABA(C) receptors in many GABAergic neurons suggests that this receptor type may be involved in the regulation of local inhibition. This chapter focuses on the distribution of GABA(C) receptors and their possible function in various brain areas.
Collapse
Affiliation(s)
- Matthias Schmidt
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
25
|
Giovannelli A, Di Marco S, Maccarone R, Bisti S. Long-term dark rearing induces permanent reorganization in retinal circuitry. Biochem Biophys Res Commun 2007; 365:349-54. [PMID: 17999915 DOI: 10.1016/j.bbrc.2007.10.204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/31/2007] [Indexed: 11/15/2022]
Abstract
Recent data challenged the assumption that light has little effect on retina development. Here, we report evidence that dark rearing permanently changes the synaptic input to GCs. A reduced spontaneous postsynaptic currents (SPSCs) frequency was found in retinal GCs from rats born and raised in the dark for three months. Glutamate antagonists (CNQX and AP-5) reversibly reduced SPSCs frequency in control and dark-reared (DR) retinae. The GABA antagonist picrotoxin (PTX) reduced SPSCs frequency in control retinas, but increased SPSCs frequency in DR, mainly by presynaptic action on excitatory currents. In DR animals exposed to normal cyclic light for 3 months, SPSCs frequency remained lower then in control rats and increased following PTX, suggesting that long-term dark rearing induces permanent modifications of the retinal circuitry. Our results strongly support the idea that light stimulation plays a role in establishing normal synaptic input to GCs.
Collapse
Affiliation(s)
- Aldo Giovannelli
- Dipartimento di Medicina Sperimentale, Università di L'Aquila, via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | | | | | | |
Collapse
|
26
|
Abstract
Design in engineering begins with the problem of robustness-by what factor should intrinsic capacity exceed normal demand? Here we consider robustness for a neural circuit that crosses the retina from cones to ganglion cells. The circuit's task is to represent the visual scene at many successive stages, each time by modulating a stream of stochastic events: photoisomerizations, then transmitter quanta, then spikes. At early stages, the event rates are high to achieve some critical signal-to-noise ratio and temporal bandwidth, which together set the information rate. Then neural circuits concentrate the information and repackage it, so that nearly the same total information can be represented by modulating far lower event rates. This is important for spiking because of its high metabolic cost. Considering various measurements at the outer and inner retina, we conclude that the "safety factors" are about 2-10, similar to other tissues.
Collapse
Affiliation(s)
- Peter Sterling
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
27
|
Miller JA, Denning KS, George JS, Marshak DW, Kenyon GT. A high frequency resonance in the responses of retinal ganglion cells to rapidly modulated stimuli: a computer model. Vis Neurosci 2006; 23:779-94. [PMID: 17020633 PMCID: PMC3350093 DOI: 10.1017/s0952523806230104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 11/05/2022]
Abstract
Brisk Y-type ganglion cells in the cat retina exhibit a high frequency resonance (HFR) in their responses to large, rapidly modulated stimuli. We used a computer model to test whether negative feedback mediated by axon-bearing amacrine cells onto ganglion cells could account for the experimentally observed properties of HFRs. Temporal modulation transfer functions (tMTFs) recorded from model ganglion cells exhibited HFR peaks whose amplitude, width, and locations were qualitatively consistent with experimental data. Moreover, the wide spatial distribution of axon-mediated feedback accounted for the observed increase in HFR amplitude with stimulus size. Model phase plots were qualitatively similar to those recorded from Y ganglion cells, including an anomalous phase advance that in our model coincided with the amplification of low-order harmonics that overlapped the HFR peak. When axon-mediated feedback in the model was directed primarily to bipolar cells, whose synaptic output was graded, or else when the model was replaced with a simple cascade of linear filters, it was possible to produce large HFR peaks but the region of anomalous phase advance was always eliminated, suggesting the critical involvement of strongly non-linear feedback loops. To investigate whether HFRs might contribute to visual processing, we simulated high frequency ocular tremor by rapidly modulating a naturalistic image. Visual signals riding on top of the imposed jitter conveyed an enhanced representation of large objects. We conclude that by amplifying responses to ocular tremor, HFRs may selectively enhance the processing of large image features.
Collapse
Affiliation(s)
- J A Miller
- Applied Modern Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
A retinal ganglion cell receives information about a white-noise stimulus as a flickering pattern of glutamate quanta. The ganglion cell reencodes this information as brief bursts of one to six spikes separated by quiescent periods. When the stimulus is repeated, the number of spikes in a burst is highly reproducible (variance < mean) and spike timing is precise to within 10 ms, leading to an estimate that each spike encodes about 2 bits. To understand how the ganglion cell reencodes information, we studied the quantal patterns by repeating a white-noise stimulus and recording excitatory currents from a voltage-clamped, brisk-sustained ganglion cell. Quanta occurred in synchronous bursts of 3 to 65; the resulting postsynaptic currents summed to form excitatory postsynaptic currents (EPSCs). The number of quanta in an EPSC was only moderately reproducible (variance = mean), quantal timing was precise to within 14 ms, and each quantum encoded 0.1–0.4 bit. In conclusion, compared to a spike, a quantum has similar temporal precision, but is less reproducible and encodes less information. Summing multiple quanta into discrete EPSCs improves the reproducibility of the overall quantal pattern and contributes to the reproducibility of the spike train.
Collapse
Affiliation(s)
- Michael A Freed
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
29
|
Vigh J, Li GL, Hull C, von Gersdorff H. Long-term plasticity mediated by mGluR1 at a retinal reciprocal synapse. Neuron 2005; 46:469-82. [PMID: 15882646 PMCID: PMC3572841 DOI: 10.1016/j.neuron.2005.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/10/2005] [Accepted: 03/17/2005] [Indexed: 11/26/2022]
Abstract
The flow of information across the retina is controlled by reciprocal synapses between bipolar cell terminals and amacrine cells. However, the synaptic delays and properties of plasticity at these synapses are not known. Here we report that glutamate release from goldfish Mb-type bipolar cell terminals can trigger fast (delay of 2-3 ms) and transient GABA(A) IPSCs and a much slower and more sustained GABA(C) feedback. Synaptically released glutamate activated mGluR1 receptors on amacrine cells and, depending on the strength of presynaptic activity, potentiated subsequent feedback. This poststimulus enhancement of GABAergic feedback lasted for up to 10 min. This form of mGluR1-mediated long-term synaptic plasticity may provide retinal reciprocal synapses with adaptive capabilities.
Collapse
|
30
|
Petit-Jacques J, Völgyi B, Rudy B, Bloomfield S. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina. J Neurophysiol 2005; 94:1770-80. [PMID: 15917322 DOI: 10.1152/jn.00279.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using patch-clamp techniques, we investigated the characteristics of the spontaneous oscillatory activity displayed by starburst amacrine cells in the mouse retina. At a holding potential of -70 mV, oscillations appeared as spontaneous, rhythmic inward currents with a frequency of approximately 3.5 Hz and an average maximal amplitude of approximately 120 pA. Application of TEA, a potassium channel blocker, increased the amplitude of oscillatory currents by >70% but reduced their frequency by approximately 17%. The TEA effects did not appear to result from direct actions on starburst cells, but rather a modulation of their synaptic inputs. Oscillatory currents were inhibited by 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), an antagonist of AMPA/kainate receptors, indicating that they were dependent on a periodic glutamatergic input likely from presynaptic bipolar cells. The oscillations were also inhibited by the calcium channel blockers cadmium and nifedipine, suggesting that the glutamate release was calcium dependent. Application of AP4, an agonist of mGluR6 receptors on on-center bipolar cells, blocked the oscillatory currents in starburst cells. However, application of TEA overcame the AP4 blockade, suggesting that the periodic glutamate release from bipolar cells is intrinsic to the inner plexiform layer in that, under experimental conditions, it can occur independent of photoreceptor input. The GABA receptor antagonists picrotoxin and bicuculline enhanced the amplitude of oscillations in starburst cells prestimulated with TEA. Our results suggest that this enhancement was due to a reduction of a GABAergic feedback inhibition from amacrine cells to bipolar cells and the resultant increased glutamate release. Finally, we found that some ganglion cells and other types of amacrine cell also displayed rhythmic activity, suggesting that oscillatory behavior is expressed by a number of inner retinal neurons.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Ophthalmology, New York University School of Medicine, 550 First Ave., New York, New York 10016, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Sensory neurons with short conduction distances can use nonregenerative, graded potentials to modulate transmitter release continuously. This mechanism can transmit information at much higher rates than spiking. Graded signaling requires a synapse to sustain high rates of exocytosis for relatively long periods, and this capacity is the special virtue of ribbon synapses. Vesicles tethered to the ribbon provide a pool for sustained release that is typically fivefold greater than the docked pool available for fast release. The current article, which is part of the TINS Synaptic Connectivity series, reviews recent evidence for this fundamental computational strategy and its underlying cell biology.
Collapse
Affiliation(s)
- Peter Sterling
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
32
|
Lukasiewicz PD. Synaptic mechanisms that shape visual signaling at the inner retina. PROGRESS IN BRAIN RESEARCH 2005; 147:205-18. [PMID: 15581708 DOI: 10.1016/s0079-6123(04)47016-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The retina is a layered structure that processes information in two stages. The outer plexiform layer (OPL) comprises the first stage and is where photoreceptors, bipolar cells, and horizontal cells interact synaptically. This is the synaptic layer where ON and OFF responses to light are formed, as well as the site where receptive field center and surround organization is first thought to occur. The inner plexiform layer (IPL) is where the second stage of synaptic interactions occurs. This synaptic layer is where subsequent visual processing occurs that may contribute to the formation of transient responses, which may underlie motion and direction sensitivity. In addition, synaptic interactions in the IPL may also contribute to the classical ganglion cell receptive field properties. This chapter will focus on the synapse and network properties at the IPL that sculpt light-evoked ganglion cell responses. These include synaptic mechanisms that may shape ganglion cell responses like desensitizing glutamate receptors and transporters, which remove glutamate from the synapse. Recent work suggests that inhibitory signaling at the IPL contributes to the surround receptive field organization of ganglion cells. A component of this amacrine cell inhibitory signaling is mediated by GABAC receptors, which are found on bipolar cell axon terminals in the IPL. Pharmacological experiments show that a component of the ganglion cell surround signal is mediated by these receptors, indicating that the ganglion cell center and surround receptive field organization is not formed entirely in the outer plexiform layer, as earlier thought.
Collapse
Affiliation(s)
- Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Lukasiewicz PD, Eggers ED, Sagdullaev BT, McCall MA. GABAC receptor-mediated inhibition in the retina. Vision Res 2005; 44:3289-96. [PMID: 15535996 DOI: 10.1016/j.visres.2004.07.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Indexed: 11/28/2022]
Abstract
Inhibition at bipolar cell axon terminals regulates excitatory signaling to ganglion cells and is mediated, in part, by GABAC receptors. We investigated GABAC receptor-mediated inhibition using pharmacological approaches and genetically altered mice that lack GABAC receptors. Responses to applied GABA showed distinct time courses in various bipolar cell classes, attributable to different proportions of GABAA and GABAC receptors. The elimination of GABAC receptors in GABAC null mice reduced and shortened GABA-activated currents and light-evoked inhibitory synaptic currents (L-IPSCs) in rod bipolar cells. ERG measurements and recordings from the optic nerve showed that inner retinal function was altered in GABAC null mice. These data suggest that GABAC receptors determine the time course and extent of inhibition at bipolar cell terminals that, in turn, modulates the magnitude of excitatory transmission from bipolar cells to ganglion cells.
Collapse
Affiliation(s)
- Peter D Lukasiewicz
- Department of Ophthalmology, Washington University School of Medicine, Campus Box 8096, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
34
|
Koch K, McLean J, Berry M, Sterling P, Balasubramanian V, Freed MA. Efficiency of information transmission by retinal ganglion cells. Curr Biol 2005; 14:1523-30. [PMID: 15341738 DOI: 10.1016/j.cub.2004.08.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/12/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Different types of retinal ganglion cells convey different messages to the brain. Messages are in the form of spike patterns, and the number of possible patterns per second sets the coding capacity. We asked if different ganglion cell types make equally efficient use of their coding capacity or whether efficiency depends on the message conveyed. RESULTS We recorded spike trains from retinal ganglion cells in an in vitro preparation of the guinea pig retina. By calculating, for the observed spike rate, the number of possible spike patterns per second, we calculated coding capacity, and by counting the actual number of patterns, we estimated information rate. Cells with "brisk" responses, i.e., high firing rates, and a general message transmitted information at high rates (21 +/- 9 bits s(-1)). Cells with "sluggish" responses, i.e., lower firing rates, and specific messages (direction of motion, local-edge) transmitted information at lower rates (13 +/- 7 bits s(-1)). Yet, for every type of ganglion cell examined, the information rate was about one-third of coding capacity. For every ganglion cell, information rate was very close (within 4%) to that predicted from Poisson noise and the cell's actual time-modulated rate. CONCLUSIONS Different messages are transmitted with similar efficiency. Efficiency is limited by temporal correlations, but correlations may be essential to improve decoding in the presence of irreducible noise.
Collapse
Affiliation(s)
- Kristin Koch
- University of Pennsylvania, Department of Neuroscience, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Our eyes send different 'images' of the outside world to the brain - an image of contours (line drawing), a colour image (watercolour painting) or an image of moving objects (movie). This is commonly referred to as parallel processing, and starts as early as the first synapse of the retina, the cone pedicle. Here, the molecular composition of the transmitter receptors of the postsynaptic neurons defines which images are transferred to the inner retina. Within the second synaptic layer - the inner plexiform layer - circuits that involve complex inhibitory and excitatory interactions represent filters that select 'what the eye tells the brain'.
Collapse
Affiliation(s)
- Heinz Wässle
- Department of Neuroanatomy, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt/Main, Germany.
| |
Collapse
|
36
|
Demb JB, Sterling P, Freed MA. How Retinal Ganglion Cells Prevent Synaptic Noise From Reaching the Spike Output. J Neurophysiol 2004; 92:2510-9. [PMID: 15175375 DOI: 10.1152/jn.00108.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic vesicles are released stochastically, and therefore stimuli that increase a neuron's synaptic input might increase noise at its spike output. Indeed this appears true for neurons in primary visual cortex, where spike output variability increases with stimulus contrast. But in retinal ganglion cells, although intracellular recordings (with spikes blocked) showed that stronger stimuli increase membrane fluctuations, extracellular recordings showed that noise at the spike output is constant. Here we show that these seemingly paradoxical findings occur in the same cell and explain why. We made intracellular recordings from ganglion cells, in vitro, and presented periodic stimuli of various contrasts. For each stimulus cycle, we measured the response at the stimulus frequency (F1) for both membrane potential and spikes as well as the spike rate. The membrane and spike F1 response increased with contrast, but noise (SD) in the F1 responses and the spike rate was constant. We also measured membrane fluctuations (with spikes blocked) during the response depolarization and found that they did increase with contrast. However, increases in fluctuation amplitude were small relative to the depolarization (<10% at high contrast). A model based on estimated synaptic convergence, release rates, and membrane properties accounted for the relative magnitudes of fluctuations and depolarization. Furthermore, a cell's peak spike response preceded the peak depolarization, and therefore fluctuation amplitude peaked as the spike response declined. We conclude that two extremely general properties of a neuron, synaptic convergence and spike generation, combine to minimize the effects of membrane fluctuations on spiking.
Collapse
Affiliation(s)
- Jonathan B Demb
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
37
|
Dhingra NK, Smith RG. Spike generator limits efficiency of information transfer in a retinal ganglion cell. J Neurosci 2004; 24:2914-22. [PMID: 15044530 PMCID: PMC6729856 DOI: 10.1523/jneurosci.5346-03.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The quality of the signal a retinal ganglion cell transmits to the brain is important for preception because it sets the minimum detectable stimulus. The ganglion cell converts graded potentials into a spike train with a selective filter but in the process adds noise. To explore how efficiently information is transferred to spikes, we measured contrast detection threshold and increment threshold from graded potential and spike responses of brisk-transient ganglion cells. Intracellular responses to a spot flashed over the receptive field center of the cell were recorded in an intact mammalian retina maintained in vitro at 37 degrees C. Thresholds were measured in a single-interval forced-choice procedure with an ideal observer. The graded potential gave a detection threshold of 1.5% contrast, whereas spikes gave 3.8%. The graded potential also gave increment thresholds approximately twofold lower and carried approximately 60% more gray levels. Increment threshold "dipped" below the detection threshold at a low contrast (<5%) but increased rapidly at higher contrasts. The magnitude of the "dipper" for both graded potential and spikes could be predicted from a threshold nonlinearity in the responses. Depolarization of the cell by current injection reduced the detection threshold for spikes but also reduced the range of contrasts they can transmit. This suggests that contrast sensitivity and dynamic range are related in an essential trade-off.
Collapse
Affiliation(s)
- Narender K Dhingra
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
38
|
Djupsund K, Furukawa T, Yasui S, Yamada M. Asymmetric temporal properties in the receptive field of retinal transient amacrine cells. J Gen Physiol 2003; 122:445-58. [PMID: 14517270 PMCID: PMC2233775 DOI: 10.1085/jgp.200308828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Accepted: 08/25/2003] [Indexed: 11/29/2022] Open
Abstract
The speed of signal conduction is a factor determining the temporal properties of individual neurons and neuronal networks. We observed very different conduction velocities within the receptive field of fast-type On-Off transient amacrine cells in carp retina cells, which are tightly coupled to each other via gap junctions. The fastest speeds were found in the dorsal area of the receptive fields, on average five times faster than those detected within the ventral area. The asymmetry was similar in the On- and Off-part of the responses, thus being independent of the pathway, pointing to the existence of a functional mechanism within the recorded cells themselves. Nonetheless, the spatial decay of the graded-voltage photoresponse within the receptive field was found to be symmetrical, with the amplitude center of the receptive field being displaced to the faster side from the minimum-latency location. A sample of the orientation of varicosity-laden polyaxons in neurobiotin-injected cells supported the model, revealing that approximately 75% of these processes were directed dorsally from the origin cells. Based on these results, we modeled the velocity asymmetry and the displacement of amplitude center by adding a contribution of an asymmetric polyaxonal inhibition to the network. Due to the asymmetry in the conduction velocity, the time delay of a light response is proposed to depend on the origin of the photostimulus movement, a potentially important mechanism underlying direction selectivity within the inner retina.
Collapse
Affiliation(s)
- Kaj Djupsund
- Department of Production, Information, and Systems Engineering, Tokyo Metropolitan Institute of Technology, 6-6, Asahigaoka, Hino, Tokyo 191-0065, Japan
| | | | | | | |
Collapse
|