1
|
Xiong J, Ding Y, Wu X, Zhan J, Wan Q, Wan H, Wei B, Chen H, Yang Y. Association between serum insulin-like growth factor 1 levels and the improvements of cognitive impairments in a subgroup of schizophrenia: Preliminary findings. Schizophr Res 2024; 264:282-289. [PMID: 38198881 DOI: 10.1016/j.schres.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Numerous studies have implicated abnormal insulin-like growth factor 1 (IGF-1) in the pathophysiology of schizophrenia, but findings have been inconsistent. METHODS We conducted a meta-analysis to compare IGF-1 levels in schizophrenia patients with healthy controls and explored factors contributing to variability between estimates. In an independent sample (58 chronic schizophrenia patients and 30 healthy controls), we investigated differences in IGF-1 levels among schizophrenia subgroups with distinct cognitive profiles, identified using k-means clustering based on five cognitive domains from The Repeatable Battery for the Assessment of Neuropsychological Status. Associations between serum IGF-1 levels and clinical and neurocognitive improvements were also examined. RESULTS The meta-analysis revealed significantly lower serum IGF-1 levels in schizophrenia patients compared to healthy controls, albeit with high heterogeneity. Medication status, BMI, and severity of negative symptoms were identified as potential contributors to this heterogeneity. In our independent study, antipsychotic treatment led to a significant increase in IGF-1 levels, and lower pre-treatment serum IGF-1 levels correlated with greater improvement in cognitive deficits, particularly in a subgroup with more severe cognitive symptoms. CONCLUSIONS Our findings support the "IGF-1 deficiency hypothesis" in the pathogenesis of schizophrenia. Further research is crucial to elucidate the role of IGF-1 in the cognitive impairments associated with schizophrenia.
Collapse
Affiliation(s)
- Jianwen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China; Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Mental Hospital, Nanchang 330029, Jiangxi, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaopeng Wu
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China
| | - Jinqiong Zhan
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China; Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Mental Hospital, Nanchang 330029, Jiangxi, China
| | - Qigen Wan
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China
| | - Hongying Wan
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China; Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Mental Hospital, Nanchang 330029, Jiangxi, China.
| | - Haibo Chen
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China.
| | - Yuanjian Yang
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang 330029, Jiangxi, China; Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Mental Hospital, Nanchang 330029, Jiangxi, China.
| |
Collapse
|
2
|
Evaluation of IGF-1 as a novel theranostic biomarker for schizophrenia. J Psychiatr Res 2021; 140:172-179. [PMID: 34116443 DOI: 10.1016/j.jpsychires.2021.05.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In the current study, we aimed to investigate fasting plasma levels of glucose, insulin, growth hormone, IGF-1, and lipid profile in remission schizophrenia patients, treatment resistant schizophrenia patients and healthy controls and to determine whether IGF-1 levels can be used as a theranostic biomarker in schizophrenia. METHODS Sixty-two patients under remission from schizophrenia, sixty-five treatment-resistant patients with schizophrenia and sixty-two healthy controls were included in the study. All patients were recruited and evaluated over 11 months. Symptoms at the time of evaluation were assessed twice using BPRS, PANSS, CGI, and GAF scales by an experienced psychiatrist in accordance with Andreaseen's remission criteria and TRIPS group resistance criteria. Blood samples were collected from all participants to determine fasting glucose, LDL, HDL, Triglyceride, Total Cholesterol, fasting, insulin, GH and IGF-1 levels. RESULTS Fasting blood glucose levels were found to be higher in patients with schizophrenia than in healthy controls. Moreover, LDL levels of the treatment sensitive group were higher than that of the treatment resistant group while they were not significantly different from the healthy controls. IGF-1 levels were lower in the treatment sensitive group than in both treatment resistant and healthy control groups. IGF-1, LDL and age of disease onset were found to be significantly associated with treatment resistance in a regression model. DISCUSSION In the present study, remitted patients with schizophrenia could be distinguished from treatment-resistant patients and healthy controls with serum IGF-1, fasting glucose and LDL levels. In addition, we found that smoking and age of disease onset together with IGF-1 levels could significantly predict resistance to treatment.
Collapse
|
3
|
Effect of risperidone treatment on insulin-like growth factor-1 and interleukin-17 in drug naïve first-episode schizophrenia. Psychiatry Res 2021; 297:113717. [PMID: 33503523 DOI: 10.1016/j.psychres.2021.113717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/09/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence suggests that the inflammatory system is activated in schizophrenia and antipsychotics may affect cytokines levels. we conducted a cross-sectional and prospective study.One hundred and thirteen patients and 58 normal subjects matched by gender, age were enrolled in the study. All the patients had risperidonemonotherapy and undertook a 10-week follow-up. Serum levels of IL-17 and IGF-1 were examined using the enzyme-linked immunosorbent assay and the Positive and Negative Symptoms Scale (PANSS) was applied to estimate the clinical symptoms in patients with schizophrenia. All procedures were repeated at the 10 weeks for patients group.The serum levels of IL-17 and IGF-1 in patients were significantly higher than in normal people. After treatment, IGF-1 levels in patients decreased significantly, whereas the IL-17 serum levels had no significant change compared to their baseline concentration. IGF-1 levels at the baseline were negatively associated with the reduction in negative symptoms score after controlling for age, gender distribution, education, smoking status, and WHR. Additionally, the magnitude of IGF-1 change was negatively correlated with negative symptoms score change after controlling for potential confounding variables. Results suggested that the inflammatory system is activated and serum IGF-1 may contribute to the pathophysiology of the negative symptoms of schizophrenia.
Collapse
|
4
|
Abstract
Schizophrenia is a devastating illness that affects up to 1% of the population; it is characterized by a combination of positive symptoms, negative symptoms, and cognitive impairment. Currently, treatment consists of one class of medications known as antipsychotics, which include typical (first-generation) and atypical (second-generation) agents. Unfortunately, antipsychotic medications have limited efficacy, with up to a third of patients lacking a full response. Clozapine, the first atypical antipsychotic developed, is the only medication shown to be superior to all other antipsychotics. However, owing to several life-threatening side effects and required enrollment in a registry with routine blood monitoring, clozapine is greatly underutilized in the US. Developing a medication as efficacious as clozapine with limited side effects would likely become the first-line therapy for schizophrenia and related disorders. In this review, we discuss the history of clozapine, landmark studies, and its clinical advantages and disadvantages. We further discuss the hypotheses for clozapine's superior efficacy based on neuroreceptor binding, and the limitations of a receptor-based approach to antipsychotic development. We highlight some of the advances from pharmacogenetic studies on clozapine and then focus on studies of clozapine using unbiased approaches such as pharmacogenomics and gene expression profiling. Finally, we examine how these approaches could provide insights into clozapine's mechanism of action and side-effect profile, and lead to novel and improved therapeutics.
Collapse
Affiliation(s)
- Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Brian J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Li YK, Hui CLM, Lee EHM, Chang WC, Chan SKW, Leung CM, Chen EYH. Coupling physical exercise with dietary glucose supplement for treating cognitive impairment in schizophrenia: a theoretical model and future directions. Early Interv Psychiatry 2014; 8:209-20. [PMID: 24224943 DOI: 10.1111/eip.12109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/10/2013] [Indexed: 01/09/2023]
Abstract
AIMS Metabolic dysregulation may disrupt the complex neuroprotective mechanisms essential for brain health. Recent studies have pointed out the possible aetiological role of metabolic dysregulation in the onset of schizophrenia and the associated cognitive impairment. In this paper, we aimed to generate a theoretical model of how a combination of physical exercise and dietary glucose supplement may help to alleviate cognitive impairment in schizophrenia. METHODS Literature on metabolic dysregulation, especially insulin resistance, in relation to the onset of schizophrenia and the associated cognitive impairment is reviewed. The cognitive enhancement effects of physical exercise and dietary glucose supplement are then summarised. Finally, we propose a theoretical model based on the concerted effects of physical exercise and glucose supplement. RESULTS In general, the joint action of physical exercise and dietary glucose supplement could up-regulate glucose and insulin transport into the brain, as well as augmenting the release of insulin growth factor-1 and brain-derived neurotrophic factor. Physical exercise and glucose supplement could enhance energy supply and neuroplasticity in brain, subsequently leading to potential cognitive enhancement in schizophrenia. However, glucose supplement is not suitable for patients with abnormal metabolic profile. CONCLUSIONS The combination of physical exercise and glucose supplement has potential therapeutic values in treating cognitive impairment in schizophrenia. Further research is necessary to investigate the optimal patterns of exercise and doses of glucose for treating cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Yuet-Keung Li
- Department of Psychiatry, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
6
|
Demirel A, Demirel OF, Emül M, Duran A, Uğur M. Relationships between IGF-1, schizophrenia, and treatment of metabolic syndrome. Compr Psychiatry 2014; 55:1391-7. [PMID: 24850069 DOI: 10.1016/j.comppsych.2014.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The use of atypical antipsychotic drugs in patients with psychiatric illness may result in dyslipidemia, hypertension, glucose intolerance, and abdominal obesity, which are together referred to as metabolic syndrome (MS). To investigate any correlations among insulin-like growth factor-1 (IGF-1), schizophrenia, and MS, we examined the metabolic profiles of patients with schizophrenia taking atypical antipsychotics. DESIGN Patients with schizophrenia, their siblings, and controls participated in this study (N=50 in each group). The Structured Clinical Interview for DSM-IV Axis 1 Disorders (SCID I) and the Brief Psychiatric Rating Scale (BPRS) were administered to patients, and SCID I was administered to patients' siblings. We drew blood to measure IGF-1 levels and to determine the metabolic profiles of all participants; we also conducted anthropometric measurements. RESULTS There were no significant differences in IGF-1 levels between groups. By comparing IGF-1 levels with MS-related parameters, we found that IGF-1 levels were negatively correlated with triglyceride levels in the control group, and positively correlated with HDL levels in the patient group (Pearson's correlation: r=-0.291, P=0.04, and r=0.328, P=0.02, respectively). Compared to their siblings, patients with schizophrenia had a significantly different body mass index, waist circumference, and insulin resistance, and showed a trend toward a difference in glucose levels (ANOVA: P=0.004, P<0.0001, P=0.004, P=0.072, respectively). CONCLUSION A correlation between IGF-1 and MS may significantly influence future therapeutic strategies for MS. In order to determine the role of IGF-1 in schizophrenia, comprehensive longitudinal studies with first-episode drug-naive patients are needed.
Collapse
Affiliation(s)
- Aysegul Demirel
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey.
| | - Omer Faruk Demirel
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Murat Emül
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Alaattin Duran
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Mufit Uğur
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| |
Collapse
|
7
|
Chadda RK, Ramshankar P, Deb KS, Sood M. Metabolic syndrome in schizophrenia: Differences between antipsychotic-naïve and treated patients. J Pharmacol Pharmacother 2013; 4:176-86. [PMID: 23960422 PMCID: PMC3746300 DOI: 10.4103/0976-500x.114596] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Metabolic syndrome (MetS) has been recognized as a risk factor for cardiovascular morbidity and mortality in general population and in patients with severe mental illnesses like schizophrenia. This paper reviews studies on MetS in schizophrenia and related psychotic disorders, and assesses the contribution of antipsychotics toward the development of MetS. Databases of Medline (PubMed), PsycINFO, and Scopus were searched for MetS, psychotic disorders, and antipsychotic drugs from inception till present. Prevalence of MetS in patients with schizophrenia was found to be ranging from 3.3% to 68.0%. Prevalence in antipsychotic-naïve and antipsychotic-treated patients ranged between 3.3-26.0% and 32.0-68.0% respectively, and was higher in younger patients, female gender and Hispanics, and lower in African-Americans and Orientals. Prevalence of metabolic abnormalities was higher in patients receiving second generation antipsychotics (SGAs), especially with clozapine, olanzapine, and risperidone, as compared to first generation antipsychotics (FGAs). Antipsychotic-induced changes on metabolic indices became evident after 2 weeks and reached maximum at 3 months of treatment. There is a need to sensitize the mental health professionals at all levels about the need of screening and monitoring for MetS in patients receiving antipsychotics.
Collapse
Affiliation(s)
- Rakesh K Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
8
|
Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H, Bahn S. Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 2013; 38:752-66. [PMID: 23084727 DOI: 10.1016/j.psyneuen.2012.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Despite decades of research, the pathophysiology and aetiology of schizophrenia remains incompletely understood. The disorder is frequently accompanied by metabolic symptoms including dyslipidaemia, hyperinsulinaemia, type 2 diabetes and obesity. These symptoms are a common side effect of currently available antipsychotic medications. However, reports of metabolic dysfunction in schizophrenia predate the antipsychotic era and have also been observed in first onset patients prior to antipsychotic treatment. Here, we review the evidence for abnormalities in metabolism in schizophrenia patients, both in the central nervous system and periphery. Molecular analysis of post mortem brain tissue has pointed towards alterations in glucose metabolism and insulin signalling pathways, and blood-based molecular profiling analyses have demonstrated hyperinsulinaemia and abnormalities in secretion of insulin and co-released factors at first presentation of symptoms. Nonetheless, such features are not observed for all subjects with the disorder and not all individuals with such abnormalities suffer the symptoms of schizophrenia. One interpretation of these data is the presence of an underlying metabolic vulnerability in a subset of individuals which interacts with environmental or genetic factors to produce the overt symptoms of the disorder. Further investigation of metabolic aspects of schizophrenia may prove critical for diagnosis, improvement of existing treatment based on patient stratification/personalised medicine strategies and development of novel antipsychotic agents.
Collapse
Affiliation(s)
- Laura W Harris
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
9
|
Moilanen K, Jokelainen J, Jones PB, Hartikainen AL, Järvelin MR, Isohanni M. Deviant intrauterine growth and risk of schizophrenia: a 34-year follow-up of the Northern Finland 1966 Birth Cohort. Schizophr Res 2010; 124:223-30. [PMID: 20933367 DOI: 10.1016/j.schres.2010.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Low birth weight conveys a modest risk for schizophrenia. The effects of high birth weight and deviant birth length are less clear. METHODS We linked perinatal data from 10,934 subjects from the Northern Finland 1966 Birth Cohort (n = 12 058) to the Finnish Hospital Discharge Register where we identified 111 cases of DSM-III-R schizophrenia up to age 35 years. Adjusted odds ratios between the risk of schizophrenia and birth weight, birth length and ponderal index and the risk of schizophrenia were analyzed. RESULTS Both low (OR 2.5; 95% CI 1.2-5.1) and high birth weight (OR 2.4; 95% CI 1.1-4.9) increased the risk of later schizophrenia. In addition, short (OR 2.6; 95% CI 1.1-5.9) and long babies had an elevated risk of schizophrenia as adults (OR 1.8; 95% CI 1.0-3.5). A reverse J-shape curve described the associations between birth weight, length and schizophrenia. CONCLUSIONS Deviant intrauterine growth of the fetus in either direction was associated with increased risk of schizophrenia.
Collapse
Affiliation(s)
- Kristiina Moilanen
- Department of Psychiatry, Institute of Clinical Medicine, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
10
|
Reduced neuronal expression of insulin-degrading enzyme in the dorsolateral prefrontal cortex of patients with haloperidol-treated, chronic schizophrenia. J Psychiatr Res 2009; 43:1095-105. [PMID: 19394958 DOI: 10.1016/j.jpsychires.2009.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/20/2009] [Accepted: 03/16/2009] [Indexed: 12/21/2022]
Abstract
Insulin-degrading enzyme (IDE) is a neutral thiol metalloprotease, which cleaves insulin with high specificity. Additionally, IDE hydrolyzes Abeta, glucagon, IGF I and II, and beta-endorphin. We studied the expression of IDE protein in postmortem brains of patients with schizophrenia and controls because: (1) the gene encoding IDE is located on chromosome 10q23-q25, a gene locus linked to schizophrenia; (2) insulin resistance with brain insulin receptor deficits/receptor dysfunction was reported in schizophrenia; (3) the enzyme cleaves IGF-I and IGF-II which are implicated in the pathophysiology of the disease; and (4) brain gamma-endorphin levels, liberated from beta-endorphin exclusively by IDE, have been reported to be altered in schizophrenia. We counted the number of IDE immunoreactive neurons in the dorsolateral prefrontal cortex, the hypothalamic paraventricular and supraoptic nuclei, and the basal nucleus of Meynert of 14 patients with schizophrenia and 14 matched control cases. Patients had long-term haloperidol treatment. In addition, relative concentrations of IDE protein in the dorsolateral prefrontal cortex were estimated by Western blot analysis. There was a significantly reduced number of IDE expressing neurons and IDE protein content in the left and right dorsolateral prefrontal cortex in schizophrenia compared with controls, but not in other brain areas investigated. Results of our studies on the influence of haloperidol on IDE mRNA expression in SHSY5Y neuroblastoma cells, as well as the effect of long-term treatment with haloperidol on the number of IDE immunoreactive neurons in rat brain, indicate that haloperidol per se, is not responsible for the decreased neuronal expression of the enzyme in schizophrenics. Haloperidol however, might exert some effect on IDE, through changes of the expression levels of its substrates IGF-I and II, insulin and beta-endorphin. Reduced cortical IDE expression might be part of the disturbed insulin signaling cascades found in schizophrenia. Furthermore, it might contribute to the altered metabolism of certain neuropeptides (IGF-I and IGF-II, beta-endorphin), in schizophrenia.
Collapse
|
11
|
Girgis RR, Javitch JA, Lieberman JA. Antipsychotic drug mechanisms: links between therapeutic effects, metabolic side effects and the insulin signaling pathway. Mol Psychiatry 2008; 13:918-29. [PMID: 18414407 PMCID: PMC3618283 DOI: 10.1038/mp.2008.40] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The exact therapeutic mechanism of action of antipsychotic drugs remains unclear. Recent evidence has shown that second-generation antipsychotic drugs (SGAs) are differentially associated with metabolic side effects compared to first-generation antipsychotic drugs (FGAs). Their proclivity to cause metabolic disturbances correlates, to some degree, with their comparative efficacy. This is particularly the case for clozapine and olanzapine. In addition, the insulin signaling pathway is vital for normal brain development and function. Abnormalities of this pathway have been found in persons with schizophrenia and antipsychotic drugs may ameliorate some of these alterations. This prompted us to hypothesize that the therapeutic antipsychotic and adverse metabolic effects of antipsychotic drugs might be related to a common pharmacologic mechanism. This article reviews insulin metabolism in the brain and related abnormalities associated with schizophrenia with the goals of gaining insight into antipsychotic drug effects and possibly also into the pathophysiology of schizophrenia. Finally, we speculate about one potential mechanism of action (that is, functional selectivity) that would be consistent with the data reviewed herein and make suggestions for the future investigation that is required before a therapeutic agent based on these data can be realized.
Collapse
Affiliation(s)
- RR Girgis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - JA Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - JA Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
12
|
Akanji AO, Ohaeri JU, Al-Shammri SA, Fatania HR. Associations of blood levels of insulin-like growth factor (IGF)-I, IGF-II and IGF binding protein (IGFBP)-3 in schizophrenic Arab subjects. Clin Chem Lab Med 2008; 45:1229-31. [PMID: 17635080 DOI: 10.1515/cclm.2007.265] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Insulin-like growth factors (IGFs) are believed to be important in brain development and repair following neuronal damage. It is also speculated that IGFs are involved in the association of foetal and pre-adult growth with schizophrenia (SZ). METHODS The aim of this study was to assess levels of IGF-I, IGF-II and IGF binding protein (IGFBP)-3 and their associations in male Arab patients with SZ (n=53) and healthy control subjects (HC; n=52). Anthropometric and demographic data were collected for each subject for whom blood specimens were analysed for serum lipoproteins, apolipoprotein B (apoB), IGF-I, IGF-II and IGFBP-3. RESULTS The SZ group had lower serum total cholesterol, apoB and uric acid levels than the HC group (p<0.05). IGF-II levels were significantly higher in the SZ group (p=0.02) and correlated positively with levels of atherogenic lipoproteins--total cholesterol, low-density lipoprotein, apoB--and IGFBP-3. The pattern of correlations between the IGFs and the various parameters differed somewhat between the HC and SZ groups. CONCLUSIONS These results demonstrate that IGF-II levels are increased in patients with SZ and show significant associations with atherogenic lipoproteins. We suggest a possible link between IGF-II metabolism and atherogenesis in SZ.
Collapse
Affiliation(s)
- Abayomi O Akanji
- Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND Growth abnormalities have been suggested as a precursor to schizophrenia, but previous studies have not assessed growth patterns using repeated measures. AIMS To assess the association between early life/later childhood growth patterns and risk of schizophrenia. METHODS Using prospectively collected data from a birth cohort (born 1959-1967), measurements of height, weight and body mass index (BMI) were analysed to compare growth patterns during early life and later childhood between 70 individuals with schizophrenia-spectrum disorder (SSD) and 7710 without. RESULTS For women, growth in the SSD group was approximately 1 cm/year slower during early life (P < 0.01); no association was observed for men. Later childhood growth was not associated with SSD. Weight patterns were not associated with SSD, whereas slower change in BMI was observed among the SSD group during later childhood. CONCLUSIONS The association between slower growth in early life and schizophrenia in women suggests that factors responsible for regulating growth might be important in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Megan A Perrin
- The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, New York 10962, USA.
| | | | | | | | | |
Collapse
|
14
|
Gunnell D, Lewis S, Wilkinson J, Georgieva L, Davey GS, Day INM, Holly JMP, O'Donovan MC, Owen MJ, Kirov G, Zammit S. IGF1, growth pathway polymorphisms and schizophrenia: a pooling study. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:117-20. [PMID: 17044098 DOI: 10.1002/ajmg.b.30396] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It has been hypothesized that insulin-like growth factors (IGFs) and components of the growth-hormone (GH)-IGF axis may underlie reported associations of poor fetal and childhood growth with schizophrenia. We have investigated the association of schizophrenia with 16 SNPs spanning the IGF1 gene with an inter-marker distance of approximately 2-3 kb. We also examined associations with four common functional polymorphisms of genes involved in aspects of the GH-IGF system--the IGF1 receptor (IGF1R), insulin receptor substrate (IRS1), growth hormone (GH1), and IGF binding protein-3 (IGFBP3). The study was based on an analysis of pooled DNA samples from 648 UK and Irish cases of schizophrenia and 712 blood donor controls and of 297 Bulgarian parent offspring trios. In replicated pool analyses, none of the 16 SNPs in IGF1 nor the 4 key SNPs in the other growth pathway genes were associated with schizophrenia. SNP coverage of IGF1 was extensive, so our findings do not support a major role for IGF-I in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- D Gunnell
- Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gunnell D, Miller LL, Rogers I, Holly JMP. Association of insulin-like growth factor I and insulin-like growth factor-binding protein-3 with intelligence quotient among 8- to 9-year-old children in the Avon Longitudinal Study of Parents and Children. Pediatrics 2005; 116:e681-6. [PMID: 16263982 DOI: 10.1542/peds.2004-2390] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Insulin-like growth factor I (IGF-I) is a hormone that mediates the effects of growth hormone and plays a critical role in somatic growth regulation and organ development. It is hypothesized that it also plays a key role in human brain development. Previous studies have investigated the association of low IGF-I levels attributable to growth hormone receptor deficiency with intelligence but produced mixed results. We are aware of no studies that investigated the association of IGF-I levels with IQ in population samples of normal children. OBJECTIVES To investigate the association of circulating levels of IGF-I and its principle binding protein, IGF-binding protein-3 (IGFBP-3), in childhood with subsequent measures of IQ. METHODS The cohort study was based on data for 547 white singleton boys and girls, members of the Avon Longitudinal Study of Parents and Children, with IGF-I and IGFBP-3 measurements (obtained at a mean age of 8.0 years) and IQ measured with the Wechsler Intelligence Scale for Children (at a mean age of 8.7 years). We also investigated associations with measures of speech and language based on the Wechsler Objective Reading Dimensions test (measured at an age of 7.5 years) and the Wechsler Objective Language Dimensions test (listening comprehension subtest only, measured at an age of 8.7 years). For some children (n = 407), IGF-I (but not IGFBP-3) levels had been measured at approximately 5 years of age in a previous study. Linear regression models were used to investigate associations of the IGF-I system with the measures of cognitive function. RESULTS Three hundred one boys and 246 girls were included in the sample. IGF-I levels (mean +/- SD) were 142.6 +/- 53.9 ng/mL for boys and 154.4 +/- 51.6 ng/mL for girls. IQ scores (mean +/- SD) were 106.05 +/- 16.6 and 105.27 +/- 15.6 for boys and girls, respectively. IGF-I levels were associated positively with intelligence. For every 100 ng/mL increase in IGF-I, IQ increased by 3.18 points (95% confidence interval [CI]: 0.52 to 5.84 points). These positive associations were seen in relation to the verbal component (coefficient: 4.27; 95% CI: 1.62 to 6.92), rather than the performance component (coefficient: 1.06; 95% CI: -1.67 to 3.78), of IQ. There was no evidence that associations with overall IQ differed between boys and girls. In a data set with complete information on confounders (n = 484), controlling for birth weight (adjusted for gestation), breastfeeding, and BMI slightly strengthened the associations of IGF-I levels with IQ. Additionally controlling for maternal education and IGFBP-3 levels attenuated the associations (change in IQ for every 100 ng/mL increase in IGF-I levels: 2.51 points; 95% CI: -0.42 to 5.44 points). The weakening of associations in models controlling for markers of parental socioeconomic position and education could reflect shared influences of parental IGF levels on parents' own educational attainment and their offspring's IGF-I levels. In unadjusted models examining associations of Wechsler Objective Reading Dimensions and Wechsler Objective Language Dimensions test scores with IGF-I levels, there was no strong evidence that performance on either of these tests was associated with circulating IGF-I levels, although positive associations were seen with both measures. Associations between IGF-I levels measured at age 5 and Wechsler Intelligence Scale for Children scores (n = 407) were similar to those for IGF-I levels measured at age 7 to 8. For every 100 ng/mL increase in IGF-I levels at 5 years of age, IQ increased by 2.3 points (95% CI: -0.21 to 4.89 points). CONCLUSIONS This study provides some preliminary evidence that IGF-I is associated with brain development in childhood. Additional longitudinal research is required to clarify the role of IGF-I in neurodevelopment. Because IGF-I levels are modifiable through diet and other environmental exposures, this may be one pathway through which the childhood environment may influence neurodevelopment.
Collapse
Affiliation(s)
- David Gunnell
- Department of Social Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Wiles NJ, Peters TJ, Leon DA, Lewis G. Birth weight and psychological distress at age 45-51 years: results from the Aberdeen Children of the 1950s cohort study. Br J Psychiatry 2005; 187:21-8. [PMID: 15994567 DOI: 10.1192/bjp.187.1.21] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND It is unclear whether the effect of low birth weight on common affective disorders in later life is direct or mediated through childhood factors. AIMS To determine whether birth weight has a direct effect on psychological distress in adulthood not mediated by childhood IQ or behavioural problems. METHOD Participants (n=5572) of the Aberdeen Children of the 1950s study had data on birth weight for gestational age and adult psychological distress. Logistic regression was used to examine the association between these factors, with adjustment for confounders and potential childhood mediators. RESULTS Children born full term but weighing less than 5.5 lb had increased odds of psychological distress in later life after adjustment for potential confounders (OR=1.49, 95% CI 1.01-2.20). Further adjustment for childhood IQ and behaviour did not attenuate the association. A 1 s.d. decrease in birth weight for gestational age was associated with a 4% increased odds of psychological distress in adulthood (OR=1.04, 95% CI 0.97-1.12). CONCLUSIONS Low birth weight for gestational age, particularly at term, was associated with adult psychological distress. This was not mediated by childhood factors, suggesting a direct effect of early life factors on adult mental health. A neurodevelopmental pathway may therefore be implicated.
Collapse
Affiliation(s)
- Nicola J Wiles
- Academic Unit of Psychiatry, Department of Community Based Medicine, University of Bristol, The Grange, 1 Woodland Road, Bristol BS8 1AU, UK.
| | | | | | | |
Collapse
|
17
|
|