1
|
Ge S, Zhang B. Analysis of the effect of pulsed light on the protein of Lactobacillus plantarum based on liquid mass spectrometry. Food Sci Biotechnol 2024; 33:617-624. [PMID: 38274179 PMCID: PMC10805731 DOI: 10.1007/s10068-023-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 01/27/2024] Open
Abstract
Studying the mutagenesis mechanism is crucial for pulsed light use in the food processing industry. After being exposed to pulsed light, the original strain Y Lactobacillus Plantarum CICC6048 was transformed into the high acid-producing mutant G10. The differing levels of protein expression between the two strains were compared using the LC-MS/MS analysis. The bacterium displayed a distinct differential protein composition after pulsed light treatment, according to GO analysis. A KEGG analysis revealed that the pathways for cofactor biosynthesis, starch, sucrose metabolism, and phosphate transfer systems were considerably different in the proteins of high acid-producing strains (PTS). In the protein interaction network, A0A0R2G2S1 showed the highest level of enhanced connectivity among the differentially expressed proteins. These pathways improve the efficiency of crucial metabolism and lessen DNA repair. They may be a key mechanism for increasing the growth rate and acid production of Lactobacillus Plantarum by pulsed light.
Collapse
Affiliation(s)
- Shanying Ge
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Moghaddam TK, Zhang J, Du G. UvrA expression of Lactococcus lactis NZ9000 improve multiple stresses tolerance and fermentation of lactic acid against salt stress. Journal of Food Science and Technology 2017; 54:639-649. [PMID: 28298677 DOI: 10.1007/s13197-017-2493-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022]
Abstract
Lactococcus lactis is subjected to several stressful conditions during industrial fermentation including oxidation, heating and cooling, acid, high osmolarity/dehydration and starvation. DNA lesion is a major cause of genetic instability in L. lactis that usually occurs at a low frequency, but it is greatly enhanced by environmental stresses. DNA damages produced by these environmental stresses are thought to induce DNA double-strand breaks, leading to illegitimate recombination. Nucleotide excision repair (NER) protein UvrA suppresses multiple stresses-induced illegitimate recombination. UvrA protein can survive a coincident condition of environmental harsh conditions, multiple stress factors supposedly encountered in the host and inducing UvrA in L. lactis. In this study the expression of UvrA and growth performance and viability of control strain L. lactisVector and recombinant strain L. lactisUvrA under multiple stress conditions were determined. The recombinants strain had 30.70 and 52.67% higher growth performances when subjected to acidic and osmotic stresses conditions. In addition, the L. lactisUvrA strain showed 1.85-, 1.65-, and 2.40-fold higher biomass, lactate production, and lactate productivity, compared with the corresponding values for L. lactisVector strain during the osmotic stress. Results demonstrated NER system is involved in adaptation to various stress conditions and suggested that cells with a compromised UvrA as DNA repair system have an enhanced protection behavior in L. lactis NZ9000 against DNA damage.
Collapse
Affiliation(s)
- Taher Khakpour Moghaddam
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 People's Republic of China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 People's Republic of China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 People's Republic of China
| |
Collapse
|
3
|
Creation of an ethanol-tolerant Saccharomyces cerevisiae strain by 266 nm laser radiation and repetitive cultivation. J Biosci Bioeng 2014; 118:508-13. [DOI: 10.1016/j.jbiosc.2014.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/26/2014] [Accepted: 04/22/2014] [Indexed: 11/23/2022]
|
4
|
Cheigh CI, Park MH, Chung MS, Shin JK, Park YS. Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.11.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Mattenberger Y, Mattson S, Métrailler J, Silva F, Belin D. 55.1, a gene of unknown function of phage T4, impacts on Escherichia coli folate metabolism and blocks DNA repair by the NER. Mol Microbiol 2011; 82:1406-21. [PMID: 22029793 DOI: 10.1111/j.1365-2958.2011.07897.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phage T4, the archetype of lytic bacterial viruses, needs only 62 genes to propagate under standard laboratory conditions. Interestingly, the T4 genome contains more than 100 putative genes of unknown function, with few detectable homologues in cellular genomes. To characterize this uncharted territory of genetic information, we have identified several T4 genes that prevent bacterial growth when expressed from plasmids under inducible conditions. Here, we report on the various phenotypes and molecular characterization of 55.1, one of the genes of unknown function. High-level expression from the arabinose-inducible P(BAD) promoter is toxic to the bacteria and delays the intracellular accumulation of phage without affecting the final burst size. Low-level expression from T4 promoter(s) renders bacteria highly sensitive to UV irradiation and hypersensitive to trimethoprim, an inhibitor of dihydrofolate reductase. The delay in intracellular phage accumulation requires UvsW, a T4 helicase that is also a suppressor of 55.1-induced toxicity and UV sensitivity. Genetic and biochemical experiments demonstrate that gp55.1 binds to FolD, a key enzyme of the folate metabolism and suppressor of 55.1. Finally, we show that gp55.1 prevents the repair of UV-induced DNA photoproducts by the nucleotide excision repair (NER) pathway through interaction with the UvrA and UvrB proteins.
Collapse
Affiliation(s)
- Yves Mattenberger
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Janowska B, Komisarski M, Prorok P, Sokołowska B, Kuśmierek J, Janion C, Tudek B. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli. Int J Biol Sci 2009; 5:611-20. [PMID: 19834545 PMCID: PMC2757579 DOI: 10.7150/ijbs.5.611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/15/2009] [Indexed: 01/15/2023] Open
Abstract
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.
Collapse
Affiliation(s)
- Beata Janowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
7
|
Bacterial stressors in minimally processed food. Int J Mol Sci 2009; 10:3076-3105. [PMID: 19742126 PMCID: PMC2738913 DOI: 10.3390/ijms10073076] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 11/17/2022] Open
Abstract
Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes.
Collapse
|
8
|
Hori M, Ishiguro C, Suzuki T, Nakagawa N, Nunoshiba T, Kuramitsu S, Yamamoto K, Kasai H, Harashima H, Kamiya H. UvrA and UvrB enhance mutations induced by oxidized deoxyribonucleotides. DNA Repair (Amst) 2007; 6:1786-93. [PMID: 17709303 DOI: 10.1016/j.dnarep.2007.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 10/22/2022]
Abstract
Oxidatively damaged DNA precursors (deoxyribonucleotides) are formed by reactive oxygen species. After the damaged DNA precursors are incorporated into DNA, they might be removed by DNA repair enzymes. In this study, to examine whether a nucleotide excision repair enzyme, Escherichia coli UvrABC, could suppress the mutations induced by oxidized deoxyribonucleotides in vivo, oxidized DNA precursors, 8-hydroxy-2'-deoxyguanosine 5'-triphosphate and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate, were introduced into uvrA, uvrB, and uvrC E. coli strains, and mutations in the chromosomal rpoB gene were analyzed. Unexpectedly, these oxidized DNA precursors induced mutations only slightly in the uvrA and uvrB strains. In contrast, effect of the uvrC-deficiency was not observed. Next, mutT, mutT/uvrA, and mutT/uvrB E. coli strains were treated with H2O2, and the rpoB mutant frequencies were calculated. The frequency of the H2O2-induced mutations was increased in all of the strains tested; however, the increase was three- to four-fold lower in the mutT/uvrA and mutT/uvrB strains than in the mutT strain. Thus, UvrA and UvrB are involved in the enhancement, but not in the suppression, of the mutations induced by these oxidized deoxyribonucleotides. These results suggest a novel role for UvrA and UvrB in the processing of oxidative damage.
Collapse
Affiliation(s)
- Mika Hori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tanaka M, Narumi I, Funayama T, Kikuchi M, Watanabe H, Matsunaga T, Nikaido O, Yamamoto K. Characterization of pathways dependent on the uvsE, uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. J Bacteriol 2005; 187:3693-7. [PMID: 15901692 PMCID: PMC1112038 DOI: 10.1128/jb.187.11.3693-3697.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of a radiation-resistant bacterium, Deinococcus radiodurans, contains one uvsE gene and two uvrA genes, uvrA1 and uvrA2. Using a series of mutants lacking these genes, we determined the biological significance of these components to UV resistance. The UV damage endonuclease (UvsE)-dependent excision repair (UVER) pathway and UvrA1-dependent pathway show some redundancy in their function to counteract the lethal effects of UV. Loss of these pathways does not cause increased sensitivity to UV mutagenesis, suggesting either that these pathways play no function in inducing mutations or that there are mechanisms to prevent mutation other than these excision repair pathways. UVER efficiently removes both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) from genomic DNA. In contrast, the UvrA1 pathway does not significantly contribute to the repair of CPDs but eliminates 6-4PPs. Inactivation of uvrA2 does not result in a deleterious effect on survival, mutagenesis, or the repair kinetics of CPDs and 6-4PPs, indicating a minor role in resistance to UV. Loss of uvsE, uvrA1, and uvrA2 reduces but does not completely abolish the ability to eliminate CPDs and 6-4PPs from genomic DNA. The result indicates the existence of a system that removes UV damage yet to be identified.
Collapse
Affiliation(s)
- Masashi Tanaka
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hirouchi T, Nakajima S, Najrana T, Tanaka M, Matsunaga T, Hidema J, Teranishi M, Fujino T, Kumagai T, Yamamoto K. A gene for a Class II DNA photolyase from Oryza sativa: cloning of the cDNA by dilution-amplification. Mol Genet Genomics 2003; 269:508-16. [PMID: 12764611 DOI: 10.1007/s00438-003-0856-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 04/25/2003] [Indexed: 10/26/2022]
Abstract
Ultraviolet radiation induces the formation of two classes of photoproducts in DNA-the cyclobutane pyrimidine dimer (CPD) and the pyrimidine [6-4] pyrimidone photoproduct (6-4 product). Many organisms produce enzymes, termed photolyases, which specifically bind to these lesions and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. Two classes of photolyases (class I and class II) repair CPDs. A gene that encodes a protein with class II CPD photolyase activity in vitro has been cloned from several plants including Arabidopsis thaliana, Cucumis sativus and Chlamydomonas reinhardtii. We report here the isolation of a homolog of this gene from rice (Oryza sativa), which was cloned on the basis of sequence similarity and PCR-based dilution-amplification. The cDNA comprises a very GC-rich (75%) 5; region, while the 3; portion has a GC content of 50%. This gene encodes a protein with CPD photolyase activity when expressed in E. coli. The CPD photolyase gene encodes at least two types of mRNA, formed by alternative splicing of exon 5. One of the mRNAs encodes an ORF for 506 amino acid residues, while the other is predicted to code for 364 amino acid residues. The two RNAs occur in about equal amounts in O. sativa cells.
Collapse
Affiliation(s)
- T Hirouchi
- Department of Molecular Biosciences, Graduate School of Life Sciences, Tohoku University, 980-8577 Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|