1
|
Mangoli S, Rath D, Goswami M, Jawali N. Increased ultraviolet radiation sensitivity of Escherichia coli grown at low temperature. Can J Microbiol 2014; 60:327-31. [PMID: 24802940 DOI: 10.1139/cjm-2013-0874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The repair of DNA damage caused by ultraviolet radiation (UVR) is well understood in both lower and higher organisms. Genetic studies carried out at optimum temperature for growth, 37 °C in Escherichia coli, have revealed the major pathways of DNA repair. We show that E. coli cells grown at 20 °C are more sensitive to UVR than cells grown at 37 °C. The analysis of knockout mutants demonstrates that cells impaired in recombinational DNA repair pathways show increased UV sensitivity at 20 °C. Cells with mutations in the nucleotide excision repair (NER) pathway genes are highly sensitive to UVR when grown at 37 °C and retain that sensitivity when grown at 20 °C, whereas wild-type cells are not sensitive when grown at 37 °C but become more sensitive to UVR when grown at low temperatures. Our results taken along with reports from the literature suggest that the UVR sensitivity of E. coli cells at low temperature could be due to impaired NER function.
Collapse
Affiliation(s)
- Suhas Mangoli
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | | | |
Collapse
|
2
|
Ström CE, Mortusewicz O, Finch D, Parsons JL, Lagerqvist A, Johansson F, Schultz N, Erixon K, Dianov GL, Helleday T. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair (Amst) 2011; 10:961-9. [PMID: 21840775 DOI: 10.1016/j.dnarep.2011.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/05/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
Abstract
CK2 phosphorylates the scaffold protein XRCC1, which is required for efficient DNA single-strand break (SSB) repair. Here, we express an XRCC1 protein (XRCC1(ckm)) that cannot be phosphorylated by CK2 in XRCC1 mutated EM9 cells and show that the role of this post-translational modification gives distinct phenotypes in SSB repair and base excision repair (BER). Interestingly, we find that fewer SSBs are formed during BER after treatment with the alkylating agent dimethyl sulfate (DMS) in EM9 cells expressing XRCC1(ckm) (CKM cells) or following inhibition with the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). We also show that XRCC1(ckm) protein has a higher affinity for DNA than wild type XRCC1 protein and resides in an immobile fraction on DNA, in particular after damage. We propose a model whereby the increased affinity for DNA sequesters XRCC1(ckm) and the repair enzymes associated with it, at the repair site, which retards kinetics of BER. In conclusion, our results indicate that phosphorylation of XRCC1 by CK2 facilitates the BER incision step, likely by promoting dissociation from DNA.
Collapse
Affiliation(s)
- Cecilia E Ström
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Vilchez Larrea SC, Alonso GD, Schlesinger M, Torres HN, Flawiá MM, Fernández Villamil SH. Poly(ADP-ribose) polymerase plays a differential role in DNA damage-response and cell death pathways in Trypanosoma cruzi. Int J Parasitol 2010; 41:405-16. [PMID: 21185298 DOI: 10.1016/j.ijpara.2010.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/05/2010] [Indexed: 12/20/2022]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are the enzymes responsible for poly(ADP-ribose) (PAR) polymer metabolism and are present in most higher eukaryotes. The best understood role of PARP is the maintenance of genomic integrity either via promotion of DNA repair at low levels of genotoxic stress or via promotion of cell death at higher levels of damage. The unicellular eukaryote Trypanosoma cruzi, as opposed to humans and other organisms, has only one PARP (TcPARP) and one PARG (TcPARG). In the present study we show that under different DNA-damaging agents (H(2)O(2) or UV-C radiation) TcPARP is activated and translocated from the cytosol to the nucleus, while TcPARG always shows a nuclear localisation. Parasites in the presence of PARP or PARG inhibitors, as well as parasites over-expressing either TcPARP or TcPARG, suggested that PAR metabolism could be involved in different phases of cell growth, even in the absence of DNA damage. We also believe that we provide the first reported evidence that different proteins could be poly(ADP-ribosyl)ated in response to different stimuli, leading to different cell death pathways.
Collapse
Affiliation(s)
- Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
4
|
Ström CE, Johansson F, Uhlén M, Szigyarto CAK, Erixon K, Helleday T. Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res 2010; 39:3166-75. [PMID: 21183466 PMCID: PMC3082910 DOI: 10.1093/nar/gkq1241] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Base excision repair (BER) represents the most important repair pathway of endogenous DNA lesions. Initially, a base damage is recognized, excised and a DNA single-strand break (SSB) intermediate forms. The SSB is then ligated, a process that employs proteins also involved in SSB repair, e.g. XRCC1, Ligase III and possibly PARP1. Here, we confirm the role of XRCC1 and PARP in direct SSB repair. Interestingly, we uncover a synthetic lethality between XRCC1 deficiency and PARP inhibition. We also treated cells with alkylating agent dimethyl sulfate (DMS) and monitored the SSB intermediates formed during BER. DMS-induced SSBs were quickly repaired in wild-type cells; while a rapid accumulation of SSBs was observed in cells where post-incision repair was blocked by a PARP inhibitor or by XRCC1 deficiency (EM9 cells). Interestingly, DMS-induced SSBs did not accumulate in PARP1 siRNA depleted cells, demonstrating that PARP1 is not required for efficient completion of BER. Based on these results we suggest no immediate role for PARP1 in BER, but that PARP inhibitors trap PARP on the SSB intermediate formed during BER. Unexpectedly, addition of PARP inhibitor 2 h after DMS treatment still increased SSB levels indicating ongoing repair even at this late time point.
Collapse
Affiliation(s)
- Cecilia E Ström
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
El-Zein RA, Monroy CM, Cortes A, Spitz MR, Greisinger A, Etzel CJ. Rapid method for determination of DNA repair capacity in human peripheral blood lymphocytes amongst smokers. BMC Cancer 2010; 10:439. [PMID: 20718982 PMCID: PMC2933626 DOI: 10.1186/1471-2407-10-439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background DNA repair capacity is an important determinant of susceptibility to cancer. The hOGG1 enzyme is crucial for repairing the 8-oxoguanine lesion that occurs either as a byproduct of oxidative metabolism or as a result of exogenous sources such as exposure to cigarette smoke. It has been previously reported that smokers with low hOGG1 activity had significantly higher risk of developing lung cancer as compared to smokers with high hOGG1 activity. Methods In the current study we elucidate the association between plasma levels of 8-OHdG and the OGG1 repair capacity. We used the commercially available 8-OHdG ELISA (enzyme-linked immunosorbent assay), the Comet assay/FLARE hOGG1 (Fragment Length Analysis by Repair Enzymes) assay for quantification of the levels of 8-OHdG and measured the constitutive, induced and unrepaired residual damage, respectively. We compared the DNA repair capacity in peripheral blood lymphocytes following H2O2 exposure in 30 lung cancer patients, 30 non-, 30 former and 30 current smoker controls matched by age and gender. Results Our results show that lung cancer cases and current smoker controls have similar levels of 8-OHdG lesions that are significantly higher compared to the non-smokers controls. However, lung cancer cases showed significantly poorer repair capacity compared to all controls tested, including the current smokers controls. After adjustment for age, gender and family history of smoking-related cancer using linear regression, we observed a 5-fold increase in risk of lung cancer associated with high levels of residual damage/reduced repair capacity. Reduced OGG1 activity could be expected to be a risk factor in other smoking-related cancers. Conclusion Our study shows that the Comet/FLARE assay is a relatively rapid and useful method for determination of DNA repair capacity. Using this assay we could identify individuals with high levels of residual damage and hence poor repair capacity who would be good candidates for intensive follow-up and screening.
Collapse
Affiliation(s)
- Randa A El-Zein
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Bullock AK, Jeffrey WH. Temperature and Solar Radiation Interactions on 3H-leucine Incorporation by Bacterioplankton in a Subtropical Estuary. Photochem Photobiol 2010; 86:593-9. [DOI: 10.1111/j.1751-1097.2009.00695.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Biverstål A, Johansson F, Jenssen D, Erixon K. Cyclobutane pyrimidine dimers do not fully explain the mutagenicity induced by UVA in Chinese hamster cells. Mutat Res 2008; 648:32-9. [PMID: 18950648 DOI: 10.1016/j.mrfmmm.2008.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/26/2008] [Accepted: 09/11/2008] [Indexed: 11/25/2022]
Abstract
UVA generates low levels of cyclobutane pyrimidine dimers (CPDs). Here we asked the question whether CPDs could fully explain the level of mutations induced by UVA. Relative mutagenicities of UVA and UVC were calculated at equal levels of CPDs in cell lines, deficient in different aspects of repair. Survival and gene mutations in the hprt locus were analyzed in a set of Chinese hamster ovary (CHO) cell lines, i.e., wild-type, Cockayne syndrome B protein-deficient (CSB), XRCC3-deficient and XRCC1-deficient adjusted to the same level of CPDs which was analyzed as strand breaks as a result of DNA cleavage by T4 endonuclease V at CPD sites. Induced mutagenicity of UVA was approximately 2 times higher than the mutagenicity of UVC in both wild-type and XRCC1-deficient cells when calculated at equal level of CPDs. Since this discrepancy could be explained by the fact that the TT-dimers, induced by UVA, might be more mutagenic than C-containing CPDs induced by UVC, we applied acetophenone, a photosensitizer previously shown to generate enhanced levels of TT-CPDs upon UVB exposure. The results suggested that the TT-CPDs were actually less mutagenic than the C-containing CPDs. We also found that the mutagenic effect of UVA was not significantly enhanced in a cell line deficient in the repair of CPDs. Altogether this suggests that neither base excision- nor nucleotide excision-repair was involved. We further challenge the possibility that the lesion responsible for the mutations induced by UVA was of a more complex nature and which possibly is repaired by homologous recombination (HR). The results indicated that UVA was more recombinogenic than UVC at equal levels of CPDs. We therefore suggest that UVA induces a complex type of lesion, which might be an obstruction during replication fork progression that requires HR repair to be further processed.
Collapse
Affiliation(s)
- Anna Biverstål
- Stockholm University, Department of Genetics, Microbiology and Toxicology, Stockholm, Sweden
| | | | | | | |
Collapse
|
8
|
Lagerqvist A, Håkansson D, Prochazka G, Lundin C, Dreij K, Segerbäck D, Jernström B, Törnqvist M, Seidel A, Erixon K, Jenssen D. Both replication bypass fidelity and repair efficiency influence the yield of mutations per target dose in intact mammalian cells induced by benzo[a]pyrene-diol-epoxide and dibenzo[a,l]pyrene-diol-epoxide. DNA Repair (Amst) 2008; 7:1202-12. [PMID: 18479980 DOI: 10.1016/j.dnarep.2008.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/14/2008] [Accepted: 03/28/2008] [Indexed: 11/30/2022]
Abstract
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.
Collapse
Affiliation(s)
- Anne Lagerqvist
- Department of Genetics, Microbiology and Toxicology (GMT), Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
DAL H, BOLDEMANN C, LINDELÖF B. Trends during a half century in relative squamous cell carcinoma distribution by body site in the Swedish population: Support for accumulated sun exposure as the main risk factor. J Dermatol 2008; 35:55-62. [DOI: 10.1111/j.1346-8138.2008.00416.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wei Z, Lifen J, Jiliang H, Jianlin L, Baohong W, Hongping D. Detecting DNA repair capacity of peripheral lymphocytes from cancer patients with UVC challenge test and bleomycin challenge test. Mutagenesis 2005; 20:271-7. [PMID: 15899932 DOI: 10.1093/mutage/gei037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to evaluate DNA repair capacity of cancer patients with the bleomycin (BLM) challenge test and the UVC challenge test. The human peripheral lymphocytes were collected from 33 patients with different kinds of cancers and 33 controls in the same hospital. The lymphocytes of each subject were divided into two groups: (1) In the BLM challenge test, the lymphocytes were treated with BLM (20 microgml(-1)) for 30 min, and repaired for 15 min. The DNA damage before and after BLM exposure was detected with comet assay to assess DNA repair capacity. (2) In the UVC challenge test, the lymphocytes were exposed to UVC (254 nm) at the dose of 1.5 Jm(-2). DNA damage of lymphocytes was measured before UVC exposure and at 90 and 240 min after UVC exposure using comet assay, then DNA repair percentage (DRP) was calculated. The results of this study indicate that the average DRPs of cancer patients were 75.63 +/- 3.11 and 68.98 +/- 4.19% calculated with tail length (TL) and tail moment (TM), respectively, in the BLM challenge test, which were significantly lower than those (91.11 +/- 1.09 and 88.19 +/- 1.71%) of controls (P < 0.01). Also, the mean DRPs of cancer patients were 49.19 +/- 3.47 and 58.27 +/- 3.64% calculated with TL and TM, respectively, in the UVC test, which were significantly lower than those (77.52 +/- 2.06 and 83.12 +/- 2.36%) of controls (P < 0.01). The correlation between the DRPs (%) drawn with TL and TM in the BLM test or between the DRPs (%) drawn with mean TL and mean TM in the UVC challenge test were significant (P < 0.05). The DNA repair capacity measured with the BLM and UVC challenge tests in 33 cancer patients was significantly lower than that in controls.
Collapse
Affiliation(s)
- Zheng Wei
- Institute of Occupational and Environmental Institute, Medical College, Zhejiang University, 353 Yan An road, Hangzhou 310006, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Johansson F, Lundell T, Rydberg P, Erixon K, Jenssen D. Mutagenicity and DNA repair of glycidamide-induced adducts in mammalian cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 580:81-9. [PMID: 15668110 DOI: 10.1016/j.mrgentox.2004.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/05/2004] [Accepted: 11/11/2004] [Indexed: 01/04/2023]
Abstract
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell. A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.
Collapse
Affiliation(s)
- Fredrik Johansson
- Department of Genetics, Microbiology and Toxicology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
12
|
Busso C, Castro-Prado MAA. Cremophor EL stimulates mitotic recombination in uvsH//uvsH diploid strain of Aspergillus nidulans. AN ACAD BRAS CIENC 2004; 76:49-55. [PMID: 15048194 DOI: 10.1590/s0001-37652004000100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cremophor EL is a solubilizer and emulsifier agent used in the pharmaceutical and foodstuff industries. The solvent is the principal constituent of paclitaxel's clinical formulation vehicle. Since mitotic recombination plays a crucial role in multistep carcinogenesis, the study of the recombinagenic potential of chemical compounds is of the utmost importance. In our research genotoxicity of cremophor EL has been studied by using an uvsH//uvsH diploid strain of Aspergillus nidulans. Since it spends a great part of its cell cycle in the G2period, this fungus is a special screening system for the study of mitotic recombination induced by chemical substances. Homozygotization Indexes (HI) for paba and bi markers from heterozygous B211//A837 diploid strain were determined for the evaluation of the recombinagenic effect of cremophor EL. It has been shown that cremophor EL induces increase in mitotic crossing-over events at nontoxic concentrations (0.05 and 0.075% v/v).
Collapse
Affiliation(s)
- Cleverson Busso
- Universidade Estadual de Maringá, Departamento de Biologia Celular e Genética, 87020-900, Maringá, PR, Brasil
| | | |
Collapse
|
13
|
Fortini P, Pascucci B, Belisario F, Dogliotti E. DNA polymerase beta is required for efficient DNA strand break repair induced by methyl methanesulfonate but not by hydrogen peroxide. Nucleic Acids Res 2000; 28:3040-6. [PMID: 10931918 PMCID: PMC108440 DOI: 10.1093/nar/28.16.3040] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Revised: 06/27/2000] [Accepted: 06/27/2000] [Indexed: 11/12/2022] Open
Abstract
The most frequent DNA lesions in mammalian genomes are removed by the base excision repair (BER) via multiple pathways that involve the replacement of one or more nucleotides at the lesion site. The biological consequences of a BER defect are at present largely unknown. We report here that mouse cells defective in the main BER DNA polymerase beta (Pol beta) display a decreased rate of DNA single-strand breaks (ssb) rejoining after methyl methanesulfonate damage when compared with wild-type cells. In contrast, Pol beta seems to be dispensable for hydrogen peroxide-induced DNA ssb repair, which is equally efficient in normal and defective cells. By using an in vitro repair assay on single abasic site-containing circular duplex molecules, we show that the long-patch BER is the predominant repair route in Pol beta-null cell extract. Our results strongly suggest that the Pol beta-mediated single nucleotide BER is the favorite pathway for repair of N-methylpurines while oxidation-induced ssb, likely arising from oxidized abasic sites, are the substrate for long-patch BER.
Collapse
Affiliation(s)
- P Fortini
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
14
|
McKay BC, Chen F, Perumalswami CR, Zhang F, Ljungman M. The tumor suppressor p53 can both stimulate and inhibit ultraviolet light-induced apoptosis. Mol Biol Cell 2000; 11:2543-51. [PMID: 10930452 PMCID: PMC14938 DOI: 10.1091/mbc.11.8.2543] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that the tumor suppressor p53 can play a protective role against UV-induced apoptosis in human fibroblasts. In the present study, we investigated whether the protective function of p53 expression is established before or after UV irradiation. Using a stable human cell line expressing a murine temperature-sensitive p53 in which p53 function could be tightly and reversibly regulated, we found that functional p53 stimulated the induction of apoptosis when expressed for as little as 4-12 h after UV irradiation and that this induction was not dependent on de novo protein synthesis. In contrast, expression of p53 for 12 h or more before UV irradiation reduced the extent of apoptosis even when functional p53 expression was maintained after irradiation. The protection conferred by p53 required ongoing protein synthesis and correlated with enhanced recovery of mRNA synthesis. Together, these results suggest that p53 induces distinct proapoptotic and antiapoptotic signals and that these opposing activities can be separated both temporally and by their requirement for de novo protein synthesis. These findings may have important implications for the refinement of gene therapy approaches combining p53 with pharmacological agents that target transcription or translation.
Collapse
Affiliation(s)
- B C McKay
- Department of Radiation Oncology, Division of Cancer Biology, University of Michigan Comprehensive Cancer Center, Ann Arbor 48109-0936, USA
| | | | | | | | | |
Collapse
|
15
|
Brenneisen P, Wenk J, Wlaschek M, Krieg T, Scharffetter-Kochanek K. Activation of p70 ribosomal protein S6 kinase is an essential step in the DNA damage-dependent signaling pathway responsible for the ultraviolet B-mediated increase in interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3) protein levels in human dermal fibroblasts. J Biol Chem 2000; 275:4336-44. [PMID: 10660603 DOI: 10.1074/jbc.275.6.4336] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ultraviolet B (UVB) irradiation has been shown to stimulate the expression of matrix-degrading metalloproteinases via generation of DNA damage and/or reactive oxygen species. Matrix-degrading metalloproteinases promote UVB-triggered detrimental long term effects like cancer formation and premature skin aging. Here, we were interested in identifying components of the signal transduction pathway that causally link UVB-mediated DNA damage and induction of matrix-degrading metalloproteinase (MMP)-1/interstitial collagenase and MMP-3/stromelysin-1 in human dermal fibroblasts in vitro. The activity of p70 ribosomal S6 kinase, a downstream target of the FK506-binding protein-12/rapamycin-associated protein kinase (FRAP) kinase (RAFT1, mTOR), was identified to be 4.8 +/- 0.8-fold, and MMP-1 and MMP-3 protein levels 2.4- and 11.5-fold increased upon UVB irradiation compared with mock-irradiated controls. The FRAP kinase inhibitor rapamycin and the DNA repair inhibitor aphidicolin significantly suppressed the UVB-mediated increase in p70 ribosomal S6 kinase activity by 50-65% and MMP-1 and MMP-3 protein levels by 34-68% and 42-88% compared with UVB-irradiated fibroblasts. By contrast, the interleukin-1beta-mediated increase in MMP-1 and MMP-3 protein levels could not be suppressed by rapamycin. Collectively, our data suggest that the FRAP-controlled p70 ribosomal S6 kinase is an essential component of a DNA damage-dependent, but not of the interleukin-1/cell membrane receptor-dependent signaling.
Collapse
Affiliation(s)
- P Brenneisen
- Department of Dermatology, University of Cologne, D-50924 Cologne, Germany
| | | | | | | | | |
Collapse
|