1
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Hanson AJ, Banks WA, Bettcher LF, Pepin R, Raftery D, Navarro SL, Craft S. Cerebrospinal Fluid Metabolomics: Pilot Study of Using Metabolomics to Assess Diet and Metabolic Interventions in Alzheimer's Disease and Mild Cognitive Impairment. Metabolites 2023; 13:569. [PMID: 37110227 PMCID: PMC10145981 DOI: 10.3390/metabo13040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Brain glucose hypometabolism is an early sign of Alzheimer's disease (AD), and interventions which offset this deficit, such as ketogenic diets, show promise as AD therapeutics. Conversely, high-fat feeding may exacerbate AD risk. We analyzed the metabolomic profile of cerebrospinal fluid (CSF) in a pilot study of older adults who underwent saline and triglyceride (TG) infusions. Older adults (12 cognitively normal (CN), age 65.3 ± 8.1, and 9 with cognitive impairment (CI), age 70.9 ± 8.6) underwent a 5 h TG or saline infusion on different days using a random crossover design; CSF was collected at the end of infusion. Aqueous metabolites were measured using a targeted mass spectroscopy (MS) platform focusing on 215 metabolites from over 35 different metabolic pathways. Data were analyzed using MetaboAnalyst 4.0 and SAS. Of the 215 targeted metabolites, 99 were detectable in CSF. Only one metabolite significantly differed by treatment: the ketone body 3-hydroxybutyrate (HBA). Post hoc analyses showed that HBA levels were associated with age and markers of metabolic syndrome and demonstrated different correlation patterns for the two treatments. When analyzed by cognitive diagnosis group, TG-induced increases in HBA were over 3 times higher for those with cognitive impairment (change score CN +9.8 uM ± 8.3, CI +32.4 ± 7.4, p = 0.0191). Interestingly, individuals with cognitive impairment had higher HBA levels after TG infusion than those with normal cognition. These results suggest that interventions that increase plasma ketones may lead to higher brain ketones in groups at risk for AD and should be confirmed in larger intervention studies.
Collapse
Affiliation(s)
- Angela J. Hanson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - William A. Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98102, USA
| | - Lisa F. Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| |
Collapse
|
3
|
Field R, Field T, Pourkazemi F, Rooney K. Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2022; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
Affiliation(s)
- Rowena Field
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
4
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
5
|
Schoeler NE, Cross JH, Sander JW, Sisodiya SM. Can we predict a favourable response to Ketogenic Diet Therapies for drug-resistant epilepsy? Epilepsy Res 2013; 106:1-16. [DOI: 10.1016/j.eplepsyres.2013.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/09/2013] [Indexed: 01/01/2023]
|
6
|
Tagliabue A, Bertoli S, Trentani C, Borrelli P, Veggiotti P. Effects of the ketogenic diet on nutritional status, resting energy expenditure, and substrate oxidation in patients with medically refractory epilepsy: a 6-month prospective observational study. Clin Nutr 2011; 31:246-9. [PMID: 22019282 DOI: 10.1016/j.clnu.2011.09.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/15/2011] [Accepted: 09/28/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS This 6-month prospective, single-arm observational study was designed to assess the effects of the KD on the nutritional status, resting energy expenditure (REE), and substrate oxidation in patients with drug-resistant epilepsy. METHODS Eighteen patients with medically refractory epilepsy underwent assessment of body composition, REE, and substrate oxidation rates before and after 6 months of KD. RESULTS Compared with baseline, there were no statistically significant differences at 6 months in terms of height, weight, BMI z-scores, and REE. However, the respiratory quotient decreased significantly (from 0.80 ± 0.06 to 0.72 ± 0.05, p < 0.001) whereas fat oxidation was significantly increased (from 50.9 ± 25.2 mg/min to 97.5 ± 25.7 mg/min, p < 0.001). Interestingly, we found that the increase in fat oxidation was the main independent predictor of the reduction in seizure frequency (beta = -0.97, t = -6.3, p < 0.05). CONCLUSIONS Administering a KD for 6 months in patients with medically refractory epilepsy increases fat oxidation and decreases the respiratory quotient, without appreciable changes in REE.
Collapse
Affiliation(s)
- Anna Tagliabue
- Human Nutrition and Eating Disorders Research Centre, University of Pavia, Pavia, Italy.
| | | | | | | | | |
Collapse
|
7
|
Balietti M, Casoli T, Di Stefano G, Giorgetti B, Aicardi G, Fattoretti P. Ketogenic diets: an historical antiepileptic therapy with promising potentialities for the aging brain. Ageing Res Rev 2010; 9:273-9. [PMID: 20188215 DOI: 10.1016/j.arr.2010.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Ketogenic diets (KDs), successfully used in the therapy of paediatric epilepsy for nearly a century, have recently shown beneficial effects also in cancer, obesity, diabetes, GLUT 1 deficiencies, hypoxia-ischemia, traumatic brain injuries, and neurodegeneration. The latter achievement designates aged individuals as optimal recipients, but concerns derive from possible age-dependent differences in KDs effectiveness. Indeed, the main factors influencing ketone bodies utilization by the brain (blood levels, transport mechanisms, catabolic enzymes) undergo developmental changes, although several reports indicate that KDs maintain some efficacy during adulthood and even during advanced aging. Encouraging results obtained in patients affected by age-related neurodegenerative diseases have prompted new interest on KDs' effect on the aging brain, also considering the poor efficacy of therapies currently used. However, recent morphological evidence in synapses of late-adult rats indicates that KDs consequences may be even opposite in different brain regions, likely depending on neuronal vulnerability to age. Thus, further studies are needed to design KDs specifically indicated for single neurodegenerative diseases, and to ameliorate the balance between beneficial and adverse effects in aged subjects. Here we review clinical and experimental data on KDs treatments, focusing on their possible use during pathological aging. Proposed mechanisms of action are also reported and discussed.
Collapse
|
8
|
Nylen K, Likhodii SS, Hum KM, Burnham WM. A ketogenic diet and diallyl sulfide do not elevate afterdischarge thresholds in adult kindled rats. Epilepsy Res 2006; 71:23-31. [PMID: 16782309 DOI: 10.1016/j.eplepsyres.2006.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Acetone has been shown to have broad-spectrum anticonvulsant actions in animal seizure models and has been hypothesized to play a role in the anticonvulsant mechanism of the ketogenic diet (KD). The present study examined the ability of a KD to elevate amygdaloid afterdischarge thresholds (ADT) in fully kindled rats. The effects of the KD were studied in the presence and absence of diallyl sulfide (DAS), an inhibitor of acetone metabolism. METHODS Twenty-four adult male rats were kindled to 30 stage 5 seizures. Afterdischarge thresholds (ADT) were determined. Subjects were then administered one of the following diets: (1) KD+V (vehicle; KD+V); (2) KD+DAS; (3) control diet+V (CD+V); (4) CD+DAS. They were stimulated every second day. Blood sampling was performed every second day--on non-stimulating days--to determine levels of glucose, beta-hydroxybutyrate, acetoacetate, and acetone. After 20 days, ADTs were re-determined. RESULTS Blood acetone concentrations were significantly higher in the KD+DAS group as compared to the other groups, although they did not reach "therapeutic levels". None of the treatments, however, elevated ADTs. CONCLUSIONS The KD was unable to elevate amygdaloid ADTs in fully kindled rats. Although subjects in the KD+DAS group achieved significant elevations of blood acetone, these concentrations (e.g. 0.2 mM) were much lower than those (>2.0 mM) previously shown to confer anticonvulsant activity. There appears to be large difference between humans and rats in their ability to produce elevated blood acetone levels on the KD. These data suggest that adult rats are not ideal subjects for modeling the anticonvulsant actions of the KD.
Collapse
Affiliation(s)
- Kirk Nylen
- University of Toronto Epilepsy Research Program, Department of Pharmacology, Ontario, Canada M5S 1A8.
| | | | | | | |
Collapse
|
9
|
Rhodes ME, Talluri J, Harney JP, Frye CA. Ketogenic diet decreases circulating concentrations of neuroactive steroids of female rats. Epilepsy Behav 2005; 7:231-9. [PMID: 16054440 PMCID: PMC3637968 DOI: 10.1016/j.yebeh.2005.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 11/29/2022]
Abstract
Ketogenic diet (KD) is used to manage intractable epilepsy; however, the mechanisms underlying its therapeutic effects are not known. Steroid hormones, such as progesterone and testosterone, are derived from cholesterol, and are readily 5alpha-reduced to dihydroprogesterone and dihydrotestosterone, which are subsequently converted to 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP) and 3alpha-androstanediol, neuroactive steroids that can influence seizures. The present study examined the effects of the KD on circulating concentrations of these neuroactive steroids, and their precursors, in intact female rats. Thirty-six, 22-day-old female Sprague-Dawley rats (weaned at 21 days) were fasted for 8 hours prior to placement on one of three dietary regimens for 6 weeks: ad libitum chow, calorie-restricted chow, or KD. After 6 weeks of the diet, when six rats in each dietary condition were in diestrus and six were in behavioral estrus, all rats were administered pentylenetetrazole (PTZ, 70 mg/kg, i.p.). The latency and incidence of seizures were recorded by an observer who was uninformed of the estrous cycle and dietary treatment conditions of the rats. Immediately after each test, trunk blood was obtained for later measurement of pregnane (progesterone, dihydroprogesterone, 3alpha,5alpha-THP) and androstane (testosterone, dihydrotestosterone, 3alpha-androstanediol) neuroactive steroid concentrations in plasma by radioimmunoassay. KD tended to lengthen the latency to, and significantly reduced the number of, PTZ-induced barrel roll seizures. KD also significantly reduced plasma levels of the pregnane (dihydroprogesterone, 3alpha,5alpha-THP) and androstane (dihydrotestosterone, 3alpha-androstanediol) 5alpha-reduced metabolites. These data suggest that levels of pregnane and androstane neuroactive steroids, or their precursors, may underlie some of the antiseizure effects of KD.
Collapse
Affiliation(s)
- Madeline E. Rhodes
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
- Department of Psychology, The University at Albany–Suny, Albany, NY 12222, USA
| | - Jayanth Talluri
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
| | - Jacob P. Harney
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
| | - Cheryl A. Frye
- Department of Psychology, The University at Albany–Suny, Albany, NY 12222, USA
- Corresponding author. Fax: +1 518 442 4867. (C.A. Frye)
| |
Collapse
|
10
|
Nylen K, Likhodii S, Abdelmalik PA, Clarke J, Burnham WM. A comparison of the ability of a 4:1 ketogenic diet and a 6.3:1 ketogenic diet to elevate seizure thresholds in adult and young rats. Epilepsia 2005; 46:1198-204. [PMID: 16060928 DOI: 10.1111/j.1528-1167.2005.71204.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The pentylenetetrazol (PTZ) infusion test was used to compare seizure thresholds in adult and young rats fed either a 4:1 ketogenic diet (KD) or a 6.3:1 KD. We hypothesized that both KDs would significantly elevate seizure thresholds and that the 4:1 KD would serve as a better model of the KD used clinically. METHODS Ninety adult rats and 75 young rats were placed on one of five experimental diets: (a) a 4:1 KD, (b) a control diet balanced to the 4:1 KD, (c) a 6.3:1 KD, (d) a standard control diet, or (e) an ad libitum standard control diet. All subjects were seizure tested by using the PTZ infusion test. Blood glucose and beta-hydroxybutyrate (beta-OHB) levels were measured. RESULTS Neither KD elevated absolute "latencies to seizure" in young or adult rats. Similarly, neither KD elevated "threshold doses" in adult rats. In young rats, the 6.3:1 KD, but not the 4:1 KD, significantly elevated threshold doses. The 6.3:1 KD group showed poorer weight gain than the 4:1 KD group when compared with respective controls. The most dramatic discrepancies were seen in young rats. CONCLUSIONS "Threshold doses" and "latency to seizure" data provided conflicting measures of seizure threshold. This was likely due to the inflation of threshold doses calculated by using the much smaller body weights found in the 6.3:1 KD group. Ultimately, the PTZ infusion test in rats may not be a good preparation to model the anticonvulsant effects of the KD seen clinically, especially when dietary treatments lead to significantly mismatched body weights between the groups.
Collapse
Affiliation(s)
- Kirk Nylen
- University of Toronto Epilepsy Research Program, Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND The ketogenic diet is a low-carbohydrate, adequate-protein, and high-fat diet with a long history of use for the treatment of intractable seizures in children. This dietary therapy has been enjoying increasing popularity in recent years, despite the availability of increasing numbers of new antiepileptic drugs and surgical treatments. REVIEW SUMMARY The authors review the history of the ketogenic diet, the traditional protocol in initiating it, possible mechanisms of its action, evidence for efficacy, and side effects. In addition, they highlight some of the areas of active research in this field as well as future directions and unanswered questions. CONCLUSION The ketogenic diet is an efficacious and relatively safe treatment of intractable seizures. Despite its long history, however, much remains unknown about the diet, including its mechanisms of action, the optimal protocol, and the full range of its applicability. Investigations of the diet are providing new insight into the mechanisms behind seizures and epilepsy itself, as well as possible new therapies.
Collapse
|
12
|
Abstract
Dietary therapies represent a potentially valuable adjunct to other epilepsy treatments, such as anticonvulsant medications, epilepsy surgery, and vagus nerve stimulation. Although the ketogenic diet (high fat, adequate protein, low carbohydrate) is the most well-established dietary therapy for epilepsy, other possible approaches include the Atkins diet (high fat, high protein, low carbohydrate), a diet enriched in polyunsaturated fatty acids, or overall restriction of calorie intake. This review discusses the current clinical status of each of these dietary approaches and suggests possible mechanisms by which they might suppress neuronal hyperexcitability and seizures.
Collapse
|
13
|
Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond) 2004; 1:11. [PMID: 15507133 PMCID: PMC529249 DOI: 10.1186/1743-7075-1-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/19/2004] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND: The high fat, low carbohydrate ketogenic diet (KD) was developed as an alternative to fasting for seizure management. While the mechanisms by which fasting and the KD inhibit seizures remain speculative, alterations in brain energy metabolism are likely involved. We previously showed that caloric restriction (CR) inhibits seizure susceptibility by reducing blood glucose in the epileptic EL mouse, a natural model for human multifactorial idiopathic epilepsy. In this study, we compared the antiepileptic and anticonvulsant efficacy of the KD with that of CR in adult EL mice with active epilepsy. EL mice that experienced at least 15 recurrent complex partial seizures were fed either a standard diet unrestricted (SD-UR) or restricted (SD-R), and either a KD unrestricted (KD-UR) or restricted (KD-R). All mice were fasted for 14 hrs prior to diet initiation. A new experimental design was used where each mouse in the diet-restricted groups served as its own control to achieve a 20-23% body weight reduction. Seizure susceptibility, body weights, and the levels of plasma glucose and beta-hydroxybutyrate were measured once/week over a nine-week treatment period. RESULTS: Body weights and blood glucose levels remained high over the testing period in the SD-UR and the KD-UR groups, but were significantly (p < 0.001) reduced in the SD-R and KD-R groups. Plasma beta-hydroxybutyrate levels were significantly (p < 0.001) increased in the SD-R and KD-R groups compared to their respective UR groups. Seizure susceptibility remained high in both UR-fed groups throughout the study, but was significantly reduced after three weeks in both R-fed groups. CONCLUSIONS: The results indicate that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control is more associated with the amount than with the origin of dietary calories. Also, CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A transition from glucose to ketone bodies for energy is predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems.
Collapse
Affiliation(s)
- John G Mantis
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | | | | | | |
Collapse
|
14
|
Noh HS, Lee HP, Kim DW, Kang SS, Cho GJ, Rho JM, Choi WS. A cDNA microarray analysis of gene expression profiles in rat hippocampus following a ketogenic diet. ACTA ACUST UNITED AC 2004; 129:80-7. [PMID: 15469884 DOI: 10.1016/j.molbrainres.2004.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
The ketogenic diet (KD) is an effective therapy for medically intractable epilepsy, but its anticonvulsant mechanisms are unknown. Few studies to date have addressed the molecular changes following treatment with a KD. In the present study, we fed juvenile rats either a standard diet or a KD for 1 month, and then determined changes in hippocampal gene expression using cDNA microarray analysis (Clontech). To validate the microarray expression results, we also performed Northern blot and RT-PCR analysis on a small subset of affected genes. Among a total of 1176 cDNAs, 42 genes were strongly up- or down-regulated (>2-fold change over controls) by a KD. We found that the expression of mitochondrial ATP synthase beta subunit, mitochondrial ATP synthase D subunit (ATP5H) and mitochondrial ATP synthase beta subunit precursor (ATP5F) were especially increased in KD-treated group, whereas the KD down-regulated protein kinase C (PKC) beta and epsilon isoforms. Thus, the most prominent changes were seen in genes encoding proteins involved in mitochondrial metabolic and intracellular signal transduction pathways. Our data provide some insights into the complex cascade of cellular changes in the hippocampus induced by a KD, some of which may contribute to its anticonvulsant effects.
Collapse
Affiliation(s)
- Hae Sook Noh
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, 92 Chilam-dong, Chinju, Kyungnam 660-751, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Castro JL, López-Ramírez MR, Centeno SP, Otero JC. Adsorption of mercaptoacetic acid on a colloidal silver surface as investigated by Raman spectroscopy. Biopolymers 2004; 74:141-5. [PMID: 15137112 DOI: 10.1002/bip.20060] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The vibration nu(SH) has never been observed in the surface-enhanced Raman scattering of mercaptoacetic acid recorded in a wide range of pH. This behavior enables us to deduce that the -SH group is deprotonated and links to the metal forming an Ag-S bond as 1-alkanethiols do. On the contrary, the carboxylic or carboxylate groups do not link to the metal and the carboxylic group is preserved even at pH values under which it should be deprotonated. This fact enables the stabilization of the adsorbed monolayer by removing the electrostatic repulsions between -COO(-) groups and by the formation instead of hydrogen bonds between carboxylic groups. Only under rather basic conditions (pH > 8) does the carboxylic groups dissociate, but the nu(s)(OCO) band is neither enhanced nor shifted toward low frequencies.
Collapse
Affiliation(s)
- J L Castro
- Department of Physical Chemistry, University of Málaga, E-29071 Malaga, Spain
| | | | | | | |
Collapse
|
16
|
Stafstrom CE, Bough KJ. The ketogenic diet for the treatment of epilepsy: a challenge for nutritional neuroscientists. Nutr Neurosci 2003; 6:67-79. [PMID: 12722982 DOI: 10.1080/1028415031000084427] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate, adequate-protein diet that has been used for more than eight decades for the treatment of refractory epilepsy in children. Despite this long history, the mechanisms by which the KD exerts its anti-seizure action are not fully understood. Questions remain regarding several aspects of KD action, including its effects on brain biochemistry and energetics, neuronal membrane function and cellular network behavior. With the explosion of the KD use in the last 10 years, it is now imperative that we understand these factors in greater detail, in order to optimize the formulation, administration and fine-tuning of the diet. This review discusses what is known and what remains to be learned about the KD, with emphasis on clinical questions that can be approached in the laboratory. We encourage scientists with a primary interest in nutritional neuroscience to join with those of us in the epilepsy research community to address these urgent questions, for the benefit of children ravaged by intractable seizures.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology and the Neuroscience Training Program, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|