1
|
Mutte SK, Barendse P, Ugarte PB, Swarts DC. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems. Cell Rep 2025; 44:115110. [PMID: 39752253 DOI: 10.1016/j.celrep.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination. Our results reveal the widespread presence of RecA, SSB, and RecOR proteins and phyla-specific distribution for the DNA repair complexes RecBCD, AddAB, and AdnAB. Furthermore, we report co-occurrences of DNA repair proteins with immune systems, including specific CRISPR-Cas subtypes, prokaryotic Argonautes (pAgos), dGTPases, GAPS2, and Wadjet. Our results imply that while certain DNA repair proteins and immune systems might function in conjunction, no immune system strictly relies on a specific DNA repair protein. As such, these findings offer an updated perspective on the distribution of DNA repair systems and their connection to immune systems in bacteria.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands; MyGen Informatics, 6706 JE Wageningen, the Netherlands
| | - Patrick Barendse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | | | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
2
|
Li Y, Wu M, Zhang H, Jiang B, Bao Y, Li J, Li J, Li P, Yan X, Qin T. Underground Reservoirs Regulate the Composition and Metabolism of Microbial Community in Coal Mine Water. ACS OMEGA 2024; 9:50786-50795. [PMID: 39741818 PMCID: PMC11683604 DOI: 10.1021/acsomega.4c09348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025]
Abstract
Underground reservoirs were used to purify water through filtration, adsorption, and biodegradation methods in coal mines. However, their effects on the composition and metabolism of microbial communities in mine water remain unknown. In this study, influent and effluent samples from underground reservoirs in seven coal mining areas were analyzed to compare their microbial community compositions and metabolites. The results indicate that the underground reservoirs can significantly reduce the chemical oxygen demand (COD) levels of mine water (values range from 7.79 to 8.50 for influent and 7.40 to 8.50 for effluent) and regulate water chemistry characteristics such as pH (values range from 7-1980 for influent and 5-20 for effluent). Since COD reflects the quantity of reducing substances in water, while total dissolved solids (TDS) indicates the total amount of dissolved solids, both parameters directly influence the physicochemical properties of water. This, in turn, affects microbial growth and metabolic pathways. Consequently, changes in these factors can lead to variations in microbial community composition as well as decreases in the Chao1 and Shannon indices. Underground reservoirs decreased the relative abundance of phyla Actinomycetota and Spirochaetota, and the decreased microbial groups were mainly belonging to phylum Bacillota. In addition, higher concentrations of metabolites, including lipids and lipid-like molecules, mixed metal/nonmetal compounds, hydrocarbon derivatives, nucleosides, nucleotides, and analogues were detected in the effluent samples, and most of them were related to taurine and hypotaurine metabolism, selenocompound metabolism, glyoxylate and dicarboxylate metabolism, riboflavin metabolism, and the citrate cycle. In summary, this study provided theoretical and experimental support for the evolution mechanism of mine water quality in coal mine underground reservoirs.
Collapse
Affiliation(s)
- Yang Li
- State
Key Laboratory of Water Resource Protection and Utilization in Coal
Mining, National Institute of Low Carbon and Clean Energy, CHN Energy, Beijing 102211, China
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science and Technology, Huainan 232001, China
| | - Min Wu
- State
Key Laboratory of Water Resource Protection and Utilization in Coal
Mining, National Institute of Low Carbon and Clean Energy, CHN Energy, Beijing 102211, China
| | - Haiqin Zhang
- State
Key Laboratory of Water Resource Protection and Utilization in Coal
Mining, National Institute of Low Carbon and Clean Energy, CHN Energy, Beijing 102211, China
| | - Binbin Jiang
- State
Key Laboratory of Water Resource Protection and Utilization in Coal
Mining, National Institute of Low Carbon and Clean Energy, CHN Energy, Beijing 102211, China
| | - Yixiang Bao
- State
Key Laboratory of Water Resource Protection and Utilization in Coal
Mining, National Institute of Low Carbon and Clean Energy, CHN Energy, Beijing 102211, China
| | - Jie Li
- State
Key Laboratory of Water Resource Protection and Utilization in Coal
Mining, National Institute of Low Carbon and Clean Energy, CHN Energy, Beijing 102211, China
- Technology
Research Institute, Shendong Coal Group
Co., Ltd., CHN Energy, Yulin 719315, China
| | - Jingfeng Li
- State
Key Laboratory of Water Resource Protection and Utilization in Coal
Mining, National Institute of Low Carbon and Clean Energy, CHN Energy, Beijing 102211, China
| | - Peng Li
- Technology
Research Institute, Shendong Coal Group
Co., Ltd., CHN Energy, Yulin 719315, China
| | - Xinyue Yan
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science and Technology, Huainan 232001, China
| | - Tianqi Qin
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science and Technology, Huainan 232001, China
| |
Collapse
|
3
|
Ling X, Guo H, Di J, Xie L, Zhu-Salzman K, Ge F, Zhao Z, Sun Y. A complete DNA repair system assembled by two endosymbionts restores heat tolerance of the insect host. Proc Natl Acad Sci U S A 2024; 121:e2415651121. [PMID: 39656210 PMCID: PMC11665910 DOI: 10.1073/pnas.2415651121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/06/2024] [Indexed: 01/15/2025] Open
Abstract
DNA repair systems are essential to maintain genome integrity and stability. Some obligate endosymbionts that experience long-term symbiosis with the insect hosts, however, have lost their key components for DNA repair. It is largely unexplored how the bacterial endosymbionts cope with the increased demand for mismatch repairs under heat stresses. Here, we showed that ibpA, a small heat shock protein encoded by Buchnera aphidicola, directly interacted with the cytoskeletal actin to prevent its aggregation in bacteriocytes, thus reinforcing the stability of bacteriocytes. However, the succession of 11 adenines in the promoter of ibpA is extremely prone to mismatching error, e.g., a single adenine deletion, which impairs the induction of ibpA under heat stress. Coinfection with a facultative endosymbiont Serratia symbiotica remarkably reduced the mutagenesis rate in the Buchnera genome and potentially prevented a single adenine deletion in ibpA promoter, thereby alleviating the heat vulnerability of aphid bacteriocytes. Furthermore, Serratia encoded mutH, a conserved core protein of prokaryotic DNA mismatch repair (MMR), accessed to Buchnera cells, which complemented Buchnera mutL and mutS in constituting an active MMR. Our findings imply that a full complement of a prokaryotic MMR system assembled by two bacterial endosymbionts contributes significantly to the thermostability of aphid bacteriocytes in an ibpA-dependent manner, furnishing a distinct molecular link among tripartite symbioses in shaping resilience and adaptation of their insect hosts to occupy other ecological niches.
Collapse
Affiliation(s)
- Xiaoyu Ling
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jian Di
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Liqiang Xie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agriculture Sciences, Jinan250100, China
| | - Zihua Zhao
- College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Provasek VE, Bacolla A, Rangaswamy S, Mitra J, Kodavati M, Yusuf IO, Malojirao VH, Vasquez V, Britz GW, Li GM, Xu Z, Mitra S, Garruto RM, Tainer JA, Hegde ML. RNA/DNA Binding Protein TDP43 Regulates DNA Mismatch Repair Genes with Implications for Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594552. [PMID: 38798341 PMCID: PMC11118483 DOI: 10.1101/2024.05.16.594552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
TAR DNA-binding protein 43 (TDP43) is increasingly recognized for its involvement in neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 proteinopathy, characterized by dysregulated nuclear export and cytoplasmic aggregation, is present in most ALS/FTD cases and is associated with a loss of nuclear function and genomic instability in neurons. Building on prior evidence linking TDP43 pathology to DNA double-strand breaks (DSBs), this study identifies a novel regulatory role for TDP43 in the DNA mismatch repair (MMR) pathway. We demonstrate that depletion or overexpression of TDP43 affects the expression of key MMR genes, including MLH1, MSH6, MSH2, MSH3, and PMS2. Specifically, TDP43 modulates the expression of MLH1 and MSH6 proteins through alternative splicing and transcript stability. These findings are validated in ALS mice models, patient-derived neural progenitor cells and autopsied brain tissues from ALS patients. Furthermore, MMR depletion showed a partial rescue of TDP43-induced DNA damage in neuronal cells. Bioinformatics analysis of TCGA cancer database reveals significant correlations between TDP43 and MMR gene expressions and mutational burden across various cancer subtypes. These results collectively establish TDP43 as a critical regulator of the MMR pathway, with broad implications for understanding the genomic instability underlying neurodegenerative and neoplastic diseases.
Collapse
Affiliation(s)
- Vincent E Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Suganya Rangaswamy
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Issa O Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Vikas H Malojirao
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neurosurgery and Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Sankar Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ralph M Garruto
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902
| | - John A Tainer
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
5
|
Varol A, Boulos JC, Jin C, Klauck SM, Zhitkovich A, Efferth T. Inhibition of MSH6 augments the antineoplastic efficacy of cisplatin in non-small cell lung cancer as autophagy modulator. Chem Biol Interact 2024; 402:111193. [PMID: 39168426 DOI: 10.1016/j.cbi.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
The altered response to chemotherapeutic agents predominantly stems from heightened single-point mutations within coding regions and dysregulated expression levels of genes implicated in drug resistance mechanisms. The identification of biomarkers based on mutation profiles and expression levels is pivotal for elucidating the underlying mechanisms of altered drug responses and for refining combinatorial therapeutic strategies in the field of oncology. Utilizing comprehensive bioinformatic analyses, we investigated the impact of eight mismatch repair (MMR) genes on overall survival across 23 cancer types, encompassing more than 7500 tumors, by integrating their mutation profiles. Among these genes, MSH6 emerged as the most predictive biomarker, characterized by a pronounced mutation frequency and elevated expression levels, which correlated with poorer patient survival outcomes. The wet lab experiments disclosed the impact of MSH6 in mediating altered drug responses. Cytotoxic assays conducted revealed that the depletion of MSH6 in H460 non-small lung cancer cells augmented the efficacy of cisplatin, carboplatin, and gemcitabine. Pathway analyses further delineated the involvement of MSH6 as a modulator, influencing the delicate equilibrium between the pro-survival and pro-death functions of autophagy. Our study elucidates the intricate interplay between MSH6, autophagy, and cisplatin efficacy, highlighting MSH6 as a potential therapeutic target to overcome cisplatin resistance. By revealing the modulation of autophagy pathways by MSH6 inhibition, our findings offer insights into novel approaches for enhancing the efficacy of cisplatin-based cancer therapy through targeted interventions.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Chunmei Jin
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02903, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
6
|
Kladova OA, Tyugashev TE, Miroshnikov AA, Novopashina DS, Kuznetsov NA, Kuznetsova AA. SNP-Associated Substitutions of Amino Acid Residues in the dNTP Selection Subdomain Decrease Polβ Polymerase Activity. Biomolecules 2024; 14:547. [PMID: 38785954 PMCID: PMC11117729 DOI: 10.3390/biom14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
In the cell, DNA polymerase β (Polβ) is involved in many processes aimed at maintaining genome stability and is considered the main repair DNA polymerase participating in base excision repair (BER). Polβ can fill DNA gaps formed by other DNA repair enzymes. Single-nucleotide polymorphisms (SNPs) in the POLB gene can affect the enzymatic properties of the resulting protein, owing to possible amino acid substitutions. For many SNP-associated Polβ variants, an association with cancer, owing to changes in polymerase activity and fidelity, has been shown. In this work, kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring polymorphic variants G274R, G290C, and R333W. Previously, the amino acid substitutions at these positions have been found in various types of tumors, implying a specific role of Gly-274, Gly-290, and Arg-333 in Polβ functioning. All three polymorphic variants had reduced polymerase activity. Two substitutions-G274R and R333W-led to the almost complete disappearance of gap-filling and primer elongation activities, a decrease in the deoxynucleotide triphosphate-binding ability, and a lower polymerization constant, due to alterations of local contacts near the replaced amino acid residues. Thus, variants G274R, G290C, and R333W may be implicated in an elevated level of unrepaired DNA damage.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | | | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| |
Collapse
|
7
|
Shenoy S. Mismatch repair mutations: Biomarker for immunotherapy in colorectal cancers. Indian J Cancer 2023; 60:415-417. [PMID: 34380860 DOI: 10.4103/ijc.ijc_548_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/22/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Santosh Shenoy
- Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, USA
| |
Collapse
|
8
|
Afzal M, Vijay AK, Stapleton F, Willcox M. The Relationship between Ciprofloxacin Resistance and Genotypic Changes in S. aureus Ocular Isolates. Pathogens 2022; 11:1354. [PMID: 36422605 PMCID: PMC9695201 DOI: 10.3390/pathogens11111354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 07/28/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a frequent cause of eye infections with some isolates exhibiting increased antimicrobial resistance to commonly prescribed antibiotics. The increasing resistance of ocular S. aureus to ciprofloxacin is a serious concern as it is a commonly used as a first line antibiotic to treat S. aureus keratitis. This study aimed to analyse genetic mutations in the genomes of 25 S. aureus isolates from infections or non-infectious ocular conditions from the USA and Australia and their relationship to ciprofloxacin resistance. Overall, 14/25 isolates were phenotypically resistant to ciprofloxacin. All isolates were analyzed for mutations in their quinolone resistance-determining regions (QRDRs) and efflux pump genes. Of the fourteen resistant isolates, 9/14 had ciprofloxacin resistance mutations within their QRDRs, at codons 80 or 84 within the parC subunit and codon 84 within the gyrA subunit of DNA gyrase. The highest resistance (MIC = 2560 μg/mL) was associated with two SNPs in both gyrA and parC. Other resistant isolates (3/14) had mutations within norB. Mutations in genes of other efflux pumps and their regulator (norA, norC, mepA, mdeA, sepA, sdrM, mepR, arlR, and arlS) or the DNA mismatch repair (MMR) system (mutL and mutS) were not associated with increased resistance to ciprofloxacin. The functional mutations associated with ciprofloxacin resistance in QRDRs (gyrA and parC) and norB suggests that these are the most common reasons for ciprofloxacin resistance in ocular isolates. Novel SNPs of gyrA Glu-88-Leu, Asn-860-Thr and Thr-845-Ala and IIe-855-Met, identified in this study, need further gene knock out/in studies to better understand their effect on ciprofloxacin resistance.
Collapse
|
9
|
Monakhova MV, Kubareva EA, Kolesnikov KK, Anashkin VA, Kosaretskiy EM, Zvereva MI, Romanova EA, Friedhoff P, Oretskaya TS, Zatsepin TS. Reactive Acrylamide-Modified DNA Traps for Accurate Cross-Linking with Cysteine Residues in DNA–Protein Complexes Using Mismatch Repair Protein MutS as a Model. Molecules 2022; 27:molecules27082438. [PMID: 35458636 PMCID: PMC9031232 DOI: 10.3390/molecules27082438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Covalent protein capture (cross-linking) by reactive DNA derivatives makes it possible to investigate structural features by fixing complexes at different stages of DNA–protein recognition. The most common cross-linking methods are based on reactive groups that interact with native or engineered cysteine residues. Nonetheless, high reactivity of most of such groups leads to preferential fixation of early-stage complexes or even non-selective cross-linking. We synthesised a set of DNA reagents carrying an acrylamide group attached to the C5 atom of a 2′-deoxyuridine moiety via various linkers and studied cross-linking with MutS as a model protein. MutS scans DNA for mismatches and damaged nucleobases and can form multiple non-specific complexes with DNA that may cause non-selective cross-linking. By varying the length of the linker between DNA and the acrylamide group and by changing the distance between the reactive nucleotide and a mismatch in the duplex, we showed that cross-linking occurs only if the distance between the acrylamide group and cysteine is optimal within the DNA–protein complex. Thus, acrylamide-modified DNA duplexes are excellent tools for studying DNA–protein interactions because of high selectivity of cysteine trapping.
Collapse
Affiliation(s)
- Mayya V. Monakhova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
- Correspondence: ; Tel.: +7-(903)-593-8905
| | - Elena A. Kubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Kirill K. Kolesnikov
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (K.K.K.); (M.I.Z.); (T.S.Z.)
| | - Viktor A. Anashkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Egor M. Kosaretskiy
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia;
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (K.K.K.); (M.I.Z.); (T.S.Z.)
| | - Elena A. Romanova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany;
| | - Tatiana S. Oretskaya
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (E.A.K.); (V.A.A.); (E.A.R.); (T.S.O.)
| | - Timofei S. Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, 119991 Moscow, Russia; (K.K.K.); (M.I.Z.); (T.S.Z.)
| |
Collapse
|
10
|
An investigation of Burkholderia cepacia complex methylomes via SMRT sequencing and mutant analysis. J Bacteriol 2021; 203:e0068320. [PMID: 33753468 DOI: 10.1128/jb.00683-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial genomes can be methylated at particular motifs by methyltransferases (M). This DNA modification allows restriction endonucleases (R) to discriminate between self and foreign DNA. While the accepted primary function of such restriction modification (RM) systems is to degrade incoming foreign DNA, other roles of RM systems and lone R or M components have been found in genome protection, stability and the regulation of various phenotypes. The Burkholderia cepacia complex (Bcc) is a group of closely related opportunistic pathogens with biotechnological potential. Here, we constructed and analysed mutants lacking various RM components in the clinical Bcc isolate Burkholderia cenocepacia H111 and used SMRT sequencing of single mutants to assign the B. cenocepacia H111 Ms to their cognate motifs. DNA methylation is shown to affect biofilm formation, cell shape, motility, siderophore production and membrane vesicle production. Moreover, DNA methylation had a large effect on the maintenance of the Bcc virulence megaplasmid pC3. Our data also suggest that the gp51 M-encoding gene, which is essential in H111 and is located within a prophage, is required for maintaining the bacteriophage in a lysogenic state, thereby ensuring a constant, low level of phage production within the bacterial population.ImportanceWhile genome sequence determines an organism's proteins, methylation of the nucleotides themselves can confer additional properties. In bacteria, Ms modify specific nucleotide motifs to allow discrimination of 'self' from 'non-self' DNA, e.g. from bacteriophages. Restriction enzymes detect 'non-self' methylation patterns and cut foreign DNA. Furthermore, methylation of promoter regions can influence gene expression and hence affect various phenotypes. In this study, we determined the methylated motifs of four strains from the Burkholderia cepacia complex of opportunistic pathogens. We deleted all genes encoding the restriction and modification components in one of these strains, Burkholderia cenocepacia H111. It is shown that DNA methylation affects various phenotypic traits, the most noteworthy being lysogenicity of a bacteriophage and maintenance of a virulence megaplasmid.
Collapse
|
11
|
Sudharshan SJ, Dyavaiah M. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae. Biogerontology 2020; 22:81-100. [PMID: 33108581 DOI: 10.1007/s10522-020-09904-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Reactive oxygen species (ROS) have long been found to play an important role in oxidative mediated DNA damage. Fortunately, cells possess an antioxidant system that can neutralize ROS. However, oxidative stress occurs when antioxidants are overwhelmed by ROS or impaired antioxidant pathways. This study was carried out to find the protective effect of astaxanthin on the yeast DNA repair-deficient mutant cells under hydrogen peroxide stress. The results showed that astaxanthin enhances the percent cell growth of rad1∆, rad51∆, apn1∆, apn2∆ and ogg1∆ cells. Further, the spot test and colony-forming unit count results confirmed that astaxanthin protects DNA repair mutant cells from oxidative stress. The DNA binding property of astaxanthin studied by in silico and in vitro methods indicated that astaxanthin binds to the DNA in the major and minor groove, and that might protect DNA against oxidative stress induced by Fenton's reagent. The intracellular ROS, 8-OHdG level and the DNA fragmentation as measured by comet tail was reduced by astaxanthin under oxidative stress. Similarly, reduced nuclear fragmentation and chromatin condensation results suggest that astaxanthin might reduce apoptosis. Finally, we show that astaxanthin decreases the accumulation of mutation rate and enhances the longevity of DNA repair-deficient mutants' cells during a chronological lifespan.
Collapse
Affiliation(s)
- S J Sudharshan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India.
| |
Collapse
|
12
|
Fels U, Gevaert K, Van Damme P. Bacterial Genetic Engineering by Means of Recombineering for Reverse Genetics. Front Microbiol 2020; 11:548410. [PMID: 33013782 PMCID: PMC7516269 DOI: 10.3389/fmicb.2020.548410] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Serving a robust platform for reverse genetics enabling the in vivo study of gene functions primarily in enterobacteriaceae, recombineering -or recombination-mediated genetic engineering-represents a powerful and relative straightforward genetic engineering tool. Catalyzed by components of bacteriophage-encoded homologous recombination systems and only requiring short ∼40–50 base homologies, the targeted and precise introduction of modifications (e.g., deletions, knockouts, insertions and point mutations) into the chromosome and other episomal replicons is empowered. Furthermore, by its ability to make use of both double- and single-stranded linear DNA editing substrates (e.g., PCR products or oligonucleotides, respectively), lengthy subcloning of specific DNA sequences is circumvented. Further, the more recent implementation of CRISPR-associated endonucleases has allowed for more efficient screening of successful recombinants by the selective purging of non-edited cells, as well as the creation of markerless and scarless mutants. In this review we discuss various recombineering strategies to promote different types of gene modifications, how they are best applied, and their possible pitfalls.
Collapse
Affiliation(s)
- Ursula Fels
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Dai L, Xia J, Sahin O, Zhang Q. Identification of a nth-Like Gene Encoding an Endonuclease III in Campylobacter jejuni. Front Microbiol 2019; 10:698. [PMID: 31024487 PMCID: PMC6467930 DOI: 10.3389/fmicb.2019.00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/20/2019] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerobic pathogen, C. jejuni is subjected to DNA damages caused by various stresses such as reactive oxygen species (ROS) and UV radiations. The base excision repair (BER) system plays an important role in preventing mutations associated with oxidative DNA damage, but the system remains poorly characterized in Campylobacter. In this study, a BER homolog encoded by cj0595c (named nth) in C. jejuni was analyzed for endonuclease III activity and for its role in maintaining genomic stability. It was found that inactivation of nth resulted in elevated frequencies of spontaneous fluoroquinolone-resistant (FQR) and oxidative stress resistant (OXR) mutants, compared with the wild-type strain in C. jejuni. Sequencing analysis of the FQR and OXR mutants revealed that the elevated mutation rates were associated with C → T or G → A transition in gyrA (FQR mutants) or perR (for OXR mutants). In an in vitro assay, a purified recombinant C. jejuni Nth protein demonstrated endonuclease III activity that recognized and excised the thymine glycol (Tg) base from a double stranded DNA. These findings indicate that Nth functions as a BER repair enzyme in C. jejuni and is important for the repair of DNA damage, protecting the bacteria from stresses encountered within a host and in the environment.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jing Xia
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
14
|
Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157-172. [PMID: 30546107 PMCID: PMC6555402 DOI: 10.1038/s41576-018-0081-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Aung HM, Huangteerakul C, Panvongsa W, Jensen AN, Chairoungdua A, Sukrong S, Jensen LT. Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:10-21. [PMID: 29777901 DOI: 10.1016/j.jep.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. AIM OF THE STUDY To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. RESULTS Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. CONCLUSIONS B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF).
Collapse
Affiliation(s)
- Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand
| | | | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
16
|
Molecular basis for the functions of a bacterial MutS2 in DNA repair and recombination. DNA Repair (Amst) 2017; 57:161-170. [PMID: 28800560 DOI: 10.1016/j.dnarep.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/08/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
Abstract
Bacterial MutS2 proteins, consisting of functional domains for ATPase, DNA-binding, and nuclease activities, play roles in DNA recombination and repair. Here we observe a mechanism for generating MutS2 expression diversity in the human pathogen Helicobacter pylori, and identify a unique MutS2 domain responsible for specific DNA-binding. H. pylori strains differ in mutS2 expression due to variations in the DNA upstream sequence containing short sequence repeats. Based on Western blots, mutS2 in some strains appears to be co-translated with the upstream gene, but in other strains (e.g. UA948) such translational coupling does not occur. Accordingly, strain UA948 had phenotypes similar to its ΔmutS2 derivative, whereas expression of MutS2 at a separate locus in UA948 (the genetically complemented strain) displayed a lower mutation rate and lower transformation frequency than did ΔmutS2. A series of truncated HpMutS2 proteins were purified and tested for their specific abilities to bind 8-oxoG-containing DNA (GO:C) and Holiday Junction structures (HJ). The specific DNA binding domain was localized to an area adjacent to the Smr nuclease domain, and it encompasses 30-amino-acid-residues containing a "KPPKNKFKPPK" motif. Gel shift assays and competition assays supported that a truncated version of HpMutS2-C12 (∼12kDa protein containing the specific DNA-binding domain) has much greater capacity to bind to HJ or GO:C DNA than to normal double stranded DNA. By studying the in vivo roles of the separate domains of HpMutS2, we observed that the truncated versions were unable to complement the ΔmutS2 strain, suggesting the requirement for coordinated function of all the domains in vivo.
Collapse
|
17
|
Schlegel S, Genevaux P, de Gier JW. Isolating Escherichia coli strains for recombinant protein production. Cell Mol Life Sci 2016; 74:891-908. [PMID: 27730255 PMCID: PMC5306230 DOI: 10.1007/s00018-016-2371-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.
Collapse
Affiliation(s)
- Susan Schlegel
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16C, 106 91, Stockholm, Sweden.
| |
Collapse
|
18
|
Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 2016; 40:575-91. [PMID: 27476077 DOI: 10.1093/femsre/fuw023] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is a change in gene expression that is heritable without a change in DNA sequence itself. This phenomenon is well studied in eukaryotes, particularly in humans for its role in cellular differentiation, X chromosome inactivation and diseases like cancer. However, comparatively little is known about epigenetic regulation in bacteria. Bacterial epigenetics is mainly present in the form of DNA methylation where DNA methyltransferases add methyl groups to nucleotides. This review focuses on two methyltransferases well characterized for their roles in gene regulation: Dam and CcrM. Dam methyltransferase in Escherichia coli is important for expression of certain genes such as the pap operon, as well as other cellular processes like DNA replication initiation and DNA repair. In Caulobacter crescentus and other Alphaproteobacteria, the methyltransferase CcrM is cell cycle regulated and is involved in the cell-cycle-dependent regulation of several genes. The diversity of regulatory targets as well as regulatory mechanisms suggests that gene regulation by methylation could be a widespread and potent method of regulation in bacteria.
Collapse
Affiliation(s)
- Satish Adhikari
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
19
|
Niu L, Li S, Liang H, Li H. The hMLH1 -93G>A Polymorphism and Risk of Ovarian Cancer in the Chinese Population. PLoS One 2015; 10:e0135822. [PMID: 26275295 PMCID: PMC4537278 DOI: 10.1371/journal.pone.0135822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022] Open
Abstract
Background As a mismatch repair (MMR) gene, hMLH1 plays an important role in the maintenance of chromosomal integrity. Several studies have investigated the associations of hMLH1 -93G>A (rs1800734) and Ile219Val (rs1799977) in diverse tumor types with discordant results, but their roles in ovarian cancer in the Chinese population remains to be elucidated. Methods In a case-control analysis, we assessed the association between these two polymorphisms and ovarian cancer risk in 421 ovarian cancer patients and 689 control subjects in the Chinese population using logistic regression. Results We found that the variant hMLH1 genotypes (-93AA and AG) are associated with risk of ovarian cancer (adjusted odds ratio [OR] = 2.02, 95% confidence interval [CI] = 1.42–2.89) compared with the -93GG genotype. The A allele increases the risk of ovarian cancer in a dose-dependent manner (P<10−4). Functional test showed that -93A allele increased hMLH1 promoter transcriptional activity and the luciferase activity. However, no significant difference was found in the genotype frequencies at the Ile219Val site between the cases and controls. Conclusions These findings indicate that the -93G>A polymorphism in hMLH1 may affect ovarian cancer susceptibility in the Chinese population.
Collapse
Affiliation(s)
- Leilei Niu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Shumin Li
- Department of Gynecology Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huamao Liang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hua Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Gynecology Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Dhanani AS, Block G, Dewar K, Forgetta V, Topp E, Beiko RG, Diarra MS. Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens. PLoS One 2015; 10:e0128773. [PMID: 26083489 PMCID: PMC4470630 DOI: 10.1371/journal.pone.0128773] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/01/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Non-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. METHODOLOGY/PRINCIPAL FINDING The genomes of 25 S. enterica isolates covering five serovars (ten Typhimurium including three monophasic 4,[5],12:i:, four Enteritidis, three Hadar, four Heidelberg and four Kentucky) were sequenced. Most serovars were clustered in strongly supported phylogenetic clades, except for isolates of serovar Enteritidis that were scattered throughout the tree. Plasmids of varying sizes were detected in several isolates independently of serovars. Genes associated with the IncF plasmid and the IncI1 plasmid were identified in twelve and four isolates, respectively, while genes associated with the IncQ plasmid were found in one isolate. The presence of numerous genes associated with Salmonella pathogenicity islands (SPIs) was also confirmed. Components of the type III and IV secretion systems (T3SS and T4SS) varied in different isolates, which could explain in part, differences of their pathogenicity in humans and/or persistence in broilers. Conserved clusters of genes in the T3SS were detected that could be used in designing effective strategies (diagnostic, vaccination or treatments) to combat Salmonella. Antibiotic resistance genes (CMY, aadA, ampC, florR, sul1, sulI, tetAB, and srtA) and class I integrons were detected in resistant isolates while all isolates carried multidrug efflux pump systems regardless of their antibiotic susceptibility profile. CONCLUSIONS/SIGNIFICANCE This study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins, flagellar proteins, T3SS, iron acquisition systems, and antibiotic and metal resistance genes that may explain their pathogenicity, colonization ability and persistence in chicken. The existence of mobile genetic elements indicates that isolates from a given serovar could acquire and transfer genetic material. Conserved genes in the T3SS and T4SS that we have identified are promising candidates for identification of diagnostic, antimicrobial or vaccine targets for the control of Salmonella in broiler chickens.
Collapse
Affiliation(s)
- Akhilesh S. Dhanani
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Glenn Block
- Pacific Agri-Food Research Center, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, V0M 1A0, Canada
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, H3A 1A4, Canada
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Montréal, Québec, H3T 1E2, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, AAFC, London, Ontario, N5V 4T3, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, V0M 1A0, Canada
- * E-mail:
| |
Collapse
|
21
|
Zhang D, Tang B, Xie X, Xiao YF, Yang SM, Zhang JW. The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther 2015; 16:1005-13. [PMID: 25985143 DOI: 10.1080/15384047.2015.1046022] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA is the prime target of anticancer treatments. DNA damage triggers a series of signaling cascades promoting cellular survival, including DNA repair, cell cycle arrest, and autophagy. The elevated basal and/or stressful levels of both DNA repair and autophagy observed in tumor cells, in contrast to normal cells, have been identified as the most important drug-responsive programs that impact the outcome of anticancer therapy. The exact relationship between DNA repair and autophagy in cancer cells remains unclear. On one hand, autophagy has been shown to regulate some of the DNA repair proteins after DNA damage by maintaining the balance between their synthesis, stabilization, and degradation. One the other hand, some evidence has demonstrated that some DNA repair molecular have a crucial role in the initiation of autophagy. In this review, we mainly discuss the interplay between DNA repair and autophagy in anticancer therapy and expect to enlighten some effective strategies for cancer treatment.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- ATG5, autophagy-related gene 5
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BER, base excision repair
- Chk1, check-point kinase 1
- Chk2, check-point kinase 2
- DDR, DNA damage response
- DNA damage
- DNA damage response
- DNA repair
- DNA-PKcs, DNA-dependent protein kinase catalytic subunit
- DSBs, double-strand breaks
- HDAC, histone deacetylases
- HR, homologous recombination
- IR, ionizing radiation
- MGMT, O6 methylguanine –DNA methyltransferase
- MMR, mismatch repair
- MRN, Mre11-Rad50-Nbs1
- NER, nucleotide excision recombination
- NHEJ, non-homologous end joining
- OGG1, 8-oxoguannine DNA glycosidase
- PARP-1, poly (ADP-ribose) polymerase 1
- PI3K, phosphoinositide 3-kinase
- PML, promyelocytic leukemia
- SSBs, single-strand break
- TMZ, temozolomide
- TSC2, tuberous sclerosis complex 2
- anticancer therapy
- apoptosis
- autophagy
- cell cycle arrest
- mTOR, mammalian target of rapamycin
- γ-H2AX, phosphorylated histone
Collapse
Affiliation(s)
- Dan Zhang
- a Department of Gastroenterology; Xinqiao Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | |
Collapse
|
22
|
Comparative Roles of the Two Helicobacter pylori Thioredoxins in Preventing Macromolecule Damage. Infect Immun 2015; 83:2935-43. [PMID: 25964471 DOI: 10.1128/iai.00232-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
Thioredoxins are highly conserved throughout a wide range of organisms, and they are essential for the isurvival of oxygen-sensitive cells. The gastric pathogen Helicobacter pylori uses the thioredoxin system to maintain its thiol/disulfide balance. There are two thioredoxins present in H. pylori, Trx1 and Trx2 (herein referred to as TrxA and TrxC). TrxA has been shown to be important as an electron donor for some antioxidant enzymes, but the function of TrxC remains unknown (L. M. Baker, A. Raudonikiene, P. S. Hoffman, and L. B. Poole, J Bacteriol 183:1961-1973, 2001; P. Alamuri and R. J. Maier, J Bacteriol 188:5839-5850, 2006). We demonstrate that both TrxA and TrxC are important in protecting H. pylori from oxidative stress. Individual ΔtrxA and ΔtrxC deletion mutant strains each show a greater abundance of lipid peroxides and suffer more DNA damage and more protein carbonylation than the parent. Both deletion mutants were much more sensitive to O2-mediated viability loss than the parent. Unexpectedly, the oxidative DNA damage and protein carbonylation was more severe in the ΔtrxC mutant than in the ΔtrxA mutant; it had 20-fold- and 4-fold-more carbonylated protein content than the wild type and the ΔtrxA strain, respectively, after 4 h of atmospheric O2 stress. trx transcript abundance was altered by the deletion of the heterologous trx gene. The ΔtrxC mutant lacked mouse colonization ability, while the ability to colonize mouse stomachs was significantly reduced in the ΔtrxA mutant.
Collapse
|
23
|
Chang K, Deng S, Chen M. Novel biosensing methodologies for improving the detection of single nucleotide polymorphism. Biosens Bioelectron 2015; 66:297-307. [DOI: 10.1016/j.bios.2014.11.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/28/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
|
24
|
Long H, Sung W, Miller SF, Ackerman MS, Doak TG, Lynch M. Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient Pseudomonas fluorescens ATCC948. Genome Biol Evol 2014; 7:262-71. [PMID: 25539726 PMCID: PMC4316635 DOI: 10.1093/gbe/evu284] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High levels of genetic diversity exist among natural isolates of the bacterium Pseudomonas fluorescens, and are especially elevated around the replication terminus of the genome, where strain-specific genes are found. In an effort to understand the role of genetic variation in the evolution of Pseudomonas, we analyzed 31,106 base substitutions from 45 mutation accumulation lines of P. fluorescens ATCC948, naturally deficient for mismatch repair, yielding a base-substitution mutation rate of 2.34 × 10−8 per site per generation (SE: 0.01 × 10−8) and a small-insertion-deletion mutation rate of 1.65 × 10−9 per site per generation (SE: 0.03 × 10−9). We find that the spectrum of mutations in prophage regions, which often contain virulence factors and antibiotic resistance, is highly similar to that in the intergenic regions of the host genome. Our results show that the mutation rate varies around the chromosome, with the lowest mutation rate found near the origin of replication. Consistent with observations from other studies, we find that site-specific mutation rates are heavily influenced by the immediately flanking nucleotides, indicating that mutations are context dependent.
Collapse
Affiliation(s)
- Hongan Long
- Department of Biology, Indiana University, Bloomington
| | - Way Sung
- Department of Biology, Indiana University, Bloomington
| | | | | | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington
| |
Collapse
|
25
|
Bak ST, Sakellariou D, Pena-Diaz J. The dual nature of mismatch repair as antimutator and mutator: for better or for worse. Front Genet 2014; 5:287. [PMID: 25191341 PMCID: PMC4139959 DOI: 10.3389/fgene.2014.00287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023] Open
Abstract
DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Despoina Sakellariou
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Javier Pena-Diaz
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
26
|
Stark AM, Doukas A, Hugo HH, Hedderich J, Hattermann K, Maximilian Mehdorn H, Held-Feindt J. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma. Neurol Res 2014; 37:95-105. [PMID: 24995467 DOI: 10.1179/1743132814y.0000000409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Methylated O6-methylguanin-DNA-methytransferase (MGMT) promoter methylation is associated with survival in patients with glioblastoma. Current evidence suggests that further mismatch repair genes play a pivotal role in the tumor response to treatment. Candidate genes are MLH1, MSH2, and MSH6. Formerly, we found evidence of prognostic impact of MLH1 and MSH6 immunohistochemical expression in a small series of patients with initial glioblastoma. METHODS Two hundred and eleven patients were included who underwent macroscopically total removal of primary glioblastoma and at least one re-craniotomy for recurrence. Immunohistochemical staining was performed on paraffin-embedded specimens of initial tumors with specific antibodies against MLH1, MSH2, and MSH6. RESULTS were compared to the Ki67 proliferation index and patient survival. Additionally, fresh frozen samples from 16 paired initial and recurrent specimens were examined using real-time reverse transcription polymerase chain reaction (RT-PCR) with specific primers against MLH1, MSH2, and MSH6. RESULTS were compared to MGMT status and survival. RESULTS (1) Immunohistochemical expression of MSH6 was significantly associated with the Ki67 proliferation index (P<0.001) but not with survival. (2) PCR revealed two patients with increasing expression of MLH1, MLH2, and MSH6 over treatment combined with lacking MGMT methylation. In another two patients, decreased MLH1, MSH2, and MSH6 expression was observed in combination with MGMT promoter methylation. DISCUSSION Our data indicate that there may be glioblastoma patient subgroups characterized by MMR-expression changes beyond MGMT promoter methylation. The immunohistochemical expression of MLH1, MSH2, and MSH6 in initial glioblastoma is not associated with patient survival.
Collapse
|
27
|
Stark AM, Doukas A, Hugo HH, Mehdorn HM. The expression of mismatch repair proteins MLH1, MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurol Res 2013; 32:816-20. [DOI: 10.1179/016164110x12645013515052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Zeller A, Koenig J, Schmitt G, Singer T, Guérard M. Genotoxicity profile of azidothymidine in vitro. Toxicol Sci 2013; 135:317-27. [PMID: 23811827 DOI: 10.1093/toxsci/kft149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azidothymidine (Zidovudine, AZT) is part of the standard care of treatment for acquired immunodeficiency syndrome since many years. A great number of studies on the genotoxic potential of AZT have been published, but no comprehensive hypothesis yet explains all observations. We investigated a multitude of genotoxic endpoints, both in vitro and in vivo, with the goal to complete the picture. The mutagenic potential of AZT in bacteria was found to be restricted to strains with an "ochre" target sequence and could be abrogated both by thymidine supplementation and rat liver S9 mix. Single-strand breaks in mammalian cells were detected in the comet assay after short-term treatment (3h) with AZT, which did not induce micronuclei. The latter were mainly seen after prolonged exposure (24 and 48h) and are probably not directly related to AZT incorporation into DNA. Our data demonstrate that short-term exposure to low AZT concentrations does not induce biologically relevant micronucleation. Only treatment with high concentrations of AZT for prolonged time periods manifests in substantial micronucleus induction. Furthermore, we found that high concentrations of thymidine have no effect in the comet assay but increase micronucleus frequency in a manner very similar to AZT. These results lead us to the following hypothesis: AZT is triphosphorylated and then incorporated into DNA strands, leading to mutations and cytotoxicity. Cellular attempts to repair these DNA lesions as well as stalled replication forks due to chain termination are detectable with the comet assay. Increased micronucleus frequency is likely related to nucleotide pool imbalance.
Collapse
Affiliation(s)
- Andreas Zeller
- * F. Hoffmann-La Roche AG, Non-Clinical Safety, 4070 Basel, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Abstract
Several genetic and physiological factors increase the risk of DNA damage in mammalian oocytes. Two critical events are: (i) meiosis progression, from maturation to fertilization, due to extensive chromatin remodelling during genome decondensation; and (ii) aging, which is associated with a progressive oxidative stress. In this work, we studied the transcriptional patterns of three genes, RAD51, APEX-1 and MLH1, involved in DNA repair mechanisms. The analyses were performed by real-time quantitative PCR (RT-qPCR) in immature and in vitro matured oocytes collected from 17 ± 3-month-old heifers and 94 ± 20-month-old cows. Batches of 30-50 oocytes for each group (three replicates) were collected from ovarian follicles of slaughtered animals. The oocytes were freed from cumulus cells at the time of follicle removal, or after in vitro maturation (IVM) carried out in M199 supplemented with 10% fetal calf serum, 10 IU luteinising hormone (LH)/ml, 0.1 IU follicle-stimulating hormone (FSH)/ml and 1 μg 17β-oestradiol/ml. Total RNA was extracted by Trizol method. The expression of bovine GAPDH gene was used as the internal standard, while primers for bovine RAD51, APEX-1 and MLH1 genes were designed from DNA sequences retrieved from GenBank. Results obtained indicate a clear up-regulation of RAD51, APEX-1 and MLH1 genes after IVM, ranging between two- and four-fold compared with germinal vesicle (GV) oocytes. However, only RAD51 showed a significant transcript increase between the immature oocytes collected from young or old individuals. This finding highlights RAD51 as a candidate gene marker for discriminating bovine immature oocytes in relation to the donor age.
Collapse
|
30
|
Abstract
DNA mismatch repair (MMR) corrects replication errors in newly synthesized DNA. It also has an antirecombination action on heteroduplexes that contain similar but not identical sequences. This review focuses on the genetics and development of MMR and not on the latest biochemical mechanisms. The main focus is on MMR in Escherichia coli, but examples from Streptococcuspneumoniae and Bacillussubtilis have also been included. In most organisms, only MutS (detects mismatches) and MutL (an endonuclease) and a single exonucleaseare present. How this system discriminates between newlysynthesized and parental DNA strands is not clear. In E. coli and its relatives, however, Dam methylation is an integral part of MMR and is the basis for strand discrimination. A dedicated site-specific endonuclease, MutH, is present, andMutL has no endonuclease activity; four exonucleases can participate in MMR. Although it might seem that the accumulated wealth of genetic and biochemical data has given us a detailed picture of the mechanism of MMR in E. coli, the existence of three competing models to explain the initiation phase indicates the complexity of the system. The mechanism of the antirecombination action of MMR is largely unknown, but only MutS and MutL appear to be necessary. A primary site of action appears to be on RecA, although subsequent steps of the recombination process can also be inhibited. In this review, the genetics of Very Short Patch (VSP) repair of T/G mismatches arising from deamination of 5-methylcytosineresidues is also discussed.
Collapse
|
31
|
Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 2012; 70:491-502. [PMID: 22851206 DOI: 10.1007/s00280-012-1937-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The development of new strategies for cancer therapeutics is indispensable for the improvement of standard protocols and the creation of other possibilities in cancer treatment. Yeast models have been employed to study numerous molecular aspects directly related to cancer development, as well as to determine the genetic contexts associated with anticancer drug sensitivity or resistance. The budding yeast Saccharomyces cerevisiae presents conserved cellular processes with high homology to humans, and it is a rapid, inexpensive and efficient compound screening tool. However, yeast models are still underused in cancer research and for screening of antineoplastic agents. Here, the employment of S. cerevisiae as a model system to anticancer research is discussed and exemplified. Focusing on the important determinants in genomic maintenance and cancer development, including DNA repair, cell cycle control and epigenetics, this review proposes the use of mutant yeast panels to mimic cancer phenotypes, screen and study tumor features and synthetic lethal interactions. Finally, the benefits and limitations of the yeast model are highlighted, as well as the strategies to overcome S. cerevisiae model limitations.
Collapse
|
32
|
Kumar P, Nagarajaram HA. A study on mutational dynamics of simple sequence repeats in relation to mismatch repair system in prokaryotic genomes. J Mol Evol 2012; 74:127-39. [PMID: 22415400 DOI: 10.1007/s00239-012-9491-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 02/15/2012] [Indexed: 11/30/2022]
Abstract
Mutational bias toward expansion or contraction of simple sequence repeats (SSRs) is referred to as directionality of SSR evolution. In this communication, we report the mutational bias exhibited by mononucleotide SSRs occurring in the non-coding regions of several prokaryotic genomes. Our investigations revealed that the strains or species lacking mismatch repair (MMR) system generally show higher number of polymorphic SSRs than those species/strains having MMR system. An exception to this observation was seen in the mycobacterial genomes that are MMR deficient where only a few SSR tracts were seen with mutations. This low incidence of SSR mutations even in the MMR-deficient background could be attributed to the high fidelity of the DNA polymerases as a consequence of high generation time of the mycobacteria. MMR system-deficient species generally did not show any bias toward mononucleotide SSR expansions or contractions indicating a neutral evolution of SSRs in these species. The MMR-proficient species in which the observed mutations correspond to secondary mutations showed bias toward contraction of polymononucleotide tracts, perhaps, indicating low efficiency of MMR system to repair SSR-induced slippage errors on template strands. This bias toward deletion in the mononucleotide SSR tracts might be a probable reason behind scarcity for long poly A|T and G|C tracts in prokaryotic systems which are mostly MMR proficient. In conclusion, our study clearly demonstrates mutational dynamics of SSRs in relation to the presence/absence of MMR system in the prokaryotic system.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, 4-1-714, Mozamjahi Rd, Nampally, Hyderabad, 500 001, India
| | | |
Collapse
|
33
|
Williamson EA, Wray JW, Bansal P, Hromas R. Overview for the histone codes for DNA repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:207-27. [PMID: 22749147 DOI: 10.1016/b978-0-12-387665-2.00008-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA damage occurs continuously as a result of various factors-intracellular metabolism, replication, and exposure to genotoxic agents, such as ionizing radiation and chemotherapy. If left unrepaired, this damage could result in changes or mutations within the cell genomic material. There are a number of different pathways that the cell can utilize to repair these DNA breaks. However, it is of utmost interest to know how the DNA damage is signaled to the various DNA pathways. As DNA damage occurs within the chromatin, we postulate that modifications of histones are important for signaling the position of DNA damage, recruiting the DNA repair proteins to the site of damage, and creating an open structure such that the repair proteins can access the site of damage. We discuss the modifications that occur on the histones and the manner in which they relate to the type of damage that has occurred as well as the DNA repair pathways that are activated.
Collapse
|
34
|
Niedziela-Majka A, Maluf NK, Antony E, Lohman TM. Self-assembly of Escherichia coli MutL and its complexes with DNA. Biochemistry 2011; 50:7868-80. [PMID: 21793594 DOI: 10.1021/bi200753b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.
Collapse
Affiliation(s)
- Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
35
|
Giaginis C, Michailidi C, Stolakis V, Alexandrou P, Tsourouflis G, Klijanienko J, Delladetsima I, Theocharis S. Expression of DNA repair proteins MSH2, MLH1 and MGMT in human benign and malignant thyroid lesions: an immunohistochemical study. Med Sci Monit 2011; 17:BR81-90. [PMID: 21358597 PMCID: PMC3524721 DOI: 10.12659/msm.881444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, and minimizes cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations in the expression levels of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins MSH2, MLH1 and MGMT in benign and malignant thyroid lesions. Material/Methods MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 90 patients with benign and malignant lesions. Results The expression levels of MLH1 was significantly upregulated in cases with malignant compared to those with benign thyroid lesions (p=0.038). The expression levels of MGMT was significantly downregulated in malignant compared to benign thyroid lesions (p=0.001). Similar associations for both MLH1 and MGMT between cases with papillary carcinoma and hyperplastic nodules were also noted (p=0.014 and p=0.026, respectively). In the subgroup of malignant thyroid lesions, MSH2 downregulation was significantly associated with larger tumor size (p=0.031), while MLH1 upregulation was significantly associated with the presence of lymphatic and vascular invasion (p=0.006 and p=0.002, respectively). Conclusions Alterations in the mismatch repair proteins MSH2 and MLH1 and the direct repair protein MGMT may result from tumor development and/or progression. Further studies are recommended to draw definite conclusions on the clinical significance of DNA repair proteins in thyroid neoplasia.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abdel-Rahman SZ, El-Zein RA. Evaluating the effects of genetic variants of DNA repair genes using cytogenetic mutagen sensitivity approaches. Biomarkers 2011; 16:393-404. [PMID: 21595606 DOI: 10.3109/1354750x.2011.577237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutagen sensitivity, measured in short-term cultures of peripheral blood lymphocytes by cytogenetic endpoints, is an indirect measure for DNA repair capacity and has been used for many years as a biomarker for intrinsic susceptibility for cancer. In this article, we briefly give an overview of the different cytogenetic mutagen sensitivity approaches that have been used successfully to evaluate the biological effects of polymorphisms in DNA repair genes based on a current review of the literature and based on the need for biomarkers that would allow the characterization of the biological and functional significance of such polymorphisms. We also address some of the future challenges facing this emerging area of research.
Collapse
Affiliation(s)
- Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, 77555-1062, USA.
| | | |
Collapse
|
37
|
Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 2011; 74:570-88. [PMID: 21119018 DOI: 10.1128/mmbr.00026-10] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structured forms of DNA with intrastrand pairing are generated in several cellular processes and are involved in biological functions. These structures may arise on single-stranded DNA (ssDNA) produced during replication, bacterial conjugation, natural transformation, or viral infections. Furthermore, negatively supercoiled DNA can extrude inverted repeats as hairpins in structures called cruciforms. Whether they are on ssDNA or as cruciforms, hairpins can modify the access of proteins to DNA, and in some cases, they can be directly recognized by proteins. Folded DNAs have been found to play an important role in replication, transcription regulation, and recognition of the origins of transfer in conjugative elements. More recently, they were shown to be used as recombination sites. Many of these functions are found on mobile genetic elements likely to be single stranded, including viruses, plasmids, transposons, and integrons, thus giving some clues as to the manner in which they might have evolved. We review here, with special focus on prokaryotes, the functions in which DNA secondary structures play a role and the cellular processes giving rise to them. Finally, we attempt to shed light on the selective pressures leading to the acquisition of functions for DNA secondary structures.
Collapse
|
38
|
Crystal structure of YdaL, a stand-alone small MutS-related protein from Escherichia coli. J Struct Biol 2011; 174:282-9. [PMID: 21276852 DOI: 10.1016/j.jsb.2011.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/11/2011] [Accepted: 01/20/2011] [Indexed: 11/21/2022]
Abstract
Sequence homologs of the small MutS-related (Smr) domain, the C-terminal endonuclease domain of MutS2, also exist as stand-alone proteins. In this study, we report the crystal structure of a proteolyzed fragment of YdaL (YdaL₃₉-₁₇₅), a stand-alone Smr protein from Escherichia coli. In this structure, residues 86-170 assemble into a classical Smr core domain and are embraced by an N-terminal extension (residues 40-85) with an α/β/α fold. Sequence alignment indicates that the N-terminal extension is conserved among a number of stand-alone Smr proteins, suggesting structural diversity among Smr domains. We also discovered that the DNA binding affinity and endonuclease activity of the truncated YdaL₃₉-₁₇₅ protein were slightly lower than those of full-length YdaL₁-₁₈₇, suggesting that residues 1-38 may be involved in DNA binding.
Collapse
|
39
|
Theocharis S, Klijanienko J, Giaginis C, Rodriguez J, Jouffroy T, Girod A, Point D, Tsourouflis G, Sastre-Garau X. Expression of DNA repair proteins, MSH2, MLH1 and MGMT in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients' survival. J Oral Pathol Med 2010; 40:218-26. [PMID: 21029181 DOI: 10.1111/j.1600-0714.2010.00945.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, minimizing cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins, MSH2, MLH1 and MGMT in mobile tongue squamous cell carcinoma (SCC). METHODS MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on 49 mobile tongue SCC tissue samples and was analyzed in relation with clinicopathological characteristics, overall and disease-free patients' survival. RESULTS MSH2 expression was significantly associated with depth of invasion (P=0.0335), tumor shape (P=0.0396) and muscular invasion (P=0.0098). MLH1 expression was significantly associated with lymph node metastases (P=0.0484) and borderline with perineural invasion (P=0.0699). MGMT expression was significantly associated with depth of invasion (P=0.0472), tumor shape (P=0.0187), perineural invasion (P=0.0115) and lymph node metastases (P=0.0032) and borderline with vascular invasion (P=0.0755). MSH2 expression was significantly associated with disease-free patients' survival in univariate analysis (P=0.0441), being also identified as an independent prognostic factor in multivariate analysis (P=0.0451). CONCLUSIONS The present study supported evidence for possible implication of MSH2, MLH1 and MGMT proteins in the formation and progression of mobile tongue SCC.
Collapse
|
40
|
Cheng H, Sun N, Sun X, Chen B, Li F, Feng J, Cheng L, Cao Y. Polymorphisms in hMSH2 and hMLH1 and response to platinum-based chemotherapy in advanced non-small-cell lung cancer patients. Acta Biochim Biophys Sin (Shanghai) 2010; 42:311-7. [PMID: 20458443 DOI: 10.1093/abbs/gmq023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Platinum-based chemotherapeutics are the most common regimens for advanced non-small-cell lung cancer (NSCLC) patients. However, it is difficult to identify platinum resistance in clinical treatment. Genetic factors are thought to represent important determinants of drug efficacy. In this study, we investigated whether singlenucleotide polymorphisms (SNPs) in human mutS homolog 2 (hMSH2) and the human mutL homolog 1 (hMLH1) were associated with the tumor response in advanced NSCLC patients received platinum-based chemotherapy in Chinese population. Totally, 96 patients with advanced NSCLC were routinely treated with cisplatin- or carboplatin-based chemotherapy. The three-dimensional (3D), polyacrylamide gel-based DNA microarray method was used to evaluate the genotypes of hMSH2 gIVS12-6T/ C and hMLH1-1151T/A with peripheral lymphocytes. We found that there was a significantly increased chance of treatment response to platinum-based chemotherapy with the hMSH2 gIVS12-6T/C polymorphism. The 3D polyacrylamide gel-based DNA microarray method is accurate, high-throughput, and inexpensive, especially suitable for a large scale of SNP genotyping in population.
Collapse
Affiliation(s)
- Hongyan Cheng
- Clinical Medicine College of Southeast University, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gatzidou E, Michailidi C, Tseleni-Balafouta S, Theocharis S. An epitome of DNA repair related genes and mechanisms in thyroid carcinoma. Cancer Lett 2010; 290:139-47. [DOI: 10.1016/j.canlet.2009.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 01/18/2023]
|
42
|
Le Gall S, Desbordes L, Gracieux P, Saffroy S, Bousarghin L, Bonnaure-Mallet M, Jolivet-Gougeon A. Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator. Vet Microbiol 2009; 137:306-12. [DOI: 10.1016/j.vetmic.2009.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 01/11/2023]
|
43
|
Yang B, Zheng J, Brown EW, Zhao S, Meng J. Characterisation of antimicrobial resistance-associated integrons and mismatch repair gene mutations in Salmonella serotypes. Int J Antimicrob Agents 2008; 33:120-4. [PMID: 19013057 DOI: 10.1016/j.ijantimicag.2008.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/25/2022]
Abstract
In this study, we examined the presence of integrons and Salmonella genomic island 1 (SGI1) and assessed their contribution to antimicrobial resistance as well as determining the extent of the mutator phenotype in Salmonella isolates. A total of 81 Salmonella enterica serotype Typhimurium isolates were examined for the presence of integrons and SGI1 and for hypermutators using polymerase chain reaction (PCR) and the mutator assay, respectively. An additional 336 Salmonella isolates were also used to screen for hypermutators. Fourteen S. Typhimurium isolates carried class 1 integrons, of which six were shown to possess SGI1. Five putative mutators, S. Typhimurium ST20751, S. enterica serotype Heidelberg 22396 and S. enterica serotype Enteritidis 17929, 17929N and 17929R, were identified among the 417 Salmonella isolates. Complementation analysis with the wild-type mutH, mutL, mutS and uvrD genes indicated that none of the five mutators contained defective mismatch repair (MMR) system alleles. DNA sequence analysis revealed that single point mutations resulting in aspartic acid (codon 87) substitution in the gyrA gene conferred resistance to nalidixic acid and/or other fluoroquinolone drugs (ciprofloxacin and enrofloxacin) among four isolates. Our findings indicated that integrons and SGI1 play an important role in multidrug resistance in Salmonella. The incidence of hypermutators owing to defective MMR in Salmonella appears to be rare.
Collapse
Affiliation(s)
- Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae. J Bacteriol 2008; 190:3747-56. [PMID: 18359812 DOI: 10.1128/jb.01870-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression.
Collapse
|
46
|
Abstract
Ageing, or increased mortality with time, coupled with physiologic decline, is a nearly universal yet poorly understood biological phenomenon. Studies in model organisms suggest that two conserved pathways modulate longevity: DNA damage repair and Insulin/Igf1-like signalling. In addition, homologs of yeast Sir2--the sirtuins--regulate lifespan in diverse organisms. Here, we focus on one particular sirtuin, SIRT6. Mice lacking SIRT6 develop a degenerative disorder that in some respects mimics models of accelerated ageing [Cell (2006) 124:315]. We discuss how sirtuins in general and SIRT6 specifically relate to other evolutionarily conserved pathways affecting ageing, and how SIRT6 might function to ensure organismal homeostasis and normal lifespan.
Collapse
Affiliation(s)
- D B Lombard
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, Boston, MA, USA
| | | | | | | |
Collapse
|
47
|
Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, Greene EC. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell 2008; 28:359-70. [PMID: 17996701 DOI: 10.1016/j.molcel.2007.09.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/15/2007] [Accepted: 09/11/2007] [Indexed: 11/18/2022]
Abstract
The ability of proteins to locate specific sites or structures among a vast excess of nonspecific DNA is a fundamental theme in biology. Yet the basic principles that govern these mechanisms remain poorly understood. For example, mismatch repair proteins must scan millions of base pairs to find rare biosynthetic errors, and they then must probe the surrounding region to identify the strand discrimination signals necessary to distinguish the parental and daughter strands. To determine how these proteins might function we used single-molecule optical microscopy to answer the following question: how does the mismatch repair complex Msh2-Msh6 interrogate undamaged DNA? Here we show that Msh2-Msh6 slides along DNA via one-dimensional diffusion. These findings indicate that interactions between Msh2-Msh6 and DNA are dominated by lateral movement of the protein along the helical axis and have implications for how MutS family members travel along DNA at different stages of the repair reaction.
Collapse
Affiliation(s)
- Jason Gorman
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Vlček D, Ševčovičová A, Sviežená B, Gálová E, Miadoková E. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Genet 2007; 53:1-22. [DOI: 10.1007/s00294-007-0163-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/08/2007] [Accepted: 10/20/2007] [Indexed: 01/12/2023]
|
49
|
Cadet JL, Krasnova IN, Jayanthi S, Lyles J. Neurotoxicity of substituted amphetamines: Molecular and cellular mechanisms. Neurotox Res 2007; 11:183-202. [PMID: 17449459 DOI: 10.1007/bf03033567] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The amphetamines, including amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA), are among abused drugs in the US and throughout the world. Their abuse is associated with severe neurologic and psychiatric adverse events including the development of psychotic states. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. The purpose of the present review is to summarize the toxic effects of AMPH, METH and MDMA. The paper also presents some of the factors that are thought to underlie this toxicity. These include oxidative stress, hyperthermia, excitotoxicity and various apoptotic pathways. Better understanding of the cellular and molecular mechanisms involved in their toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of amphetamine use disorders in humans.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, DHHS/NIH/NIDA, Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
50
|
Levine SM, Lin EA, Emara W, Kang J, DiBenedetto M, Ando T, Falush D, Blaser MJ. Plastic cells and populations: DNA substrate characteristics in Helicobacter pylori transformation define a flexible but conservative system for genomic variation. FASEB J 2007; 21:3458-67. [PMID: 17567566 DOI: 10.1096/fj.07-8501com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori, bacteria that colonize the human gastric mucosa, are naturally competent for transformation by exogenous DNA, and show a panmictic population structure. To understand the mechanisms involved in its horizontal gene transfer, we sought to define the interval required from exposure to substrate DNA until DNA uptake and expression of a selectable phenotype, as well as the relationship of transforming fragment length, concentration, homology, symmetry, and strandedness, to the transformation frequency. We provide evidence that natural transformation in H. pylori differs in efficiency among wild-type strains but is saturable and varies with substrate DNA length, symmetry, strandedness, and species origin. We show that H. pylori cells can be transformed within one minute of contact with DNA, by DNA fragments as small as 50 bp, and as few as 5 bp on one flank of a selectable single nucleotide mutation is sufficient substrate for recombination of a transforming fragment, and that double-stranded DNA is the preferred (1000-fold >single-stranded) substrate. The high efficiency of double-stranded DNA as transformation substrate, in conjunction with strain-specific restriction endonucleases suggests a model of short-fragment recombination favoring closest relatives, consistent with the observed H. pylori population biology.
Collapse
Affiliation(s)
- Steven M Levine
- Dept. of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|