1
|
Franklin A, Steele EJ, Lindley RA. A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases. Heliyon 2020; 6:e03258. [PMID: 32140575 PMCID: PMC7044655 DOI: 10.1016/j.heliyon.2020.e03258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanism of (CAG)n repeat generation, and related expandable repeat diseases in non-dividing cells, is currently understood in terms of a DNA template-based DNA repair synthesis process involving hairpin stabilized slippage, local error-prone repair via MutSβ (MSH2-MSH3) hairpin protective stabilization, then nascent strand extension by DNA polymerases-β and -δ. We advance a very similar slipped hairpin-stabilized model involving MSH2-MSH3 with two key differences: the copying template may also be the nascent pre-mRNA with the repair pathway being mediated by the Y-family error-prone enzymes DNA polymerase-η and DNA polymerase-κ acting as reverse transcriptases. We argue that both DNA-based and RNA-based mechanisms could well be activated in affected non-dividing brain cells in vivo. Here, we compare the advantages of the RNA/RT-based model proposed by us as an adjunct to previously proposed models. In brief, our model depends upon dysregulated innate and adaptive immunity cascades involving AID/APOBEC and ADAR deaminases that are known to be involved in normal locus-specific immunoglobulin somatic hypermutation, cancer progression and somatic mutations at many off-target non-immunoglobulin sites across the genome: we explain how these processes could also play an active role in repeat expansion diseases at RNA polymerase II-transcribed genes.
Collapse
Affiliation(s)
- Andrew Franklin
- Medical Department, Novartis Pharmaceuticals UK Limited, 200 Frimley Business Park, Frimley, Surrey, GU16 7SR, United Kingdom
| | - Edward J. Steele
- Melville Analytics Pty Ltd, Melbourne, Vic, 3004, Australia
- CYO’Connor ERADE Village Foundation, Perth, WA, Australia
| | - Robyn A. Lindley
- GMDxgenomics, Melbourne, Vic, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|
2
|
Abstract
The nucleotide excision repair (NER) system removes a variety of types of helix-distorting lesions from DNA through a dual incision mechanism, in which the damaged nucleotide bases are excised in the form of a small, excised, damage-containing single-stranded DNA oligonucleotide (sedDNA). Damage removal leaves a gap in the DNA template that must then be filled in by the action of a DNA polymerase and ligated to the downstream phosphodiester backbone in the DNA to complete the repair reaction. Defects in damage removal, sedDNA processing, or gap filling have the potential to be mutagenic and lethal to cells, and thus several human pathologies, including cancer and aging, are associated with defects in NER. This review summarizes our current understanding of NER with a focus on the enzymes that excise sedDNAs and restore the duplex DNA to its native state in human cells.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH, United States.
| |
Collapse
|
3
|
Kemp MG, Hu J. PostExcision Events in Human Nucleotide Excision Repair. Photochem Photobiol 2016; 93:178-191. [PMID: 27645806 DOI: 10.1111/php.12641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022]
Abstract
The nucleotide excision repair system removes a wide variety of DNA lesions from the human genome, including photoproducts induced by ultraviolet (UV) wavelengths of sunlight. A defining feature of nucleotide excision repair is its dual incision mechanism, in which two nucleolytic incision events on the damaged strand of DNA at sites bracketing the lesion generate a damage-containing DNA oligonucleotide and a single-stranded DNA gap approximately 30 nucleotides in length. Although the early events of nucleotide excision repair, which include lesion recognition and the dual incisions, have been explored in detail and are reasonably well understood, the fate of the single-stranded DNA gaps and excised oligonucleotide products of repair have not been as extensively examined. In this review, recent findings that address these less-explored aspects of nucleotide excision repair are discussed and support the concept that postincision gap and excised oligonucleotide processing are critical steps in the cellular response to DNA damage induced by UV light and other environmental carcinogens. Defects in these latter stages of repair lead to cell death and other DNA damage signaling responses and may therefore contribute to a number of human disease states associated with exposure to UV wavelengths of sunlight, including skin cancer, aging and autoimmunity.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH
| | - Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
4
|
McKay BC, Cabrita MA. Arresting transcription and sentencing the cell: the consequences of blocked transcription. Mech Ageing Dev 2013; 134:243-52. [PMID: 23542592 DOI: 10.1016/j.mad.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.
Collapse
Affiliation(s)
- Bruce C McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Canada.
| | | |
Collapse
|
5
|
Abstract
The late steps of nucleotide excision repair, following incisions to remove the damaged section of DNA, comprise repair synthesis and ligation. In vitro and in vivo studies have shown the size of the repaired patch to be about 30 nucleotides. In vitro studies implicated the replicative polymerases in repair synthesis, but recent in vivo data have shown that several DNA polymerases and ligases are involved in these steps in human cells.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
6
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70. [PMID: 19023283 DOI: 10.1038/nrm2549] [Citation(s) in RCA: 805] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
Collapse
|
8
|
Lainé JP, Egly JM. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J 2006; 25:387-97. [PMID: 16407975 PMCID: PMC1383516 DOI: 10.1038/sj.emboj.7600933] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/02/2005] [Indexed: 11/09/2022] Open
Abstract
The transcription-coupled repair (TCR) pathway preferentially repairs DNA damage located in the transcribed strand of an active gene. To gain insight into the coupling mechanism between transcription and repair, we have set up an in vitro system in which we isolate an elongating RNA pol IIO, which is stalled in front of a cisplatin adduct. This immobilized RNA pol IIO is used as 'bait' to sequentially recruit TFIIH, XPA, RPA, XPG and XPF repair factors in an ATP-dependent manner. This RNA pol IIO/repair complex allows the ATP-dependent removal of the lesion only in the presence of CSB, while the latter does not promote dual incision in an XPC-dependent nucleotide excision repair reaction. In parallel to the dual incision, the repair factors also allow the partial release of RNA pol IIO. In this 'minimal TCR system', the RNA pol IIO can effectively act as a loading point for all the repair factors required to eliminate a transcription-blocking lesion.
Collapse
Affiliation(s)
- Jean-Philippe Lainé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, CU Strasbourg, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, CU Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France. Tel.: +33 388 65 34 47; Fax: +33 388 65 32 01; E-mail:
| |
Collapse
|
9
|
Svetlova M, Solovjeva L, Blasius M, Shevelev I, Hubscher U, Hanawalt P, Tomilin N. Differential incorporation of halogenated deoxyuridines during UV-induced DNA repair synthesis in human cells. DNA Repair (Amst) 2005; 4:359-66. [PMID: 15661659 DOI: 10.1016/j.dnarep.2004.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 11/09/2004] [Indexed: 11/28/2022]
Abstract
Double labeling of interphase and metaphase chromosomes by 5-chlorodeoxyuridine (CldU) and 5-iododeoxyuridine (IdU) has been used in studies of the dynamics of DNA replication. Here, we have used this approach and confocal microscopy to analyze sites of DNA repair synthesis during nucleotide excision repair (NER) in quiescent human fibroblasts. Surprisingly, we have found that when both precursors are added at the same time to UV-irradiated cells they label different sites in the nucleus. In contrast, even very short periods of simultaneous IdU+CldU labeling of S-phase cells produced mostly overlapped IdU and CldU replication foci. The differential labeling of repair sites might be due to compartmentalization of I-dUTP and Cl-dUTP pools, or to differential utilization of these thymidine analogs by DNA polymerases delta and epsilon (Poldelta and Polepsilon). To explore the latter possibility we used purified mammalian polymerases to find that I-dUTP is efficiently utilized by both Poldelta and Polepsilon. However, we found that the UV-induced incorporation of IdU was more strongly stimulated by treatment of cells with hydroxyurea than was incorporation of CldU. This indicates that there may be distinct IdU and CldU-derived nucleotide pools differentially affected by inhibition of the ribonucleotide reductase pathway of dNTP synthesis and that is consistent with the view that differential incorporation of IdU and CldU during NER may be caused by compartmentalization of IdU- and CldU-derived nucleotide pools.
Collapse
Affiliation(s)
- Maria Svetlova
- Laboratory of Chromosome Stability, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
10
|
Tsutakawa SE, Cooper PK. Transcription-coupled repair of oxidative DNA damage in human cells: mechanisms and consequences. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:201-15. [PMID: 12760034 DOI: 10.1101/sqb.2000.65.201] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S E Tsutakawa
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
11
|
Hanawalt PC, Crowley DJ, Ford JM, Ganesan AK, Lloyd DR, Nouspikel T, Smith CA, Spivak G, Tornaletti S. Regulation of nucleotide excision repair in bacteria and mammalian cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:183-91. [PMID: 12760032 DOI: 10.1101/sqb.2000.65.183] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- P C Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Svetlova M, Solovjeva L, Pleskach N, Yartseva N, Yakovleva T, Tomilin N, Hanawalt P. Clustered sites of DNA repair synthesis during early nucleotide excision repair in ultraviolet light-irradiated quiescent human fibroblasts. Exp Cell Res 2002; 276:284-95. [PMID: 12027458 DOI: 10.1006/excr.2002.5519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitous process of nucleotide excision repair includes an obligatory step of DNA repair synthesis (DRS) to fill the gapped heteroduplex following excision of a short (approximately 30-nucleotide) damaged single-strand fragment. Using 5-iododeoxyuridine to label repair patches during the first 10-60 min after UV irradiation of quiescent normal human fibroblasts we have visualized a limited number of discrete foci of DRS. These must reflect clusters of elementary DRS patches, since single patches would not be detected. The DRS foci are attenuated in normal cells treated with alpha-amanitin or in Cockayne syndrome (CS) cells, which are specifically deficient in the pathway of transcription-coupled repair (TCR). It is therefore likely that the clusters of DRS arise in chromatin domains within which RNA polymerase II transcription is compartmentalized. However, we also found significant suppression of DRS foci in xeroderma pigmentosum, complementation group C cells in which global genome repair (GGR) is defective, but TCR is normal. This suggests that the TCR is responsible for the DRS cluster formation in the absence of GGR. The residual foci detected in CS cells indicate that, even at early times following UV irradiation, GGR may open some chromatin domains for processive scanning and consequent DRS independent of transcription.
Collapse
Affiliation(s)
- Maria Svetlova
- Laboratory of Chromosome Stability, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The early studies are recounted, that led to the discovery of the ubiquitous process of DNA excision repair, followed by a review of the pathways of transcription-coupled repair (TCR) and global genomic nucleotide excision repair (GGR). Repair replication of damaged DNA in UV-irradiated bacteria was discovered through the use of 5-bromouracil to density-label newly synthesized DNA. This assay was then used in human cells to validate the phenomenon of unscheduled DNA synthesis as a measure of excision repair and to elucidate the first example of a DNA repair disorder, xeroderma pigmentosum. Features of the TCR pathway (that is defective in Cockayne syndrome (CS)) include the possibility of "gratuitous TCR" at transcription pause sites in undamaged DNA. The GGR pathway is shown to be controlled through the SOS stress response in E. coli and through the activated product of the p53 tumor suppressor gene in human cells. These regulatory systems particularly affect the efficiency of repair of the predominant UV-induced photoproduct, the cyclobutane pyrimidine dimer, as well as that of chemical carcinogen adducts, such as benzo(a)pyrene diol-epoxide. Rodent cells (typically lacking the p53-controlled GGR pathway) and tumor virus infected human cells (in which p53 function is abrogated) are unable to carry out efficient GGR of some lesions. Therefore, caution should be exercised in the interpretation of results from such systems for risk assessment in genetic toxicology. Many problems in excision repair remain to be solved, including the mechanism of scanning the DNA for lesions and the subcellular localization of the repair factories. Also there are persisting questions regarding the multiple options of repair, recombination, and translesion synthesis when replication forks encounter lesions in the template DNA. That is where the field of DNA excision repair began four decades ago with studies on the recovery of DNA synthesis in UV-irradiated bacteria.
Collapse
Affiliation(s)
- P C Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
14
|
Okano S, Kanno S, Nakajima S, Yasui A. Cellular responses and repair of single-strand breaks introduced by UV damage endonuclease in mammalian cells. J Biol Chem 2000; 275:32635-41. [PMID: 10924509 DOI: 10.1074/jbc.m004085200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although single-strand breaks (SSBs) occur frequently, the cellular responses and repair of SSB are not well understood. To address this, we established mammalian cell lines expressing Neurospora crassa UV damage endonuclease (UVDE), which introduces a SSB with a 3'-OH immediately 5' to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts and initiates an alternative excision repair process. Xeroderma pigmentosum group A cells expressing UVDE show UV resistance of almost the wild-type level. In these cells SSBs are produced upon UV irradiation and then efficiently repaired. The repair patch size is about seven nucleotides, and repair synthesis is decreased to 30% by aphidicolin, suggesting the involvement of a DNA polymerase delta/epsilon-dependent long-patch repair. Immediately after UV irradiation, cellular proteins are poly(ADP-ribosyl)ated. The UV resistance of the cells is decreased in the presence of 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase. Expression of UVDE in XRCC1-defective EM9, a Chinese hamster ovary cell line, greatly sensitizes the host cells to UV, and addition of 3-aminobenzamide results in almost no further sensitization of the cells to UV. Thus, we show that XRCC1 and PARP are involved in the same pathway for the repair of SSBs.
Collapse
Affiliation(s)
- S Okano
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, 980-8575 Japan
| | | | | | | |
Collapse
|
15
|
Batty D, Rapic'-Otrin V, Levine AS, Wood RD. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol 2000; 300:275-90. [PMID: 10873465 DOI: 10.1006/jmbi.2000.3857] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotide excision repair (NER) of DNA damage requires an efficient means of discrimination between damaged and non-damaged DNA. Cells from humans with xeroderma pigmentosum group C do not perform NER in the bulk of the genome and are corrected by XPC protein, which forms a complex with hHR23B protein. This complex preferentially binds to some types of damaged DNA, but the extent of discrimination in comparison to other NER proteins has not been clear. Recombinant XPC, hHR23B, and XPC-hHR23B complex were purified. In a reconstituted repair system, hHR23B stimulated XPC activity tenfold. Electrophoretic mobility-shift competition measurements revealed a 400-fold preference for binding of XPC-hHR23B to UV damaged over non-damaged DNA. This damage preference is much greater than displayed by the XPA protein. The discrimination power is similar to that determined here in parallel for the XP-E factor UV-DDB, despite the considerably greater molar affinity of UV-DDB for DNA. Binding of XPC-hHR23B to UV damaged DNA was very fast. Damaged DNA-XPC-hHR23B complexes were stable, with half of the complexes remaining four hours after challenge with excess UV-damaged DNA at 30 degrees C. XPC-hHR23B had a higher level of affinity for (6-4) photoproducts than cyclobutane pyrimidine dimers, and some affinity for DNA treated with cisplatin and alkylating agents. XPC-hHR23B could bind to single-stranded M13 DNA, but only poorly to single-stranded homopolymers. The strong preference of XPC complex for structures in damaged duplex DNA indicates its importance as a primary damage recognition factor in non-transcribed DNA during human NER.
Collapse
Affiliation(s)
- D Batty
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | |
Collapse
|
16
|
Cleaver JE, Thompson LH, Richardson AS, States JC. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat 2000; 14:9-22. [PMID: 10447254 DOI: 10.1002/(sici)1098-1004(1999)14:1<9::aid-humu2>3.0.co;2-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy are caused by mutations in a set of interacting gene products, which carry out the process of nucleotide excision repair. The majority of the genes have now been cloned and many mutations in the genes identified. The relationships between the distribution of mutations in the genes and the clinical presentations can be used for diagnosis and for understanding the functions and the modes of interaction among the gene products. The summary presented here represents currently known mutations that can be used as the basis for future studies of the structure, function, and biochemical properties of the proteins involved in this set of complex disorders, and may allow determination of the critical sites for mutations leading to different clinical manifestations. The summary indicates where more data are needed for some complementation groups that have few reported mutations, and for the groups for which the gene(s) are not yet cloned. These include the Xeroderma pigmentosum (XP) variant, the trichothiodystrophy group A (TTDA), and ultraviolet sensitive syndrome (UVs) groups. We also recommend that the XP-group E should be defined explicitly through molecular terms, because assignment by complementation in culture has been difficult. XP-E by this definition contains only those cell lines and patients that have mutations in the small subunit, DDB2, of a damage-specific DNA binding protein.
Collapse
Affiliation(s)
- J E Cleaver
- UCSF Cancer Center and Department of Dermatology, University of California, San Francisco 94143-0808, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted.
Collapse
Affiliation(s)
- D P Batty
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | |
Collapse
|
18
|
Ganesan AK, Hunt J, Hanawalt PC. Expression and nucleotide excision repair of a UV-irradiated reporter gene in unirradiated human cells. Mutat Res 1999; 433:117-26. [PMID: 10102038 DOI: 10.1016/s0921-8777(98)00070-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It has been suggested that reactivation of damaged reporter genes introduced into cultured mammalian cells reflects transcription-coupled nucleotide excision repair. To evaluate this possibility directly, we introduced a UV-irradiated shuttle vector, pCMV beta, into unirradiated human cells and compared expression of the reporter gene (lacZ) with repair of cyclobutane pyrimidine dimers (CPDs). Expression of the irradiated reporter gene was more UV resistant in XPC cells, which are deficient in global genome repair, than in CSB cells, which are deficient in transcription-coupled repair. These results are consistent with the idea that repair of the reporter gene is primarily dependent upon transcription-coupled repair. However, when the plasmid DNA was analyzed for removal of CPDs, no clear evidence was obtained for transcription-coupled repair either in XPC cells or in cells with normal repair capacity.
Collapse
Affiliation(s)
- A K Ganesan
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA.
| | | | | |
Collapse
|
19
|
Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 1999; 96:424-8. [PMID: 9892649 PMCID: PMC15152 DOI: 10.1073/pnas.96.2.424] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In human cells, efficient global genomic repair of DNA damage induced by ultraviolet radiation requires the p53 tumor suppressor, but the mechanism has been unclear. The p48 gene is required for expression of an ultraviolet radiation-damaged DNA binding activity and is disrupted by mutations in the subset of xeroderma pigmentosum group E cells that lack this activity. Here, we show that p48 mRNA levels strongly depend on basal p53 expression and increase further after DNA damage in a p53-dependent manner. Furthermore, like p53(-/-) cells, xeroderma pigmentosum group E cells are deficient in global genomic repair. These results identify p48 as the link between p53 and the nucleotide excision repair apparatus.
Collapse
Affiliation(s)
- B J Hwang
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5115, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Some types of damage to cellular DNA have been shown to interfere with the essential transactions of replication and transcription. Not only may the translocation of the polymerase be arrested at the site of the lesion but the bound protein may encumber recognition of the lesion by repair enzymes. In the case of transcription a subpathway of excision repair, termed transcription-coupled repair (TCR) has been shown to operate on lesions in the transcribed strands of expressed genes in bacteria, yeast, mammalian cells and a number of other organisms. Certain genes in mammalian cells (e.g., CSA and CSB) have been uniquely implicated in TCR while others (e.g., XPC-HR23 and XPE) have been shown to operate in the global genomic pathway of nucleotide excision repair, but not in TCR. In order to understand the mechanism of TCR it is important to learn how an RNA polymerase elongation complex interacts with a damaged DNA template. That relationship is explored for different lesions and different RNA polymerase systems in this article.
Collapse
Affiliation(s)
- S Tornaletti
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | |
Collapse
|
21
|
Abstract
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.
Collapse
Affiliation(s)
- R D Wood
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| |
Collapse
|
22
|
Abstract
Deleterious alterations in cellular DNA result from endogenous sources of damage, as well as from external radiations and genotoxic chemicals in the environment. Although it is often difficult to ascertain the relative contributions to biological endpoints from endogenous vs. environmental sources of genomic instability, such determinations are highly relevant to risk estimates based upon perceived toxic levels of environmental agents. Of particular concern are the DNA lesions caused by reactive oxygen species that are generated both as a byproduct of oxidative metabolism and as a consequence of exposure to ionizing radiation and some other toxicants. We need to better understand the sequence of biochemical events that occurs between the initial formation of a DNA lesion and the biological outcome. These events may include transcription, replication, and cell cycle regulation, as well as DNA repair. Heterogeneity in the intragenomic distribution of lesions and their repair must also be taken into account. Expressed genes are unusually susceptible to alteration by some agents, and preferential repair of some lesions is targeted to transcribed DNA strands. An arrested RNA polymerase at a lesion may block access of repair enzymes, and it may also serve as a signal for upregulation of repair enzymes, cell cycle arrest and/or apoptosis. Our current understanding of the role of transcription in lesion processing and biological outcomes will be summarized, with particular emphasis upon the information gained from characterization of human genetic diseases expressing defects in the processing of damaged DNA. In some cases, the clinical features of these diseases might be understood in terms of deficiencies in the repair of lesions that arrest transcription.
Collapse
Affiliation(s)
- P C Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|