1
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2014; 66:1033-79. [PMID: 25244928 PMCID: PMC4180337 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
2
|
Meacci E, Bini F, Sassoli C, Martinesi M, Squecco R, Chellini F, Zecchi-Orlandini S, Francini F, Formigli L. Functional interaction between TRPC1 channel and connexin-43 protein: a novel pathway underlying S1P action on skeletal myogenesis. Cell Mol Life Sci 2010; 67:4269-85. [PMID: 20614160 PMCID: PMC11115629 DOI: 10.1007/s00018-010-0442-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/07/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
We recently demonstrated that skeletal muscle differentiation induced by sphingosine 1-phosphate (S1P) requires gap junctions and transient receptor potential canonical 1 (TRPC1) channels. Here, we searched for the signaling pathway linking the channel activity with Cx43 expression/function, investigating the involvement of the Ca(2+)-sensitive protease, m-calpain, and its targets in S1P-induced C2C12 myoblast differentiation. Gene silencing and pharmacological inhibition of TRPC1 significantly reduced Cx43 up-regulation and Cx43/cytoskeletal interaction elicited by S1P. TRPC1-dependent functions were also required for the transient increase of m-calpain activity/expression and the subsequent decrease of PKCα levels. Remarkably, Cx43 expression in S1P-treated myoblasts was reduced by m-calpain-siRNA and enhanced by pharmacological inhibition of classical PKCs, stressing the relevance for calpain/PKCα axis in Cx43 protein remodeling. The contribution of this pathway in myogenesis was also investigated. In conclusion, these findings provide novel mechanisms by which S1P regulates myoblast differentiation and offer interesting therapeutic options to improve skeletal muscle regeneration.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Department of Biochemical Sciences, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rapizzi E, Taddei ML, Fiaschi T, Donati C, Bruni P, Chiarugi P. Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor. Cell Mol Life Sci 2009; 66:3207-18. [PMID: 19662499 PMCID: PMC11115622 DOI: 10.1007/s00018-009-0106-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/22/2009] [Accepted: 07/14/2009] [Indexed: 01/12/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that acts through a family of G-protein-coupled receptors. Herein, we report evidence of a novel redox-based cross-talk between S1P and insulin signaling pathways. In skeletal muscle cells S1P, through engagement of its S1P(2) receptor, is found to produce a transient burst of reactive oxygen species through a calcium-dependent activation of the small GTPase Rac1. S1P-induced redox-signaling is sensed by protein tyrosine phosphatase-1B, the main negative regulator of insulin receptor phosphorylation, which undergoes oxidation and enzymatic inhibition. This redox-based inhibition of the phosphatase provokes a ligand-independent trans-phosphorylation of insulin receptor and a strong increase in glucose uptake. Our results propose a new role of S1P, recognizing the lipid as an insulin-mimetic cue and pointing at reactive oxygen species as critical regulators of the cross-talk between S1P and insulin pathways. Any possible implication of S1P-directed insulin signaling in diabetes and insulin resistance remains to be established.
Collapse
Affiliation(s)
- Elena Rapizzi
- Department of Biochemical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy
- Interuniversity Institute of Myology, Florence, Italy
| | - Maria Letizia Taddei
- Department of Biochemical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy
| | - Tania Fiaschi
- Department of Biochemical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy
- Interuniversity Institute of Myology, Florence, Italy
| | - Chiara Donati
- Department of Biochemical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy
- Interuniversity Institute of Myology, Florence, Italy
| | - Paola Bruni
- Department of Biochemical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy
- Interuniversity Institute of Myology, Florence, Italy
| | - Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy
- Interuniversity Institute of Myology, Florence, Italy
| |
Collapse
|
4
|
Brizuela L, Rábano M, Peña A, Gangoiti P, Macarulla JM, Trueba M, Gómez-Muñoz A. Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion. J Lipid Res 2006; 47:1238-49. [PMID: 16554657 DOI: 10.1194/jlr.m500510-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid capable of regulating critical physiological and pathological functions. Here, we report for the first time that S1P stimulates aldosterone secretion in cells of the zona glomerulosa of the adrenal gland. Regulation of aldosterone secretion is important because this hormone controls electrolyte and fluid balance and is implicated in cardiovascular homeostasis. S1P-stimulated aldosterone secretion was dependent upon the protein kinase C (PKC) isoforms alpha and delta and extracellular Ca2+, and it was inhibited by pertussis toxin (PTX). S1P activated phospholipase D (PLD) through a PTX-sensitive mechanism, also involving PKC alpha and delta and extracellular Ca2+. Primary alcohols, which attenuate the formation of phosphatidic acid (the product of PLD), and cell-permeable ceramides, which inhibit PLD activity, blocked S1P-stimulated aldosterone secretion. Furthermore, propranolol, chlorpromazine, and sphingosine, which are potent inhibitors of phosphatidate phosphohydrolase (PAP) (the enzyme that produces diacylglycerol from phosphatidate), also blocked aldosterone secretion. These data suggest that the PLD/PAP pathway plays a crucial role in the regulation of aldosterone secretion by S1P and that Gi protein-coupled receptors, extracellular Ca2+, and the PKC isoforms alpha and delta are all important components in the cascade of events controlling this process.
Collapse
Affiliation(s)
- Leyre Brizuela
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Abdel-Raheem IT, Hide I, Yanase Y, Shigemoto-Mogami Y, Sakai N, Shirai Y, Saito N, Hamada FM, El-Mahdy NA, Elsisy AEDE, Sokar SS, Nakata Y. Protein kinase C-alpha mediates TNF release process in RBL-2H3 mast cells. Br J Pharmacol 2005; 145:415-23. [PMID: 15806111 PMCID: PMC1576159 DOI: 10.1038/sj.bjp.0706207] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
1 To clarify the mechanism of mast cell TNF secretion, especially its release process after being produced, we utilized an antiallergic drug, azelastine (4-(p-chlorobenzyl)-2-(hexahydro-1-methyl-1H-azepin-4-yl)-1-(2H)- phthalazinone), which has been reported to inhibit TNF release without affecting its production in ionomycin-stimulated RBL-2H3 cells. 2 Such inhibition was associated with the suppression of an ionomycin-induced increase in membrane-associated PKC activity rather than the suppression of Ca2+ influx, suggesting that PKC might be involved in TNF release process. 3 To see whether conventional PKC family (cPKCs) are involved, we investigated the effects of a selective cPKC inhibitor (Gö6976) and an activator (thymeleatoxin) on TNF release by adding them 1 h after cell stimulation. By this time, TNF mRNA expression had reached its maximum. Gö6976 markedly inhibited TNF release, whereas thymeleatoxin enhanced it, showing a key role of cPKC in TNF post-transcriptional process, possibly its releasing step. 4 To determine which subtype of cPKCs could be affected by azelastine, Western blotting and live imaging by confocal microscopy were conducted to detect the translocation of endogenous cPKC (alpha, betaI and betaII) and transfected GFP-tagged cPKC, respectively. Both methods clearly demonstrated that 1 microM azelastine selectively inhibits ionomycin-triggered translocation of (alpha)PKC without acting on betaI or betaIIPKC. 5 In antigen-stimulated cells, such a low concentration of azelastine did not affect either (alpha)PKC translocation or TNF release, suggesting a functional link between (alpha)PKC and the TNF-releasing step. 6 These results suggest that (alpha)PKC mediates the TNF release process and azelastine inhibits TNF release by selectively interfering with the recruitment of (alpha)PKC in the pathway activated by ionomycin in RBL-2H3 cells.
Collapse
Affiliation(s)
- Ihab T Abdel-Raheem
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut 71511, Egypt
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Author for correspondence:
| | - Yuhki Yanase
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yukari Shigemoto-Mogami
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasuhito Shirai
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Farid M Hamada
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Cairo 12573, Egypt
| | - Nagh A El-Mahdy
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta 31512, Egypt
| | - Alaa El-Din E Elsisy
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta 31512, Egypt
| | - Samya S Sokar
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta 31512, Egypt
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
6
|
Nosi D, Vassalli M, Polidori L, Giannini R, Tani A, Chellini F, Paternostro F. Effects of S1P on myoblastic cell contraction: possible involvement of Ca-independent mechanisms. Cells Tissues Organs 2005; 178:129-38. [PMID: 15655330 DOI: 10.1159/000082243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2004] [Indexed: 01/19/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator, which affects many essential processes such as cell proliferation, differentiation and contraction in many cell types. We have previously demonstrated that the lipid mediator elicits Ca(2+) transients in a myoblastic cell line (C2C12) by interacting with its specific receptors (S1PR(s)). In the present study, we wanted to correlate the Ca(2+) response with activation of myoblastic cell contractility. C2C12 cells were first investigated for the expression and cellular organization of cytoskeletal proteins by immunoconfocal microscopy. We found that myoblasts exhibited a quite immature cytoskeleton, with filamentous actin dispersed as a web-like structure within the cytoplasm. To evaluate intracellular Ca(2+) mobilization, the cells were loaded with a fluorescent Ca(2+) indicator (Fluo-3), stimulated with S1P and simultaneously observed with differential interference contrast and fluorescence optics. Exogenous S1P-induced myoblastic cell contraction was temporally unrelated to S1P-induced intracellular Ca(2+) increase; cell contraction occurred within 5-8 s from stimulation, whereas intracellular Ca(2+) increase was evident only after 15-25 s. To support the Ca(2+) independence of myoblastic cell contraction, the cells were pretreated with a Ca(2+) chelator, BAPTA/AM, prior to stimulation with S1P. In these experimental conditions, the myoblasts were still able to contract, whereas the S1P-induced Ca(2+) transients were completely abolished. On the contrary, when C2C12 cells were induced to differentiate into skeletal myotubes, they responded to S1P with a rapid cell contraction concurrent with an increase in the intracellular Ca(2+). These data suggest that Ca(2+)-independent mechanism of cell contraction may be replaced by Ca(2+)-dependent ones during skeletal muscle differentiation.
Collapse
Affiliation(s)
- D Nosi
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Viale Morgagni, 85, IT-50134 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Formigli L, Meacci E, Sassoli C, Chellini F, Giannini R, Quercioli F, Tiribilli B, Squecco R, Bruni P, Francini F, Zecchi-Orlandini S. Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels. J Cell Sci 2005; 118:1161-71. [PMID: 15728255 DOI: 10.1242/jcs.01695] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is abundantly present in the serum and mediates multiple biological responses. With the aim of extending our knowledge on the role played by S1P in the regulation of cytoskeletal reorganization, native as well as C2C12 myoblasts stably transfected with green fluorescent protein (GFP)-tagged α- and β-actin constructs were stimulated with S1P (1 μM) and observed under confocal and multiphoton microscopes. The addition of S1P induced the appearance of actin stress fibres and focal adhesions through Rho- and phospholipase D (PLD)-mediated pathways. The cytoskeletal response was dependent on the extracellular action of S1P through its specific surface receptors, since the intracellular delivery of the sphingolipid by microinjection was unable to modify the actin cytoskeletal assembly. Interestingly, it was revealed by whole-cell patch-clamp that S1P-induced stress fibre formation was associated with increased ion currents and conductance through stretch-activated channels (SACs), thereby suggesting a possible regulatory role for organized actin in channel sensitivity. Experiments aimed at stretching the plasma membrane of C2C12 cells, using the cantilever of an atomic force microscope, indicated that there was a Ca2+ influx through putative SACs. In conclusion, the present data suggest novel mechanisms of S1P signalling involving actin cytoskeletal reorganization and Ca2+ elevation through SACs that might influence myoblastic functions.
Collapse
Affiliation(s)
- Lucia Formigli
- Department of Anatomy, Histology and Forensic Medicine, Interuniversitary Institute of Miology (IIM), 85 50134 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Papaharalambus C, Sajjad W, Syed A, Zhang C, Bergo MO, Alexander RW, Ahmad M. Tumor necrosis factor alpha stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase. J Biol Chem 2005; 280:18790-6. [PMID: 15647276 DOI: 10.1074/jbc.m410081200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that both isoprenylcysteine carboxylmethyltransferase (ICMT) and one of its substrates, the RhoGTPase Rac1, are critical for the tumor necrosis factor alpha (TNF alpha) stimulation of vascular cell adhesion molecule-1 expression in endothelial cells (EC). Here, we have shown that ICMT regulates TNF alpha stimulation of Rac1 activity. TNF alpha stimulation of EC increased the membrane association of Rac1, an event that is essential for Rac1 activity. ICMT inhibitor N-acetyl-S-farnesyl-L-cysteine (AFC) blocked the accumulation of Rac1 into the membrane both in resting and TNF alpha-stimulated conditions. Similarly, the membrane-associated Rac1 was lower in Icmt-deficient versus wild-type mouse embryonic fibroblasts (MEFs). TNF alpha also increased the level of GTP-Rac1, the active form of Rac1, in EC. AFC completely suppressed the TNF alpha stimulation of increase in GTP-Rac1 levels. Confocal microscopy revealed resting EC Rac1 was present in the plasma membrane and also in the perinuclear region. AFC mislocalized Rac1, both from the plasma membrane and the perinuclear region. Mislocalization of Rac1 was also observed in Icmt-deficient versus wild-type MEFs. To determine the consequences of ICMT inhibition, we investigated the effect of AFC on p38 mitogen-activated protein (MAP) kinase phosphorylation, which is downstream of Rac1. AFC inhibited the TNF alpha stimulation of p38 MAP kinase phosphorylation in EC. TNF alpha stimulation of p38 MAP kinase phosphorylation was also significantly attenuated in Icmt-deficient versus wild-type MEFs. To understand the mechanism of inhibition of Rac1 activity, we examined the effect of ICMT inhibition on the interaction of Rac1 with its inhibitor, Rho guanine nucleotide dissociation inhibitor (RhoGDI). The association of Rac1 with its inhibitor RhoGDI was dramatically increased in the Icmt-deficient versus wild-type MEFs both in resting as well as in TNF alpha-stimulated conditions, suggesting that RhoGDI was involved in inhibiting Rac1 activity under the conditions of ICMT inhibition. These results suggest that ICMT regulates Rac1 activity by controlling the interaction of Rac1 with RhoGDI. We hypothesize that ICMT regulates the release of Rac1 from RhoGDI.
Collapse
Affiliation(s)
- Christopher Papaharalambus
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Meacci E, Cencetti F, Donati C, Nuti F, Becciolini L, Bruni P. Sphingosine kinase activity is required for sphingosine-mediated phospholipase D activation in C2C12 myoblasts. Biochem J 2004; 381:655-63. [PMID: 15109308 PMCID: PMC1133874 DOI: 10.1042/bj20031636] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 04/22/2004] [Accepted: 04/27/2004] [Indexed: 11/17/2022]
Abstract
Sphingosine (Sph) has been implicated as a modulator of membrane signal transduction systems and as a regulatory element of cardiac and skeletal muscle physiology, but little information is presently available on its precise mechanism of action. Recent studies have shown that sphingosine 1-phosphate (S1P), generated by the action of sphingosine kinase (SphK) on Sph, also possesses biological activity, acting as an intracellular messenger, as well as an extracellular ligand for specific membrane receptors. At present, however, it is not clear whether the biological effects elicited by Sph are attributable to its conversion into S1P. In the present study, we show that Sph significantly stimulated phospholipase D (PLD) activity in mouse C2C12 myoblasts via a previously unrecognized mechanism that requires the conversion of Sph into S1P and its subsequent action as extracellular ligand. Indeed, Sph-induced activation of PLD was inhibited by N,N-dimethyl-D-erythro-sphingosine (DMS), at concentrations capable of specifically inhibiting SphK. Moreover, the crucial role of SphK-derived S1P in the activation of PLD by Sph was confirmed by the observed potentiated effect of Sph in myoblasts where SphK1 was overexpressed, and the attenuated response in cells transfected with the dominant negative form of SphK1. Notably, the measurement of S1P formation in vivo by employing labelled ATP revealed that cell-associated SphK activity in the extracellular compartment largely contributed to the transformation of Sph into S1P, with the amount of SphK released into the medium being negligible. It will be important to establish whether the mechanism of action identified in the present study is implicated in the multiple biological effects elicited by Sph in muscle cells.
Collapse
Affiliation(s)
- Elisabetta Meacci
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- †Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Francesca Cencetti
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Chiara Donati
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- †Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Francesca Nuti
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Laura Becciolini
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- †Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
10
|
Formigli L, Meacci E, Vassalli M, Nosi D, Quercioli F, Tiribilli B, Tani A, Squecco R, Francini F, Bruni P, Zecchi Orlandini S. Sphingosine 1-phosphate induces cell contraction via calcium-independent/Rho-dependent pathways in undifferentiated skeletal muscle cells. J Cell Physiol 2003; 198:1-11. [PMID: 14584038 DOI: 10.1002/jcp.10366] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that sphingosine 1-phosphate (S1P) can induce intracellular Ca(2+) mobilization and cell contraction in C2C12 myoblasts and that the two phenomena are temporally unrelated. Although Ca(2+)-independent mechanisms of cell contraction have been the focus of numerous studies on Ca(2+) sensitization of smooth muscle, comparatively less studies have focused on the role that these mechanisms play in the regulation of skeletal muscle contractility. Phosphorylation and activation of myosin by Rho-dependent kinase mediate most of Ca(2+)-independent contractile responses. In the present study, we examined the potential role of Rho/Rho-kinase cascade activation in S1P-induced C2C12 cell contraction. First, we showed that depletion of Ca(2+), by pre-treatment with BAPTA, did not affect S1P-induced myoblastic contractility, whereas it abolished S1P-induced Ca(2+) transients. These results correlated with the absence of troponin C and with the immature cytoskeletal organization of these cells. Experimental evidence demonstrating the involvement of Rho pathway in S1P-stimulated myoblast contraction included: the activation/translocation of RhoA to the membrane in response to agonist-stimulation in cells depleted of Ca(2+) and the inhibition of dynamic changes of the actin cytoskeleton in cells where Rho functions had been inhibited either by overexpression of RhoGDI, a physiological inhibitor of GDP dissociation from Rho proteins, or by pretreatment with Y-27632, a specific Rho kinase inhibitor. Contribution of protein kinase C in this cytoskeletal rearrangement was also evaluated. However, the pretreatment with Gö6976 or rottlerin, specific inhibitors of PKC alpha and PKC delta, respectively, failed to inhibit the agonist-induced myoblastic contraction. Single particle tracking of G-actin fluorescent probe was performed to statistically evaluate actin cytoskeletal dynamics in response to S1P. Stimulation with S1P was also able to increase the phosphorylation level of myosin light chain II. In conclusion, our results strongly suggest that Ca(2+)-independent/Rho-Rho kinase-dependent pathways may exert an important role in S1P-induced myoblastic cell contraction.
Collapse
Affiliation(s)
- L Formigli
- Department of Anatomy, Histology, Forensic Medicine, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cummings RJ, Parinandi NL, Zaiman A, Wang L, Usatyuk PV, Garcia JGN, Natarajan V. Phospholipase D activation by sphingosine 1-phosphate regulates interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem 2002; 277:30227-35. [PMID: 12039947 DOI: 10.1074/jbc.m111078200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), a potent bioactive sphingolipid, has been implicated in many critical cellular events, including a regulatory role in the pathogenesis of airway inflammation. We investigated the participation of S1P as an inflammatory mediator by assessing interleukin-8 (IL-8) secretion and phospholipase D (PLD) activation in human bronchial epithelial cells (Beas-2B). S1P(1), S1P(3), S1P(4), S1P(5), and weak S1P(2) receptors were detected in Beas-2B and primary human bronchial epithelial cells. S1P stimulated a rapid activation of PLD, which was nearly abolished by pertussis toxin (PTX) treatment, consistent with S1P receptor/G(i) protein coupling. S1P also markedly induced Beas-2B secretion of IL-8, a powerful neutrophil chemoattractant and activator, in a PTX-sensitive manner. This S1P-mediated response was dependent on transcription as indicated by a strong induction of IL-8 promoter-mediated luciferase activity in transfected Beas-2B cells and a complete inhibition by actinomycin D. Beas-2B exposure to 1-butanol, which converts the PLD-generated phosphatidic acid (PA) to phosphatidylbutanol by a transphosphatidylation reaction, significantly attenuated the S1P-induced IL-8 secretion, indicating the involvement of PLD-derived PA in the signaling pathway. Inhibition of 12-O-tetradecanoyl-phorbol-13-acetate-stimulated IL-8 production by 1-butanol further strengthened this observation. Blocking protein kinase C and Rho kinase also attenuated S1P-induced IL-8 secretion. Our data suggest that PLD-derived PA, protein kinase C, and Rho are important signaling components in S1P-mediated IL-8 secretion by human bronchial epithelial cells.
Collapse
Affiliation(s)
- Rhett J Cummings
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Meacci E, Becciolini L, Nuti F, Donati C, Cencetti F, Farnararo M, Bruni P. A role for calcium in sphingosine 1-phosphate-induced phospholipase D activity in C2C12 myoblasts. FEBS Lett 2002; 521:200-4. [PMID: 12067705 DOI: 10.1016/s0014-5793(02)02866-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Receptor-regulated phospholipase D (PLD) is a key signaling pathway implicated in the control of fundamental biological processes. Here evidence is presented that in addition to protein kinase C (PKC) and Rho GTPases, Ca(2+) response evoked by sphingosine 1-phosphate (S1P) also participates to the enzyme regulation. Ca(2+) was found critical for PKC(alpha)-mediated PLD activation. Moreover, S1P-induced PLD activity resulted diminished by calmodulin inhibitors such as W-7 and CGS9343B implicating its involvement in the process. A plausible candidate for Ca(2+)-dependent PLD regulation by S1P was represented by calcineurin, in view of the observed reduction of the stimulatory effect by cyclosporin A. In contrast, monomeric GTP-binding protein Ral was translocated to membranes by S1P in a Ca(2+)-independent manner, ruling out its possible role in agonist-mediated regulation of PLD.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|