1
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Sturgeon ML, Langton R, Sharma S, Cornell RA, Glykys J, Bassuk AG. The opioid antagonist naltrexone decreases seizure-like activity in genetic and chemically induced epilepsy models. Epilepsia Open 2021; 6:528-538. [PMID: 34664432 PMCID: PMC8408599 DOI: 10.1002/epi4.12512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE A significant number of epileptic patients fail to respond to available anticonvulsive medications. To find new anticonvulsive medications, we evaluated FDA-approved drugs not known to be anticonvulsants. Using zebrafish larvae as an initial model system, we found that the opioid antagonist naltrexone exhibited an anticonvulsant effect. We validated this effect in three other epilepsy models and present naltrexone as a promising anticonvulsive candidate. METHODS Candidate anticonvulsant drugs, determined by our prior transcriptomics analysis of hippocampal tissue, were evaluated in a larval zebrafish model of human Dravet syndrome (scn1Lab mutants), in wild-type zebrafish larvae treated with the pro-convulsant drug pentylenetetrazole (PTZ), in wild-type C57bl/6J acute brain slices exposed to PTZ, and in wild-type mice treated with PTZ in vivo. Abnormal locomotion was determined behaviorally in zebrafish and mice and by field potential in neocortex layer IV/V and CA1 stratum pyramidale in the hippocampus. RESULTS The opioid antagonist naltrexone decreased abnormal locomotion in the larval zebrafish model of human Dravet syndrome (scn1Lab mutants) and wild-type larvae treated with the pro-convulsant drug PTZ. Naltrexone also decreased seizure-like events in acute brain slices of wild-type mice, and the duration and number of seizures in adult mice injected with PTZ. SIGNIFICANCE Our data reveal that naltrexone has anticonvulsive properties and is a candidate drug for seizure treatment.
Collapse
Affiliation(s)
| | - Rachel Langton
- Department of PediatricsDivision of Child NeurologyUniversity of IowaIowa CityIAUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIAUSA
| | | | - Robert A. Cornell
- Department of Anatomy and Cell BiologyUniversity of IowaIowa CityIAUSA
| | - Joseph Glykys
- Department of PediatricsDivision of Child NeurologyUniversity of IowaIowa CityIAUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIAUSA
- Department of NeurologyUniversity of IowaIowa CityIAUSA
| | - Alexander G. Bassuk
- Department of PediatricsDivision of Child NeurologyUniversity of IowaIowa CityIAUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIAUSA
- Department of NeurologyUniversity of IowaIowa CityIAUSA
| |
Collapse
|
3
|
Thakran S, Guin D, Singh P, Singh P, Kukal S, Rawat C, Yadav S, Kushwaha SS, Srivastava AK, Hasija Y, Saso L, Ramachandran S, Kukreti R. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int J Mol Sci 2020; 21:E7784. [PMID: 33096746 PMCID: PMC7589654 DOI: 10.3390/ijms21207784] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is highly heterogeneous in nature. Based on the prevalence, epilepsy is classified into two types: common and rare epilepsies. Common epilepsies affecting nearly 95% people with epilepsy, comprise generalized epilepsy which encompass idiopathic generalized epilepsy like childhood absence epilepsy, juvenile myoclonic epilepsy, juvenile absence epilepsy and epilepsy with generalized tonic-clonic seizure on awakening and focal epilepsy like temporal lobe epilepsy and cryptogenic focal epilepsy. In 70% of the epilepsy cases, genetic factors are responsible either as single genetic variant in rare epilepsies or multiple genetic variants acting along with different environmental factors as in common epilepsies. Genetic testing and precision treatment have been developed for a few rare epilepsies and is lacking for common epilepsies due to their complex nature of inheritance. Precision medicine for common epilepsies require a panoramic approach that incorporates polygenic background and other non-genetic factors like microbiome, diet, age at disease onset, optimal time for treatment and other lifestyle factors which influence seizure threshold. This review aims to comprehensively present a state-of-art review of all the genes and their genetic variants that are associated with all common epilepsy subtypes. It also encompasses the basis of these genes in the epileptogenesis. Here, we discussed the current status of the common epilepsy genetics and address the clinical application so far on evidence-based markers in prognosis, diagnosis, and treatment management. In addition, we assessed the diagnostic predictability of a few genetic markers used for disease risk prediction in individuals. A combination of deeper endo-phenotyping including pharmaco-response data, electro-clinical imaging, and other clinical measurements along with genetics may be used to diagnose common epilepsies and this marks a step ahead in precision medicine in common epilepsies management.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Suman S. Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi 110095, India;
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India;
| | - Yasha Hasija
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Srinivasan Ramachandran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- G N Ramachandran Knowledge Centre, Council of Scientific and Industrial Research (CSIR)—Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
4
|
Mann M, Chhun S, Pons G. Farmacogenetica dei farmaci antiepilettici. Neurologia 2014. [DOI: 10.1016/s1634-7072(14)68868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Thompson MD, Cole DEC, Capra V, Siminovitch KA, Rovati GE, Burnham WM, Rana BK. Pharmacogenetics of the G protein-coupled receptors. Methods Mol Biol 2014; 1175:189-242. [PMID: 25150871 DOI: 10.1007/978-1-4939-0956-8_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacogenetics investigates the influence of genetic variants on physiological phenotypes related to drug response and disease, while pharmacogenomics takes a genome-wide approach to advancing this knowledge. Both play an important role in identifying responders and nonresponders to medication, avoiding adverse drug reactions, and optimizing drug dose for the individual. G protein-coupled receptors (GPCRs) are the primary target of therapeutic drugs and have been the focus of these studies. With the advance of genomic technologies, there has been a substantial increase in the inventory of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms and insertion or deletions that have potential to alter GPCR expression of function. In vivo and in vitro studies have determined functional roles for many GPCR variants, but genetic association studies that define the physiological impact of the majority of these common variants are still limited. Despite the breadth of pharmacogenetic data available, GPCR variants have not been included in drug labeling and are only occasionally considered in optimizing clinical use of GPCR-targeted agents. In this chapter, pharmacogenetic and genomic studies on GPCR variants are reviewed with respect to a subset of GPCR systems, including the adrenergic, calcium sensing, cysteinyl leukotriene, cannabinoid CB1 and CB2 receptors, and the de-orphanized receptors such as GPR55. The nature of the disruption to receptor function is discussed with respect to regulation of gene expression, expression on the cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (altered ligand binding, G protein coupling, constitutive activity). The large body of experimental data generated on structure and function relationships and receptor-ligand interactions are being harnessed for the in silico functional prediction of naturally occurring GPCR variants. We provide information on online resources dedicated to GPCRs and present applications of publically available computational tools for pharmacogenetic studies of GPCRs. As the breadth of GPCR pharmacogenomic data becomes clearer, the opportunity for routine assessment of GPCR variants to predict disease risk, drug response, and potential adverse drug effects will become possible.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The µ-opioid receptor is a primary target for clinically important opioid analgesics, including morphine, fentanyl and methadone. Many genetic variations have been identified in the human µ-opioid receptor MOP gene (OPRM1), and their implications have been reported in the effects of opioid drugs and susceptibility to drug dependence. Interestingly, agonistic and antagonistic opioid effects are inversely associated with the A118G polymorphism genotype. The A118G polymorphism may also be associated with substance dependence and susceptibility to other disorders, including epilepsy and schizophrenia. The IVS1+A21573G, IVS1-T17286C, and TAA+A5359G polymorphisms in the OPRM1 gene may be associated with alcohol, opioid and tobacco dependence, respectively. However, some studies have failed to confirm the correlations between the polymorphisms and opioid effects and substance dependence. Further studies are needed to elucidate the molecular mechanisms underlying the effects of OPRM1 polymorphisms.
Collapse
Affiliation(s)
| | - Kazutaka Ikeda
- Research Project for Addictive Substances, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
7
|
Vasileiou I, Giaginis C, Klonaris C, Theocharis S. Insight into pain-inducing and -related gene expression: a challenge for development of novel targeted therapeutic approaches. Fundam Clin Pharmacol 2011; 25:48-62. [PMID: 20070377 DOI: 10.1111/j.1472-8206.2009.00809.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The multidimensional issue of pain in relation to the need for efficient treatment has been the focus of extensive research. Gaining insight into the molecular mechanisms of pain and identifying specific genes and proteins as possible drug targets is strongly required considering that not all patients can be adequately treated with the currently available drugs. This up-to-date review aimed to summarize the findings of recent proteomic and genomic approaches in different types of pain to comment on their potential role in pain signaling pathways and to evaluate their possible contribution to the development of novel and possibly more targeted pain therapeutic strategies. Although pain treatment strategies have been greatly improved during the past century, no ideal targeted pain treatment has been developed. The development of modern and accurate platforms of technology for the study of genetics and physiology of pain has led to the identification of an increased number of altered genes and proteins that are involved in pain-related pathways. Through genomics and proteomics, pain-related genes and proteins, respectively, may be identified as diagnostic markers or drug targets improving therapeutic strategies. Furthermore, such molecular mediators of pain may reveal novel strategies for individualized pain management. The utilization of unique experimental approaches (through specific animal models) as well as powered genetic association studies conducted on appropriate populations is more than essential.
Collapse
Affiliation(s)
- Ioanna Vasileiou
- Department of Forensic Medicine & Toxicology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
8
|
Kinirons P, Rabinowitz D, Gravel M, Long J, Winawer M, Sénéchal G, Ottman R, Cossette P. Phenotypic concordance in 70 families with IGE-implications for genetic studies of epilepsy. Epilepsy Res 2008; 82:21-28. [PMID: 18723325 PMCID: PMC2762318 DOI: 10.1016/j.eplepsyres.2008.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 06/21/2008] [Accepted: 06/26/2008] [Indexed: 11/20/2022]
Abstract
INTRODUCTION A crucial issue in the genetic analysis of idiopathic generalized epilepsy (IGE) is deciding on the phenotypes that are likely to give the greatest power to detect predisposing variants. A complex inheritance pattern and unclear nature of the genotype-phenotype correlation makes this task difficult. In the absence of much definitive genetic information to clarify this correlation, we inferred the putative effects of predisposing genes by studying the clustering of various phenotypic features, both clinical and electrophysiological, within families. METHODS We examined the distribution of clinical features among relatives of a proband in 70 French-Canadian families with a minimum of two affected individuals with a clear diagnosis of IGE and then, using concordance analysis, identified the relative genetic influences on IGE syndrome, seizure type, age-at-onset, and EEG features. RESULTS The mean number of affected individuals with IGE per family was three. One-third of relatives had the same syndrome as the proband. 16-22.5% of relatives of a proband with one of the absence syndromes had juvenile myoclonic epilepsy (JME). Conversely, 27% of relatives of probands with JME had an absence syndrome. 15% of relatives displayed the exact constellation of seizure types as the proband. Concordance analysis demonstrated greater clustering within families of IGE syndrome, seizure type, and age-at-onset than would be expected by chance. Significant concordance was not evident for EEG features. DISCUSSION There was a large degree of clinical heterogeneity present within families. However we found evidence for clustering of a number of clinical features. Further refinement of the phenotypes used in genetic studies of complex IGE is necessary for progress to be made.
Collapse
MESH Headings
- Age of Onset
- Cohort Studies
- Epilepsy, Absence/epidemiology
- Epilepsy, Absence/genetics
- Epilepsy, Generalized/classification
- Epilepsy, Generalized/epidemiology
- Epilepsy, Generalized/genetics
- Epilepsy, Reflex/epidemiology
- Epilepsy, Reflex/genetics
- Epilepsy, Tonic-Clonic/epidemiology
- Epilepsy, Tonic-Clonic/genetics
- Family Health
- Genetic Predisposition to Disease
- Humans
- Myoclonic Epilepsy, Juvenile/epidemiology
- Myoclonic Epilepsy, Juvenile/genetics
- Phenotype
- Quebec/epidemiology
- Syndrome
Collapse
Affiliation(s)
- Peter Kinirons
- Centre for the Study of Brain Diseases, University of Montreal, 2099 Alexander de Seve, Montreal, QC H2L 4W5, Canada
| | - Daniel Rabinowitz
- Department of Statistics, Columbia University, New York, United States
| | - Micheline Gravel
- Centre for the Study of Brain Diseases, University of Montreal, 2099 Alexander de Seve, Montreal, QC H2L 4W5, Canada
| | - James Long
- Department of Statistics, Columbia University, New York, United States
| | - Melodie Winawer
- G.H. Sergievsky Center, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Geneviève Sénéchal
- Centre for the Study of Brain Diseases, University of Montreal, 2099 Alexander de Seve, Montreal, QC H2L 4W5, Canada
| | - Ruth Ottman
- G.H. Sergievsky Center, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
- Department of Epidemiology, Columbia University, New York, United States
| | - Patrick Cossette
- Centre for the Study of Brain Diseases, University of Montreal, 2099 Alexander de Seve, Montreal, QC H2L 4W5, Canada
| |
Collapse
|
9
|
[Drug resistance in partial epilepsy: epidemiology, mechanisms, pharmacogenetics and therapeutical aspects]. Neurochirurgie 2008; 54:259-64. [PMID: 18417170 DOI: 10.1016/j.neuchi.2008.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 11/22/2022]
Abstract
It has been established that 20-30% of epilepsies are not controlled by antiepileptic drugs. Drug resistance is associated with several major problems, including prognosis, cognitive function, behavior, mortality, cost and quality of life. Apart from classic risk factors for drug resistance, such as neurological, psychiatric, imaging, EEG abnormalities, a high frequency of seizures before medical therapy and complex febrile convulsions, the potential role of multidrug transporters as well as their genetic control and the altered sensitivity of neuronal drug receptors has gained growing attention. In the future, pharmaceutical engineering may bypass these factors. To a certain extent, drug resistance may develop progressively in a neurobiological process and the control of this process could limit its development.
Collapse
|
10
|
Abstract
Common G protein-coupled receptor (GPCR) gene variants that encode receptor proteins with a distinct sequence may alter drug efficacy without always resulting in a disease phenotype. GPCR genetic loci harbor numerous variants, such as DNA insertions or deletions and single-nucleotide polymorphisms that alter GPCR expression and function, thereby contributing to interindividual differences in disease susceptibility/progression and drug responses. In this chapter, these pharmacogenetic phenomena are reviewed with respect to a limited sampling of GPCR systems, including the beta(2)-adrenergic receptors, the cysteinyl leukotriene receptors, and the calcium-sensing receptor. In each example, the nature of the disruption to receptor function that results from each variant is discussed with respect to the regulation of gene expression, expression on cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (by altering ligand binding, G protein coupling, and receptor constitutive activity). Despite the breadth of pharmacogenetic knowledge available, assessment for genetic variants is only occasionally applied to drug development projects involving pharmacogenomics or to optimizing the clinical use of GPCR drugs. The continued effort by the basic science of pharmacogenetics may draw the attention of drug discovery projects and clinicians alike to the utility of personalized pharmacogenomics as a means to optimize novel GPCR drug targets.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
11
|
Lucarini N, Verrotti A, Napolioni V, Bosco G, Curatolo P. Genetic polymorphisms and idiopathic generalized epilepsies. Pediatr Neurol 2007; 37:157-64. [PMID: 17765802 DOI: 10.1016/j.pediatrneurol.2007.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/14/2007] [Accepted: 06/01/2007] [Indexed: 10/22/2022]
Abstract
In recent years, progress in understanding the genetic basis of idiopathic generalized epilepsies has proven challenging because of their complex inheritance patterns and genetic heterogeneity. Genetic polymorphisms offer a convenient avenue for a better understanding of the genetic basis of idiopathic generalized epilepsy by providing evidence for the involvement of a given gene in these disorders, and by clarifying its pathogenetic mechanisms. Many of these genes encode for some important central nervous system ion channels (KCNJ10, KCNJ3, KCNQ2/KCNQ3, CLCN2, GABRG2, GABRA1, SCN1B, and SCN1A), while many others encode for ubiquitary enzymes that play crucial roles in various metabolic pathways (HP, ACP1, ME2, LGI4, OPRM1, GRIK1, BRD2, EFHC1, and EFHC2). We review the main genetic polymorphisms reported in idiopathic generalized epilepsy, and discusses their possible functional significance in the pathogenesis of seizures.
Collapse
Affiliation(s)
- Nazzareno Lucarini
- Department of Molecular, Cellular, and Animal Biology, University of Camerino, Camerino, Italy.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Pharmacogenetics concerns the influence of an individual's genetic background on the pharmacokinetics and pharmacodynamics of xenobiotics. Much of the pharmacogenetic data in the field of epilepsy deals with the pharmacokinetics of antiepileptic drugs (AEDs). In particular, two polymorphisms of cytochrome P450 2C9 are known to slow down the metabolism of phenytoin to a degree that increases the risk of the neurotoxic adverse effects of this drug among carriers of these polymorphisms. A significant number of patients with epilepsy do not respond to AEDs and such pharmacoresistance is a major, largely unsolved, problem that is likely to be multifactorial in nature. In this regard, genetic factors may influence transmembrane drug transporter proteins, thereby modifying the intracerebral penetration of AEDs. Monogenic idiopathic epilepsies are rare and frequently associated with ion channel mutations; however, to date, a consistent relationship between changes in channel properties and clinical phenotype has not been established nor has any association between genotype and response to specific treatment options. Polymorphisms of drug targets may represent another genetic facet in epilepsy: a recent study demonstrated for the first time a polymorphism of a drug target (the alpha-subunit of a voltage-gated sodium channel) associated in clinical practice with differing response to two classic AEDs. Adverse drug reactions and teratogenicity of AEDs remain a major concern. Whole-genome single nucleotide polymorphism profiling might in the future help to determine genetic predisposing factors for adverse drug reactions. Recently, in Han Chinese treated with carbamazepine and presenting with Stevens-Johnson syndrome, a strong association was found with HLA B*1502. If genetically targeted drug development becomes more affordable/cost efficient in the near future, the development of new drugs for relatively rare diseases could become economically viable for the pharmaceutical industry. The synergy of lower trial costs and efficacy-based prescribing may reduce the cost of medical treatment for a particular disease. This hypothetical advantage of the practical use of pharmacogenetics is, however, counterbalanced by several possible dangers, including illicit data mining and the development of a human 'genetic underclass' with the risk of exclusion from, for example employment or health insurance, because of an 'unfavourable' genetic profile.
Collapse
Affiliation(s)
- Michael W Mann
- Department of Neurosurgery, Hôpital St Anne, 1 rue Cabanis, Paris, France.
| | | |
Collapse
|
13
|
Durner M, Gorroochurn P, Marini C, Guerrini R. Can we increase the likelihood of success for future association studies in epilepsy? Epilepsia 2006; 47:1617-21; author reply 1757-8. [PMID: 17054682 DOI: 10.1111/j.1528-1167.2006.00842.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Barratt C, Lai T, Nashef L, Valentin A, Fisniku L, Moran N, Asherson P, Makoff A. No Association of Single Nucleotide Polymorphisms in the ?-Opioid Receptor Subunit Gene with Idiopathic Generalized Epilepsy. Epilepsia 2006; 47:1728-31. [PMID: 17054695 DOI: 10.1111/j.1528-1167.2006.00844.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have investigated the reported association (p = 0.019) between the A118G single nucleotide polymorphism (SNP) of the opioid receptor micro subunit gene (OPRM1) and idiopathic absence epilepsy (IAE). Five SNPs, including A118G, were investigated by association studies in a sample of 240 probands with idiopathic generalized epilepsy (IGE), including 110 with IAE, and 257 controls. No significant association was found for A118G with IGE or IAE. The difference between the two studies was in the control samples that had significantly different allele frequencies (p = 0.00005), suggesting that population stratification may explain the earlier significant association with IAE. In the current study, none of the other four SNPs was significantly associated with IGE or IAE. Our results provide no support for association of A118G with either IAE or IGE and also exclude association in our sample of a small-to-moderate gene effect with IGE from a large part of OPRM1.
Collapse
Affiliation(s)
- Catherine Barratt
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Thompson MD, Burnham WM, Cole DEC. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 2005; 42:311-92. [PMID: 16281738 DOI: 10.1080/10408360591001895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic variation in G-protein coupled receptors (GPCRs) is associated with a wide spectrum of disease phenotypes and predispositions that are of special significance because they are the targets of therapeutic agents. Each variant provides an opportunity to understand receptor function that complements a plethora of available in vitro data elucidating the pharmacology of the GPCRs. For example, discrete portions of the proximal tail of the dopamine D1 receptor have been discovered, in vitro, that may be involved in desensitization, recycling and trafficking. Similar in vitro strategies have been used to elucidate naturally occurring GPCR mutations. Inactive, over-active or constitutively active receptors have been identified by changes in ligand binding, G-protein coupling, receptor desensitization and receptor recycling. Selected examples reviewed include those disorders resulting from mutations in rhodopsin, thyrotropin, luteinizing hormone, vasopressin and angiotensin receptors. By comparison, the recurrent pharmacogenetic variants are more likely to result in an altered predisposition to complex disease in the population. These common variants may affect receptor sequence without intrinsic phenotype change or spontaneous induction of disease and yet result in significant alteration in drug efficacy. These pharmacogenetic phenomena will be reviewed with respect to a limited sampling of GPCR systems including the orexin/hypocretin system, the beta2 adrenergic receptors, the cysteinyl leukotriene receptors and the calcium-sensing receptor. These developments will be discussed with respect to strategies for drug discovery that take into account the potential for the development of drugs targeted at mutated and wild-type proteins.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
16
|
Chyung ASC, Ptáček LJ. GENETICS OF EPILEPSY. Continuum (Minneap Minn) 2005. [DOI: 10.1212/01.con.0000293700.85345.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Abstract
Success has been achieved in identifying many mutations in rare monogenic epilepsy syndromes by using linkage analysis, but dissecting the genetic basis of common epilepsy syndromes has proven more difficult. Common epilepsies are genetically complex disorders believed to be influenced by variation in several susceptibility genes. Association studies can theoretically identify these genes, but despite more than 50 association studies in epilepsy, no consistent or convincing susceptibility genes have emerged, leading to scepticism about the association-study approach. We review the results of existing association studies in focal epilepsies, generalized epilepsies, febrile seizures, and epilepsy pharmacogenetics. By using an illustrative example, we discuss how methodologic issues of sample size, selection of appropriate controls, population stratification, and significance thresholds can lead to bias and false-positive associations; the importance of biologic plausibility also is emphasized. Newer methodologic refinements for association studies, such as use of two control groups, genomic control, haplotyping, and use of two independent datasets, are discussed. A summary of existing guidelines and a checklist for planning and appraising such association studies in epilepsy is presented. We remain cautiously optimistic that with methodologic refinements and multicenter collaborations with large sample sizes, association studies will ultimately be useful in dissecting the genetic basis of common epilepsy syndromes.
Collapse
Affiliation(s)
- Nigel C K Tan
- Epilepsy Research Centre and Department of Medicine (Neurology), University of Melbourne, Australia
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Ortrud K Steinlein
- Institute of Human Genetics, Friedrich-Wilhelms-University Bonn, School of Medicine, Wilhelmstrasse 31, 53111 Bonn, Germany.
| |
Collapse
|
19
|
Buono RJ, Lohoff FW, Sander T, Sperling MR, O'Connor MJ, Dlugos DJ, Ryan SG, Golden GT, Zhao H, Scattergood TM, Berrettini WH, Ferraro TN. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res 2004; 58:175-83. [PMID: 15120748 DOI: 10.1016/j.eplepsyres.2004.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 12/15/2003] [Accepted: 02/18/2004] [Indexed: 11/28/2022]
Abstract
PURPOSE Our research program uses genetic linkage and association analysis to identify human seizure sensitivity and resistance alleles. Quantitative trait loci mapping in mice led to identification of genetic variation in the potassium ion channel gene Kcnj10, implicating it as a putative seizure susceptibility gene. The purpose of this work was to translate these animal model data to a human genetic association study. METHODS We used single stranded conformation polymorphism (SSCP) electrophoresis, DNA sequencing and database searching (NCBI) to identify variation in the human KCNJ10 gene. Restriction fragment length polymorphism (RFLP) analysis, SSCP and Pyrosequencing were used to genotype a single nucleotide polymorphism (SNP, dbSNP rs#1130183) in KCNJ10 in epilepsy patients (n = 407) and unrelated controls (n = 284). The epilepsy group was comprised of patients with refractory mesial temporal lobe epilepsy (n = 153), childhood absence (n = 84), juvenile myoclonic (n = 111) and idiopathic generalized epilepsy not otherwise specified (IGE-NOS, n = 59) and all were of European ancestry. RESULTS SNP rs#1130183 (C > T) alters amino acid 271 (of 379) from an arginine to a cysteine (R271C). The C allele (Arg) is common with conversion to the T allele (Cys) occurring twice as often in controls compared to epilepsy patients. Contingency analysis documented a statistically significant association between seizure resistance and allele frequency, Mantel-Haenszel chi square = 5.65, d.f. = 1, P = 0.017, odds ratio 0.52, 95% CI 0.33-0.82. CONCLUSION The T allele of SNP rs#1130183 is associated with seizure resistance when common forms of focal and generalized epilepsy are analyzed as a group. These data suggest that this missense variation in KCNJ10 (or a nearby variation) is related to general seizure susceptibility in humans.
Collapse
Affiliation(s)
- R J Buono
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, 415 Curie Boulevard, CRB-120, Philadelphia, PA 19104-6140, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Akio Inui
- Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
21
|
Leppert MF, Singh NA. Nonsyndromic seizure disorders: epilepsy and the use of the internet to advance research. Annu Rev Genomics Hum Genet 2003; 4:437-57. [PMID: 14527308 DOI: 10.1146/annurev.genom.4.071902.102155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The progress in understanding the genetics of nonsyndromic epilepsy is the direct result of dramatic advances made by the Human Genome Project. The development of thousands of precisely mapped genetic markers and the nearly complete sequencing of the entire human genome in 2001 allowed genetic researchers in epilepsy to identify many loci and genes as causal in inherited idiopathic epilepsy. This substantial increase in information has required the development of accurate and online bioinformatic databases. Only the Internet can enable such large amounts of precise DNA sequence information to be transferred to researchers. Along with the construction of these databases has been the development of efficient search algorithms for specific DNA sequences and genetic information. This article summarizes the effect that this burst of new genomic information has had on research aimed at discovering the underlying genetic factors for nonsyndromic epilepsy. Many of the web sites important to epilepsy gene discovery are listed and discussed in this article, including sites with extensive information on genetic markers, genetic analysis, gene sequence, gene expression, gene mutations, and DNA sequence variation. Continued acquisition of information on naturally occurring DNA sequence variants will greatly help research directed towards understanding the genetic susceptibility of the common, nonsyndromic epilepsies and will lead to the promise of personalized medicine.
Collapse
Affiliation(s)
- Mark F Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA.
| | | |
Collapse
|
22
|
Hirota T, Ieiri I, Takane H, Sano H, Kawamoto K, Aono H, Yamasaki A, Takeuchi H, Masada M, Shimizu E, Higuchi S, Otsubo K. Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos 2003; 31:677-80. [PMID: 12695358 DOI: 10.1124/dmd.31.5.677] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this case report, we present genetic differences in two morphine-related gene sequences, UDP-glucuronosyltransferase 2B7 (UGT2B7) and mu opioid receptors (MOR1), in two cancer patients whose clinical responses to morphine were very different [i.e., sensitive (patient 1) and low responder (patient 2)]. In addition, allelic variants in the UGT2B7 gene were analyzed in 46 Japanese individuals. Amplified DNA fragments for the two genes of interest were screened using single strand conformation polymorphism and then sequenced. In the UGT2B7 gene, 12 single nucleotide polymorphisms (SNPs) were newly identified with an allelic frequency ranging from 0.022 to 0.978. Six SNPs in the promoter region (A-1302G, T-1295C, T-1111C, G-899A, A-327G, and T-125C) and two coding SNPs (UGT2B7*2 in exon 2 and C1059G in exon 4) appeared to be consistently linked. Remarkable differences in the nucleotide sequence of UGT2B7 were observed between the two patients; in contrast to patient 1 who had "reference" alleles at almost SNP positions, but a rare ATTGAT*2(AT)C haplotype as homozygosity, patient 2 was a homozygous carrier for the predominant GCCAGC*1(TC)G sequence. Serum morphine and two glucuronide concentrations in patient 2 suggest that the predominant GCCAGC*1G sequence was not associated with a "poor metabolizer" phenotype. In the MOR1 gene, patient 1 had no SNPs, whereas patient 2 was a heterozygous carrier for both the G-1784A and A118G alleles. The present study describes substantial differences in genotype patterns of two genes of interest between the two patients. The results necessitate larger trials to confirm these observations in larger case control studies.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Pharmaceutical Sciences, Graduate School, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cha BH, Silveira DC, Liu X, Hu Y, Holmes GL. Effect of topiramate following recurrent and prolonged seizures during early development. Epilepsy Res 2002; 51:217-32. [PMID: 12399072 DOI: 10.1016/s0920-1211(02)00157-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Topiramate, an antiepileptic drug with a number of mechanisms of action including inhibition of glutamate activity at the AMPA and KA receptors, was assessed as a neuroprotective agent following seizures. We administered topiramate, 80 mg/kg, or saline for 4 weeks following a series of 25 neonatal seizures or status epilepticus (SE) induced by lithium-pilocarpine in postnatal day 20 rats. Age-matched control rats without a history of seizures were administered topiramate or saline. Following completion of the topiramate injections, animals were tested in the water maze for spatial learning and the brains examined for cell loss and sprouting of mossy fibers. While there was a trend for improved visual-spatial performance in the water maze following topiramate therapy in rats with neonatal seizures, no differences were found in the histological examination of the hippocampus. Neonatal rats exposed to 4 weeks of topiramate did not differ from non-treated controls in water maze performance or histological examination. In weanling rats subjected to SE, topiramate provided a moderate degree of neuroprotection, with topiramate-treated rats performing better in the water maze than rats receiving saline. However, no differences in cell loss or mossy fiber sprouting were found in the histological examination of the brains. These findings demonstrate that chronic treatment with topiramate following SE improves cognitive function. In addition, long-term administration of high-dose topiramate in the normal developing rat brain does not appear to impair cognitive performance.
Collapse
Affiliation(s)
- Byung Ho Cha
- Clinical Neurophysiology Laboratory, Department of Neurology, Center for Research in Pediatric Epilepsy, Harvard Medical School, Children's Hospital Boston, Hunnewell 2, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Holmes GL. The interface of preclinical evaluation with clinical testing of antiepileptic drugs: role of pharmacogenomics and pharmacogenetics. Epilepsy Res 2002; 50:41-54. [PMID: 12151116 DOI: 10.1016/s0920-1211(02)00067-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite the release of eight antiepileptic drugs (AEDs) during the last decade, the incidence of pharmacoresistant epilepsy has changed relatively little. Predicting efficacy and safety of AEDs in people with epilepsy from acute seizure models in rodents is difficult and risky. It is becoming increasingly clear that genetic polymorphisms play an integral role in variability in both antiepileptic drug pharmacokinetics and pharmacodynamics. The publication of the human genome and increasing sophisticated and powerful genetic tools offers new methods for screening drugs and predicting deadly idiosyncratic side effects. In this review the use of pharmacogenomic and pharmacokinetic techniques in the development and monitoring of antiepileptic drug therapy is reviewed. Genetic techniques have the potential of identifying novel drug targets, predicting drug response, and identifying individuals at risk for serious idosyncratic reactions.
Collapse
Affiliation(s)
- Gregory L Holmes
- Clinical Neurophysiology Laboratory, Department of Neurology, Harvard Medical School, Center for Research in Pediatric Epilepsy, Children's Hospital Boston, Hunnewell 2, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 2002; 3:371-82. [PMID: 11988776 DOI: 10.1038/nrn811] [Citation(s) in RCA: 439] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Childhood absence epilepsy is an idiopathic, generalized non-convulsive epilepsy with a multifactorial genetic aetiology. Molecular-genetic analyses of affected human families and experimental models, together with neurobiological investigations, have led to important breakthroughs in the identification of candidate genes and loci, and potential pathophysiological mechanisms for this type of epilepsy. Here, we review these results, and compare the human and experimental phenotypes that have been investigated. Continuing efforts and comparisons of this type will help us to elucidate the multigenetic traits and pathophysiology of this form of generalized epilepsy.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK.
| | | |
Collapse
|
26
|
Kananura C, Sander T, Rajan S, Preisig-Müller R, Grzeschik KH, Daut J, Derst C, Steinlein OK. Tandem pore domain K(+)-channel TASK-3 (KCNK9) and idiopathic absence epilepsies. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 114:227-9. [PMID: 11857586 DOI: 10.1002/ajmg.10201] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recently, the gene coding for the tandem pore domain K(+)-channel TASK-3 (KCNK9) has been localized to the chromosomal region 8q24. Because mutations in ion channel genes have been recognized as an important factor in the etiology of abnormal neuronal excitability, TASK-3 is an interesting candidate gene for epilepsies linked to 8q24. We therefore performed a mutation analysis of the TASK-3 gene in 65 patients with childhood and juvenile absence epilepsy. Only one silent nucleotide exchange (636C/T) was detected in exon 2 of the TASK-3 coding region. No evidence for an allelic association was found between the exon 2 polymorphism and absence epilepsy. Accordingly, genetic variation of the TASK-3 coding region does not play a major role in the etiology of idiopathic absence epilepsies.
Collapse
Affiliation(s)
- Colette Kananura
- Institute of Human Genetics, University Hospital, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Grösch S, Niederberger E, Lötsch J, Skarke C, Geisslinger G. A rapid screening method for a single nucleotide polymorphism (SNP) in the human MOR gene. Br J Clin Pharmacol 2001; 52:711-4. [PMID: 11736886 PMCID: PMC2014560 DOI: 10.1046/j.0306-5251.2001.01504.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS Genetic association studies have suggested that the single nucleotide polymorphism (SNP) at position 118 of the human mu-opioid receptor (MOR) gene could be a potential risk factor for drug treatment variability in patients. Therefore, we wanted to develop a fast and reliable detection method for this SNP which is applicable in a clinical setting. METHODS To detect the polymorphism at position A118-->G in the human MOR gene we used the fluorescence resonance energy transfer (FRET)-PCR technique with subsequent melting curve analysis. RESULTS The polymorphism at position A118-->G in the human MOR gene could be clearly discriminated with melting peak temperatures of 69.8 degrees C and 63.8 degrees C, corresponding to the wild type and mutated MOR allele, respectively. The results from FRET-PCR were validated by sequencing and restriction-fragment length polymorphism (RFLP). Screening of blood samples from 100 subjects showed an allelic distribution for the human MOR alleles of 79% (homozygous wild type), 20% (heterozygous) and 0.9% (homozygous mutated). CONCLUSIONS The FRET-PCR protocol for detection of the human MOR gene polymorphism at position 118 offers a rapid and reliable method which could be used for population screening of this and other genes.
Collapse
Affiliation(s)
- S Grösch
- pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor Stern Kai7, 60590 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
People with a genetic predisposition for substance abuse have defects in genes for the opioid peptides and receptors. A high number of polymorphisms have been detected in the mu-opioid receptor, some of which result in pharmacological alterations. The opioid peptide proopiomelanocortin proved extraordinarily rich in mutations that often lead to severe phenotypical consequences. Prodynorphin displays a polymorphic regulation of transcription. Variants of the mu- and the delta-opioid receptor showed positive associations with opiate and/or alcohol addiction in some studies. However, these associations were weak, indicating a small contribution of the opioid system to these disorders.
Collapse
MESH Headings
- Alleles
- Enkephalins/genetics
- Enkephalins/pharmacology
- Genetic Predisposition to Disease
- Humans
- Polymorphism, Genetic
- Protein Precursors/genetics
- Protein Precursors/pharmacology
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Substance-Related Disorders/genetics
- beta-Endorphin/genetics
- beta-Endorphin/pharmacology
Collapse
Affiliation(s)
- P Mayer
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | | |
Collapse
|
29
|
Sadee W, Hoeg E, Lucas J, Wang D. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS PHARMSCI 2001; 3:E22. [PMID: 11741273 PMCID: PMC2751017 DOI: 10.1208/ps030322] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.
Collapse
Affiliation(s)
- W Sadee
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco CA 94143-0446, USA.
| | | | | | | |
Collapse
|
30
|
Pavone P, Bianchini R, Trifiletti RR, Incorpora G, Pavone A, Parano E. Neuropsychological assessment in children with absence epilepsy. Neurology 2001; 56:1047-1051. [PMID: 11320177 DOI: 10.1212/wnl.56.8.1047] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To define cognitive deficits in children with absence epilepsy. BACKGROUND Cognitive deficits have often been reported in children with epilepsy, but have rarely been characterized in patients with a specific epileptic syndrome. METHODS Detailed neuropsychological testing was carried out on 16 right-handed children with absence epilepsy with similar clinical and EEG findings, and the findings were compared to 16 well-matched right-handed children without absence epilepsy. RESULTS The authors found lower scores of measures of general cognitive functioning and visuospatial skills in patients with absence epilepsy, as compared to controls. Memory disturbances were also detected in absence epilepsy patients, with selective involvement of nonverbal memory and delayed recall. In contrast, verbal memory and language skills were relatively preserved. Patients whose seizures began at an earlier age seemed to have more severe cognitive deficits. CONCLUSION Language skills tend to be relatively well preserved in children with generalized epilepsy, with more dysfunction seen in global terms rather than specific lateralizing deficits. Patients with absence epilepsy seem to show a similar neurocognitive profile that may be a reflection of the underlying epilepsy syndrome.
Collapse
Affiliation(s)
- P Pavone
- Division of Pediatric Neurology, University of Catania, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem 2001; 276:3130-7. [PMID: 11067846 DOI: 10.1074/jbc.m006352200] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large scale sequencing of the human mu-opioid receptor (hMOR) gene has revealed polymorphic mutations that occur within the coding region. We have investigated whether the mutations N40D in the extracellular N-terminal region, N152D in the third transmembrane domain, and R265H and S268P in the third intracellular loop alter functional properties of the receptor expressed in mammalian cells. The N152D receptor was produced at low densities. Binding affinities of structurally diverse opioids (morphine, diprenorphine, DAMGO and CTOP) and the main endogenous opioid peptides (beta-endorphin, [Met]enkephalin, and dynorphin A) were not markedly changed in mutant receptors (<3-fold). Receptor signaling was strongly impaired in the S268P mutant, with a reduction of efficacy and potency of several agonists (DAMGO, beta-endorphin, and morphine) in two distinct functional assays. Signaling at N40D and R265H mutants was highly similar to wild type, and none of the mutations induced detectable constitutive activity. DAMGO-induced down-regulation of receptor-binding sites, following 20 h of treatment, was identical in wild-type and mutant receptors. Our data show that natural sequence variations in hMOR gene have little influence on ligand binding or receptor down-regulation but could otherwise modify receptor density and signaling. Importantly, the S268P mutation represents a loss-of-function mutation for the human mu-opioid receptor, which may have an incidence on opioid-regulated behaviors or drug addiction in vivo.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Asparagine/genetics
- Aspartic Acid/genetics
- COS Cells
- Cells, Cultured
- Cyclic AMP/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Mutagenesis, Site-Directed
- Narcotics/pharmacology
- Polymorphism, Single Nucleotide
- Proline/genetics
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Serine/genetics
- Signal Transduction/physiology
- Sulfur Radioisotopes
Collapse
Affiliation(s)
- K Befort
- Laboratoire des Récepteurs et Protéines Membranaires, UPR CNRS 9050, ESBS, Parc d'Innovation, 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
32
|
LaForge KS, Yuferov V, Kreek MJ. Opioid receptor and peptide gene polymorphisms: potential implications for addictions. Eur J Pharmacol 2000; 410:249-268. [PMID: 11134674 DOI: 10.1016/s0014-2999(00)00819-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Addictions to drugs of abuse and alcohol have been shown by studies of genetic epidemiology to have both a heritable and an environmental basis, with these factors influencing addiction to different substances to a different extent. In the search for specific alleles of specific genes that may contribute to the development of the addictions, many researchers have focused on the endogenous opioid system, which mediates a diverse array of neurological, physiological, and behavioral functions. The endogenous opioid system is also centrally important in mediating the effects of drugs of abuse and alcohol. Polymorphisms, including single nucleotide polymorphisms, have been identified in genes of the endogenous opioid receptors and peptides. A number of recent genetic association studies and a few studies of potential function provide clues as to which genes and which alleles may have implications for human physiology and pathophysiology, including the addictions.
Collapse
Affiliation(s)
- K S LaForge
- Laboratory Biology of Addictive Diseases, The Rockefeller University, Box 171, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|