1
|
Cooper ID, Kyriakidou Y, Petagine L, Edwards K, Soto-Mota A, Brookler K, Elliott BT. Ketosis Suppression and Ageing (KetoSAge) Part 2: The Effect of Suppressing Ketosis on Biomarkers Associated with Ageing, HOMA-IR, Leptin, Osteocalcin, and GLP-1, in Healthy Females. Biomedicines 2024; 12:1553. [PMID: 39062126 PMCID: PMC11274887 DOI: 10.3390/biomedicines12071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunctions are among the best documented hallmarks of ageing. Cardiovascular disease, Alzheimer's disease, cancer, type 2 diabetes mellitus, metabolic-dysfunction-associated steatosis liver disease, and fragility fractures are diseases of hyperinsulinaemia that reduce life and healthspan. We studied the effect of suppressing ketosis in 10 lean (BMI 20.5 kg/m2 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9 years) maintaining nutritional ketosis (NK) for an average of 3.9 years (± 2.3) who underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Ketosis suppression significantly increased insulin, 1.83-fold (p = 0.0006); glucose, 1.17-fold (p = 0.0088); homeostasis model assessment for insulin resistance (HOMA-IR), 2.13-fold (p = 0.0008); leptin, 3.35-fold (p = 0.0010); total osteocalcin, 1.63-fold (p = 0.0138); and uncarboxylated osteocalcin, 1.98-fold (p = 0.0417) and significantly decreased beta-hydroxybutyrate, 13.50-fold (p = 0.0012) and glucagon-like peptide-1 (GLP-1), 2.40-fold (p = 0.0209). Sustained NK showed no adverse health effects and may mitigate hyperinsulinemia. All biomarkers returned to basal P1 levels after removing the intervention for SuK, indicating that metabolic flexibility was maintained with long-term euketonaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- School of Medicine, Tecnologico de Monterrey, Mexico City 14380, Mexico
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| |
Collapse
|
2
|
Cooper ID, Kyriakidou Y, Edwards K, Petagine L, Seyfried TN, Duraj T, Soto-Mota A, Scarborough A, Jacome SL, Brookler K, Borgognoni V, Novaes V, Al-Faour R, Elliott BT. Ketosis Suppression and Ageing (KetoSAge): The Effects of Suppressing Ketosis in Long Term Keto-Adapted Non-Athletic Females. Int J Mol Sci 2023; 24:15621. [PMID: 37958602 PMCID: PMC10650498 DOI: 10.3390/ijms242115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Most studies on ketosis have focused on short-term effects, male athletes, or weight loss. Hereby, we studied the effects of short-term ketosis suppression in healthy women on long-standing ketosis. Ten lean (BMI 20.5 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9) maintaining nutritional ketosis (NK) for > 1 year (3.9 years ± 2.3) underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Adherence to each phase was confirmed with daily capillary D-beta-hydroxybutyrate (BHB) tests (P1 = 1.9 ± 0.7; P2 = 0.1 ± 0.1; and P3 = 1.9 ± 0.6 pmol/L). Ageing biomarkers and anthropometrics were evaluated at the end of each phase. Ketosis suppression significantly increased: insulin, 1.78-fold from 33.60 (± 8.63) to 59.80 (± 14.69) pmol/L (p = 0.0002); IGF1, 1.83-fold from 149.30 (± 32.96) to 273.40 (± 85.66) µg/L (p = 0.0045); glucose, 1.17-fold from 78.6 (± 9.5) to 92.2 (± 10.6) mg/dL (p = 0.0088); respiratory quotient (RQ), 1.09-fold 0.66 (± 0.05) to 0.72 (± 0.06; p = 0.0427); and PAI-1, 13.34 (± 6.85) to 16.69 (± 6.26) ng/mL (p = 0.0428). VEGF, EGF, and monocyte chemotactic protein also significantly increased, indicating a pro-inflammatory shift. Sustained ketosis showed no adverse health effects, and may mitigate hyperinsulinemia without impairing metabolic flexibility in metabolically healthy women.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Tomas Duraj
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- Tecnologico de Monterrey, School of Medicine, Mexico City 14380, Mexico
| | - Andrew Scarborough
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Sandra L. Jacome
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Valentina Borgognoni
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Vanusa Novaes
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Rima Al-Faour
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| |
Collapse
|
3
|
Muoio MG, Pellegrino M, Rapicavoli V, Talia M, Scavo G, Sergi V, Vella V, Pettinato S, Galasso MG, Lappano R, Scordamaglia D, Cirillo F, Pulvirenti A, Rigiracciolo DC, Maggiolini M, Belfiore A, De Francesco EM. RAGE inhibition blunts insulin-induced oncogenic signals in breast cancer. Breast Cancer Res 2023; 25:84. [PMID: 37461077 PMCID: PMC10351154 DOI: 10.1186/s13058-023-01686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is implicated in diabetes and obesity complications, as well as in breast cancer (BC). Herein, we evaluated whether RAGE contributes to the oncogenic actions of Insulin, which plays a key role in BC progression particularly in obese and diabetic patients. Analysis of the publicly available METABRIC study, which collects gene expression and clinical data from a large cohort (n = 1904) of BC patients, revealed that RAGE and the Insulin Receptor (IR) are co-expressed and associated with negative prognostic parameters. In MCF-7, ZR75 and 4T1 BC cells, as well as in patient-derived Cancer-Associated Fibroblasts, the pharmacological inhibition of RAGE as well as its genetic depletion interfered with Insulin-induced activation of the oncogenic pathway IR/IRS1/AKT/CD1. Mechanistically, IR and RAGE directly interacted upon Insulin stimulation, as shown by in situ proximity ligation assays and coimmunoprecipitation studies. Of note, RAGE inhibition halted the activation of both IR and insulin like growth factor 1 receptor (IGF-1R), as demonstrated in MCF-7 cells KO for the IR and the IGF-1R gene via CRISPR-cas9 technology. An unbiased label-free proteomic analysis uncovered proteins and predicted pathways affected by RAGE inhibition in Insulin-stimulated BC cells. Biologically, RAGE inhibition reduced cell proliferation, migration, and patient-derived mammosphere formation triggered by Insulin. In vivo, the pharmacological inhibition of RAGE halted Insulin-induced tumor growth, without affecting blood glucose homeostasis. Together, our findings suggest that targeting RAGE may represent an appealing opportunity to blunt Insulin-induced oncogenic signaling in BC.
Collapse
Affiliation(s)
- M G Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - M Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - V Rapicavoli
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - M Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - G Scavo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - V Sergi
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - V Vella
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - S Pettinato
- Breast Unit Breast Surgery, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - M G Galasso
- Pathological Anatomy Unit, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - R Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - D Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - F Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - A Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131, Catania, Italy
| | - D C Rigiracciolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - M Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - A Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - E M De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy.
| |
Collapse
|
4
|
Tian J, Berton TR, Shirley SH, Lambertz I, Gimenez-Conti IB, DiGiovanni J, Korach KS, Conti CJ, Fuchs-Young R. Developmental stage determines estrogen receptor alpha expression and non-genomic mechanisms that control IGF-1 signaling and mammary proliferation in mice. J Clin Invest 2011; 122:192-204. [PMID: 22182837 DOI: 10.1172/jci42204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 11/02/2011] [Indexed: 12/31/2022] Open
Abstract
Insulin like growth factor-1 (IGF-1) stimulates increased proliferation and survival of mammary epithelial cells and also promotes mammary tumorigenesis. To study the effects of IGF-1 on the mammary gland in vivo, we used BK5.IGF-1 transgenic (Tg) mice. In these mice, IGF-1 overexpression is controlled by the bovine keratin 5 promoter and recapitulates the paracrine exposure of breast epithelium to stromal IGF-1 that is seen in women. Studies have shown that BK5.IGF-1 Tg mice are more susceptible to mammary tumorigenesis than wild-type littermates. Investigation of the mechanisms underlying increased mammary cancer risk, reported here, revealed that IGF-1 preferentially activated the PI3K/Akt pathway in glands from prepubertal Tg mice, resulting in increased cyclin D1 expression and hyperplasia. However, in glands from postpubertal Tg mice, a pathway switch occurred and activation of the Ras/Raf/MAPK pathway predominated, without increased cyclin D1 expression or proliferation. We further showed that in prepubertal Tg glands, signaling was mediated by formation of an ERα/IRS-1 complex, which activated IRS-1 and directed signaling via the PI3K/Akt pathway. Conversely, in postpubertal Tg glands, reduced ERα expression failed to stimulate formation of the ERα/IRS-1 complex, allowing signaling to proceed via the alternate Ras/Raf/MAPK pathway. These in vivo data demonstrate that changes in ERα expression at different stages of development direct IGF-1 signaling and the resulting tissue responses. As ERα levels are elevated during the prepubertal and postmenopausal stages, these may represent windows of susceptibility during which increased IGF-1 exposure maximally enhances breast cancer risk.
Collapse
Affiliation(s)
- Jie Tian
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Petridou ET, Sergentanis TN, Antonopoulos CN, Dessypris N, Matsoukis IL, Aronis K, Efremidis A, Syrigos C, Mantzoros CS. Insulin resistance: an independent risk factor for lung cancer? Metabolism 2011; 60:1100-6. [PMID: 21251684 DOI: 10.1016/j.metabol.2010.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
Insulin resistance is closely associated with numerous metabolic disorders. Although studies have supported the importance of insulin resistance in carcinogenesis, the existing data have not established its relevance in the context of lung cancer. The aim of the present case-control study was to evaluate the association between insulin resistance and lung cancer after adjusting for possible confounders. Homeostasis model assessment of insulin resistance (HOMA-IR) and serum leptin and adiponectin levels were determined in 81 lung cancer cases and 162 age- and sex-matched controls; anthropometric and lifestyle variables were recorded. Mean HOMA-IR in the cases was more than 2-fold higher compared with the mean value of controls (P < .001). Among controls, HOMA-IR correlated positively with serum leptin (r = 0.16; P = .04), body mass index (r = 0.43; P = .0001), and waist-to-hip ratio (r = 0.21; P = .01) but negatively with serum adiponectin (r = -0.29; P = .0002). As expected, smoking was associated with an approximately 10-fold increase in lung cancer risk in multiple logistic regression models. A positive association between HOMA-IR, treated as continuous variable, and lung cancer (odds ratio [OR] = 1.52, 95% confidence interval [CI]: 1.16-1.99, P = .002, model 1) was demonstrated, which persisted after adjustment for somatometric and lifestyle variables (OR = 2.36, 95% CI: 1.00-5.55, P = .05, model 2). When serum adiponectin was also taken into account, the association seemed fairly robust (OR = 2.58, 95% CI: 1.11-6.01, P = .03, model 3); on the contrary, when serum leptin was added, the association remained positive, but lost its statistical significance (OR = 1.76, 95% CI: 0.78-3.98, P = .17, model 4). In the fully adjusted model, HOMA-IR was still positively, but only marginally, associated with lung cancer risk (OR = 2.02, 95% CI: 0.88-4.65, P = .10, model 5). Insulin resistance may represent a meaningful risk factor for lung cancer.
Collapse
Affiliation(s)
- Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, Athens University Medical School, 115 27 Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Hepatocellular carcinoma (HCC) accounts for 85-90% of liver cancers and is one of the most frequent carcinomas in the world. HCCs classically develop against the background of chronic liver diseases. Common causes of such liver diseases are viral hepatitis, alcoholic hepatitis, or immune-related diseases; however, 15-50% of patients with HCCs have none of these classic antecedents, especially in developed countries. In this context, obesity and diabetes mellitus have been found to exhibit an increased risk of HCC. Both conditions are associated with insulin resistance. The tumorigenic effects of insulin resistance and complementary hyperinsulinemia could be mediated directly by insulin signaling, or indirectly related to changes in endogeneous hormone metabolism, particularly insulin-like growth factor I. Conversely, insulin resistance may be a consequence of obesity and hepatic inflammation, both of which can themselves promote tumorigenesis, mainly through cytokine production and/or generation of oxidative stress. Because the prevalence of obesity is now increasing throughout the world, insulin resistance is sure to be emphasized as a major factor in hepatocarcinogenesis in the foreseeable future.
Collapse
Affiliation(s)
- Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Kumamoto, 860-8556, Japan.
| |
Collapse
|
7
|
Loh WJ, North BV, Johnston DG, Godsland IF. Insulin resistance-related biomarker clustering and subclinical inflammation as predictors of cancer mortality during 21.5 years of follow-up. Cancer Causes Control 2010; 21:709-18. [PMID: 20072808 DOI: 10.1007/s10552-009-9499-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/24/2009] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Risk of cancer is increased in conditions associated with insulin resistance, but this could be secondary to subclinical inflammation. We evaluated whether insulinemia, indices of insulin resistance or a validated insulin resistance-related biomarker cluster, could predict cancer mortality independently of subclinical inflammation. METHODS Fasting insulin and glucose concentrations and insulin-related metabolic variables were recorded in 1,016 white males, of whom 718 also had an oral glucose tolerance test (OGTT). Baseline measurements included the following: fasting insulin and the derived insulin resistance index, HOMA-IR; OGTT insulin and the derived insulin resistance index, Matsuda-IS; the factor score for a validated insulin resistance-related biomarker cluster; white blood cell count; erythrocyte sedimentation rate; and serum albumin and globulin concentrations. RESULTS There were 105 deaths from cancer during the 21.5-year mean follow-up. Insulin concentrations and insulin resistance were not predictive. Insulin resistance-related biomarker clustering predicted cancer mortality (hazard ratio 1.65, 95% CI 1.26-2.17, p < 0.001). Subclinical inflammation markers were also predictive, but the insulin resistance-related biomarker cluster predicted cancer mortality independently of these and was particularly associated with death from colorectal cancer. CONCLUSIONS Despite insulin concentrations or derived indices of insulin resistance failing to predict cancer mortality, insulin resistance-related biomarker clustering was highly predictive and predicted independently of simple measures of subclinical inflammation.
Collapse
Affiliation(s)
- Wann J Loh
- Endocrinology and Metabolic Medicine, Imperial College London, St Mary's Campus, Mint Wing, Praed Street, London, UK
| | | | | | | |
Collapse
|
8
|
Abstract
Experimental, epidemiological and clinical evidence implicates insulin resistance and its accompanying hyperinsulinaemia in the development of cancer, but the relative importance of these disturbances in cancer remains unclear. There are, however, theoretical mechanisms by which hyperinsulinaemia could amplify such growth-promoting effects as insulin may have, as well as the growth-promoting effects of other, more potent, growth factors. Hyperinsulinaemia may also induce other changes, particularly in the IGF (insulin-like growth factor) system, that could promote cell proliferation and survival. Several factors can independently modify both cancer risk and insulin resistance, including subclinical inflammation and obesity. The possibility that some of the effects of hyperinsulinaemia might then augment pro-carcinogenic changes associated with disturbances in these factors emphasizes how, rather than being a single causative factor, insulin resistance may be most usefully viewed as one strand in a network of interacting disturbances that promote the development and progression of cancer.
Collapse
|
9
|
Kodaman PH, Duleba AJ. HMG-CoA reductase inhibitors: do they have potential in the treatment of polycystic ovary syndrome? Drugs 2009; 68:1771-85. [PMID: 18729532 DOI: 10.2165/00003495-200868130-00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many women of reproductive age are affected by polycystic ovary syndrome (PCOS), a heterogeneous endocrinopathy characterized by androgen excess, chronic oligo-anovulation and/or polycystic ovarian morphology. In addition, PCOS is often associated with insulin resistance, systemic inflammation and oxidative stress, which, on one hand, lead to endothelial dysfunction and dyslipidaemia with subsequent cardiovascular sequelae and, on the other hand, to hyperplasia of the ovarian theca compartment with resultant hyperandrogenism and anovulation. Traditionally, HMG-CoA reductase inhibitors (statins) have been used to treat dyslipidaemia by blocking HMG-CoA reductase (the rate-limiting step in cholesterol biosynthesis); however, they also possess pleiotropic actions, resulting in antioxidant, anti-inflammatory and anti-proliferative effects. Statins offer a novel therapeutic approach to PCOS in that they address the dyslipidaemia associated with the syndrome, as well as hyperandrogenism or hyperandrogenaemia. These actions may be due to an inhibition of the effects of systemic inflammation and insulin resistance/hyperinsulinaemia. Evidence to date, both in vitro and in vivo, suggests that statins have potential in the treatment of PCOS; however, further clinical trials are needed before they can be considered a standard of care in the medical management of this common endocrinopathy.
Collapse
Affiliation(s)
- Pinar H Kodaman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Section of Reproductive Endocrinology and Infertility, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
10
|
Kodaman PH, Duleba AJ. Statins in the treatment of polycystic ovary syndrome. Semin Reprod Med 2008; 26:127-38. [PMID: 18181091 DOI: 10.1055/s-2007-992933] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-aged women. The hyperandrogenemia associated with the syndrome is a result of excessive growth and steroidogenic activity of theca-interstitial tissues in response to various factors, including elevated gonadotropins, hyperinsulinemia, and oxidative stress. PCOS frequently coexists with other cardiovascular risk factors, such as dyslipidemia and systemic inflammation. Statins inhibit the synthesis of mevalonate, the key precursor to cholesterol biosynthesis, and reduce cardiovascular morbidity and mortality. Blockade of mevalonate production may also lead to decreased maturation of insulin receptors, inhibition of steroidogenesis (e.g., via limiting the amount of substrate: cholesterol), and alteration of signal transduction pathways that mediate cellular proliferation. The latter depend upon posttranslational modification of proteins (prenylation), a process mediated by mevalonate derivatives. Statins also have intrinsic antioxidant properties. Given the pleiotropic actions of statins, they are likely not only to improve the dyslipidemia associated with PCOS but may also exert other beneficial metabolic and endocrine effects.
Collapse
Affiliation(s)
- Pinar H Kodaman
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
11
|
Sun H, Tu X, Liu M, Baserga R. Dual regulation of upstream binding factor 1 levels by IRS-1 and ERKs in IGF-1-receptor signaling. J Cell Physiol 2007; 212:780-6. [PMID: 17443674 DOI: 10.1002/jcp.21072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Upstream Binding Factor 1 (UBF1) is a nucleolar protein that participates in the regulation of RNA polymerase I activity and ribosomal RNA (rRNA) synthesis. In 32D myeloid cells expressing the type 1 insulin-like growth factor receptor (IGF-IR), the UBF1 protein (but not its mRNA) is down regulated when the cells are shifted from Interleukin-3 (IL-3) to IGF-1. Ectopic expression of insulin receptor substrate-1 (IRS-1) in these cells inhibits the down-regulation of UBF1. We now show that the stability of UBF1 in 32D-derived cells requires also a signal from the extracellular regulated kinases (ERKs). When ERKs signaling is defective, as in cells over-expressing the insulin receptor (InR) or selected mutants of the IGF-1R, UBF1 is down-regulated, even in the presence of IRS-1. The down-regulation is corrected by the expression of an activated Ha-ras, which stimulates ERKs activity. Mutations at threonines 117 and 201 of UBF1, known to be phosphorylated by ERKs, cause its down-regulation. However, when IRS-2, instead of IRS-1, is ectopically expressed in 32D InR cells, ERKs phosphorylation is increased and UBF is stabilized. Taken together, these results indicate that in 32D-derived myeloid cells expressing either the IGF-IR or the InR, UBF1 levels are regulated by signaling from both IRS proteins and ERKs.
Collapse
Affiliation(s)
- Hongzhi Sun
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
12
|
McCarty MF. Insulin's stimulation of endothelial superoxide generation may reflect up-regulation of isoprenyl transferase activity that promotes rac translocation. Med Hypotheses 2002; 58:472-5. [PMID: 12323112 DOI: 10.1054/mehy.2001.1455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent research demonstrates that statin drugs exert a number of favorable effects on endothelial function, independent of lipid modulation, that appear to be mediated by a partial inhibition of prenylation reactions. Statin-induced suppression of PKC-evoked superoxide production may be attributable to an inhibition of rac prenylation and thus translocation that impedes activation of the membrane-bound NAD(P)H oxidase. Conversely, it is now known that hyperinsulinemia up-regulates prenylation reactions by boosting the activities of isoprenyl transferases. In light of new evidence that hyperinsulinemia stimulates endothelial superoxide production via NAD(P)H oxidase, it is tempting to conclude that up-regulation of rac prenylation is at least partially responsible for this phenomenon. In patients afflicted with insulin resistance syndrome, this adverse impact of hyperinsulinemia may be exacerbated by an excessive free fatty acid flux that activates endothelial PKC - another stimulant of the NAD(P)H oxidase - while impeding insulin-mediated activation of nitric oxide synthase. The resulting imbalance of endothelial nitric oxide and superoxide production may be responsible for much of the excess vascular risk associated with this syndrome.
Collapse
|
13
|
Cormont M, Le Marchand-Brustel Y. The role of small G-proteins in the regulation of glucose transport (review). Mol Membr Biol 2001; 18:213-20. [PMID: 11681788 DOI: 10.1080/09687680110077541] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin increases the rate of glucose transport into fat and muscle cells by stimulating the translocation of intracellular Glut 4-containing vesicles to the plasma membrane. This results in a marked increase in the amount of the facilitative glucose transporter Glut 4 at the cell surface, allowing for an enhanced glucose uptake. This process requires a continuous cycling through the early endosomes, a Glut 4 specific storage compartment and the plasma membrane. The main effect of insulin is to increase the rate of Glut 4 trafficking from its specific storage compartment to the plasma membrane. The whole phenomenon involves signal transduction from the insulin receptor, vesicle trafficking (sorting and fusion processes) and actin cytoskeleton modifications, which are all supposed to require small GTPases. This review describes the potential role of the various members of the Ras, Rad, Rho, Arf and Rab families in the traffic of the Glut 4-containing vesicles.
Collapse
Affiliation(s)
- M Cormont
- INSERM E99-11 and IFR 50, Faculté de Médecine, Nice, France.
| | | |
Collapse
|
14
|
Cailliau K, Browaeys-Poly E, Vilain JP. RasGAP is involved in signal transduction triggered by FGF1 inXenopusoocytes expressing FGFR1. FEBS Lett 2001; 496:161-5. [PMID: 11356202 DOI: 10.1016/s0014-5793(01)02410-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of RasGAP was investigated in the model system of Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) stimulated by fibroblast growth factor 1 (FGF1). The injection of the SH2-SH3-SH2 domains of RasGAP suppressed Ras activity, extracellular signal-regulated protein kinase 2 (ERK2) phosphorylation and Mos synthesis. The SH2 domain of Src, and PP2, an inhibitor of Src, also abolished Ras activity, ERK2 phosphorylation and Mos synthesis. In addition, Src activity was blocked by the SH2-SH3-SH2 domains of RasGAP. Immunoprecipitation of a chimera composed of the extracellular domain of the platelet-derived growth factor (PDGF) receptor and the intracellular domain of FGFR1 stimulated by PDGF-BB demonstrates the recruitment of phosphorylated RasGAP. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes involves RasGAP as a co-activator of Src to stimulate the Ras/mitogen-activated protein kinase cascade and Mos synthesis. It emphasises a new positive regulatory role for RasGAP in FGFR transduction.
Collapse
Affiliation(s)
- K Cailliau
- Université des Sciences et Technologies de Lille, Laboratoire de Biologie du Développement, UE 1033, Bâtiment SN3, 59655 Cedex, Villeneuve D'Ascq, France.
| | | | | |
Collapse
|
15
|
Abstract
The insulin-like growth factor-I receptor (IGF-IR) is a transmembrane tyrosine kinase regulating various biological processes such as proliferation, survival, transformation, differentiation, cell-cell and cell-substrate interactions. Different signaling pathways may underlie these pleiotropic effects. The specific pathways engaged depend on the number of activated IGF-IRs, availability of intracellular signal transducers, the action of negative regulators, and is influenced by extracellular modulators. Experimental and clinical data implicate the IGF-IR in breast cancer etiology. There is strong evidence linking hyperactivation of the IGF-IR with the early stages of breast cancer. In primary breast tumors, the IGF-IR is overexpressed and hyperphosphorylated, which correlates with radio-resistance and tumor recurrence. In vitro, the IGF-IR is often required for mitogenesis and transformation, and its overexpression or activation counteract effects of various pro-apoptotic treatments. In hormone-responsive breast cancer cells, IGF-IR function is strongly linked with estrogen receptor (ER) action. The IGF-IR and the ER are co-expressed in breast tumors. Moreover, estrogens stimulate the expression of the IGF-IR and its major signaling substrate IRS-1, while antiestrogens downregulate IGF-IR signaling, mainly by decreasing IRS-1 expression and function. On the other hand, overexpression of IRS-1 promotes estrogen-independence for growth and transformation. In ER-negative breast cancer cells, usually displaying a more aggressive phenotype, the levels of the IGF-IR and IRS-1 are often low and IGF is not mitogenic, yet the IGF-IR is still required for metastatic spread. Consequently, IGF-IR function in the late stages of breast cancer remains one of the most important questions to be addressed before rational anti-IGF-IR therapies are developed.
Collapse
Affiliation(s)
- E Surmacz
- Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|