1
|
Saha D, Pramanik A, Freville A, Siddiqui AA, Pal U, Banerjee C, Nag S, Debsharma S, Pramanik S, Mazumder S, Maiti NC, Datta S, van Ooij C, Bandyopadhyay U. Structure-function analysis of nucleotide housekeeping protein HAM1 from human malaria parasite Plasmodium falciparum. FEBS J 2024; 291:4349-4371. [PMID: 39003571 DOI: 10.1111/febs.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the β-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.
Collapse
Affiliation(s)
- Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Pramanik
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aline Freville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uttam Pal
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, India
| | - Nakul C Maiti
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saumen Datta
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Biochemical and mutational studies of an endonuclease V from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. World J Microbiol Biotechnol 2023; 39:90. [PMID: 36752840 DOI: 10.1007/s11274-023-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.
Collapse
|
3
|
Structural basis for recognition of distinct deaminated DNA lesions by endonuclease Q. Proc Natl Acad Sci U S A 2021; 118:2021120118. [PMID: 33658373 DOI: 10.1073/pnas.2021120118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spontaneous deamination of DNA cytosine and adenine into uracil and hypoxanthine, respectively, causes C to T and A to G transition mutations if left unrepaired. Endonuclease Q (EndoQ) initiates the repair of these premutagenic DNA lesions in prokaryotes by cleaving the phosphodiester backbone 5' of either uracil or hypoxanthine bases or an apurinic/apyrimidinic (AP) lesion generated by the excision of these damaged bases. To understand how EndoQ achieves selectivity toward these structurally diverse substrates without cleaving undamaged DNA, we determined the crystal structures of Pyrococcus furiosus EndoQ bound to DNA substrates containing uracil, hypoxanthine, or an AP lesion. The structures show that substrate engagement by EndoQ depends both on a highly distorted conformation of the DNA backbone, in which the target nucleotide is extruded out of the helix, and direct hydrogen bonds with the deaminated bases. A concerted swing motion of the zinc-binding and C-terminal helical domains of EndoQ toward its catalytic domain allows the enzyme to clamp down on a sharply bent DNA substrate, shaping a deep active-site pocket that accommodates the extruded deaminated base. Within this pocket, uracil and hypoxanthine bases interact with distinct sets of amino acid residues, with positioning mediated by an essential magnesium ion. The EndoQ-DNA complex structures reveal a unique mode of damaged DNA recognition and provide mechanistic insights into the initial step of DNA damage repair by the alternative excision repair pathway. Furthermore, we demonstrate that the unique activity of EndoQ is useful for studying DNA deamination and repair in mammalian systems.
Collapse
|
4
|
YwqL (EndoV), ExoA and PolA act in a novel alternative excision pathway to repair deaminated DNA bases in Bacillus subtilis. PLoS One 2019; 14:e0211653. [PMID: 30726292 PMCID: PMC6364969 DOI: 10.1371/journal.pone.0211653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/17/2019] [Indexed: 11/19/2022] Open
Abstract
DNA deamination generates base transitions and apurinic/apyrimidinic (AP)-sites which are potentially genotoxic and cytotoxic. In Bacillus subtilis uracil can be removed from DNA by the uracil DNA-glycosylase through the base excision repair pathway. Genetic evidence suggests that B. subtilis YwqL, a homolog of Endonuclease-V (EndoV), acts on a wider spectrum of deaminated bases but the factors that complete this pathway have remained elusive. Here, we report that a purified His6-YwqL (hereafter BsEndoV) protein had in vitro endonuclease activity against double-stranded DNAs containing a single uracil (U), hypoxanthine (Hx), xanthine (X) or an AP site. Interestingly, while BsEndoV catalyzed a single strand break at the second phosphodiester bond towards the 3'-end of the U and AP lesions, there was an additional cleavage of the phosphodiester bond preceding the Hx and X lesions. Remarkably, the repair event initiated by BsEndoV on Hx and X, was completed by a recombinant B. subtilis His6-DNA polymerase A (BsPolA), but not on BsEndoV-processed U and AP lesions. For the latter lesions a second excision event performed by a recombinant B. subtilis His6-ExoA (BsExoA) was necessary before completion of their repair by BsPolA. These results suggest the existence of a novel alternative excision repair pathway in B. subtilis that counteracts the genotoxic effects of base deamination. The presence of this novel pathway in vivo in B. subtilis was also supported by analysis of effects of single or multiple deletions of exoA, endoV and polA on spontaneous mutations in growing cells, and the sensitivity of growing wild-type and mutant cells to a DNA deaminating agent.
Collapse
|
5
|
Breaking the speed limit with multimode fast scanning of DNA by Endonuclease V. Nat Commun 2018; 9:5381. [PMID: 30568191 PMCID: PMC6300609 DOI: 10.1038/s41467-018-07797-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
In order to preserve genomic stability, cells rely on various repair pathways for removing DNA damage. The mechanisms how enzymes scan DNA and recognize their target sites are incompletely understood. Here, by using high-localization precision microscopy along with 133 Hz high sampling rate, we have recorded EndoV and OGG1 interacting with 12-kbp elongated λ-DNA in an optical trap. EndoV switches between three distinct scanning modes, each with a clear range of activation energy barriers. These results concur with average diffusion rate and occupancy of states determined by a hidden Markov model, allowing us to infer that EndoV confinement occurs when the intercalating wedge motif is involved in rigorous probing of the DNA, while highly mobile EndoV may disengage from a strictly 1D helical diffusion mode and hop along the DNA. This makes EndoV the first example of a monomeric, single-conformation and single-binding-site protein demonstrating the ability to switch between three scanning modes. How DNA repair proteins locate their target sites on DNA is still a matter of debate. Here the authors characterize by single-molecule fluorescence imaging the modes of scanning adopted by bacterial endonuclease V as it moves along linear DNA tracks.
Collapse
|
6
|
Wang Y, Zhang L, Zhu X, Li Y, Shi H, Oger P, Yang Z. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 2018; 117:17-24. [DOI: 10.1016/j.ijbiomac.2018.05.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023]
|
7
|
Gruber CC, Walker GC. Incomplete base excision repair contributes to cell death from antibiotics and other stresses. DNA Repair (Amst) 2018; 71:108-117. [PMID: 30181041 DOI: 10.1016/j.dnarep.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous lethal stresses in bacteria including antibiotics, thymineless death, and MalE-LacZ expression trigger an increase in the production of reactive oxygen species. This results in the oxidation of the nucleotide pool by radicals produced by Fenton chemistry. Following the incorporation of these oxidized nucleotides into the genome, the cell's unsuccessful attempt to repair these lesions through base excision repair (BER) contributes causally to the lethality of these stresses. We review the evidence for this phenomenon of incomplete BER-mediated cell death and discuss how better understanding this pathway could contribute to the development of new antibiotics.
Collapse
Affiliation(s)
- Charley C Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
8
|
Insights into the role of endonuclease V in RNA metabolism in Trypanosoma brucei. Sci Rep 2017; 7:8505. [PMID: 28819113 PMCID: PMC5561087 DOI: 10.1038/s41598-017-08910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
Inosine may arise in DNA as a result of oxidative deamination of adenine or misincorporation of deoxyinosine triphosphate during replication. On the other hand, the occurrence of inosine in RNA is considered a normal and essential modification induced by specific adenosine deaminases acting on mRNA and tRNA. In prokaryotes, endonuclease V (EndoV) can recognize and cleave inosine-containing DNA. In contrast, mammalian EndoVs preferentially cleave inosine-containing RNA, suggesting a role in RNA metabolism for the eukaryotic members of this protein family. We have performed a biochemical characterization of EndoV from the protozoan parasite Trypanosoma brucei. In vitro, TbEndoV efficiently processes single-stranded RNA oligonucleotides with inosine, including A to I-edited tRNA-like substrates but exhibits weak activity over DNA, except when a ribonucleotide is placed 3' to the inosine. Immunolocalization studies performed in procyclic forms indicate that TbEndoV is mainly cytosolic yet upon nutritional stress it redistributes and accumulates in stress granules colocalizing with the DEAD-box helicase TbDhh1. RNAi-mediated depletion of TbEndoV results in moderate growth defects in procyclic cells while the two EndoV alleles could be readily knocked out in bloodstream forms. Taken together, these observations suggest an important role of TbEndoV in RNA metabolism in procyclic forms of the parasite.
Collapse
|
9
|
Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation. J Bacteriol 2016; 198:3345-3354. [PMID: 27698084 DOI: 10.1128/jb.00625-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Aag from Bacillus subtilis has been implicated in in vitro removal of hypoxanthine and alkylated bases from DNA. The regulation of expression of aag in B. subtilis and the resistance to genotoxic agents and mutagenic properties of an Aag-deficient strain were studied here. A strain with a transcriptional aag-lacZ fusion expressed low levels of β-galactosidase during growth and early sporulation but exhibited increased transcription during late stages of this developmental process. Notably, aag-lacZ expression was higher inside the forespore than in the mother cell compartment, and this expression was abolished in a sigG-deficient background, suggesting a forespore-specific mechanism of aag transcription. Two additional findings supported this suggestion: (i) expression of an aag-yfp fusion was observed in the forespore, and (ii) in vivo mapping of the aag transcription start site revealed the existence of upstream regulatory sequences possessing homology to σG-dependent promoters. In comparison with the wild-type strain, disruption of aag significantly reduced survival of sporulating B. subtilis cells following nitrous acid or methyl methanesulfonate treatments, and the Rifr mutation frequency was significantly increased in an aag strain. These results suggest that Aag protects the genome of developing B. subtilis sporangia from the cytotoxic and genotoxic effects of base deamination and alkylation. IMPORTANCE In this study, evidence is presented revealing that aag, encoding a DNA glycosylase implicated in processing of hypoxanthine and alkylated DNA bases, exhibits a forespore-specific pattern of gene expression during B. subtilis sporulation. Consistent with this spatiotemporal mode of expression, Aag was found to protect the sporulating cells of this microorganism from the noxious and mutagenic effects of base deamination and alkylation.
Collapse
|
10
|
Kim JI, Tohashi K, Iwai S, Kuraoka I. Inosine-specific ribonuclease activity of natural variants of human endonuclease V. FEBS Lett 2016; 590:4354-4360. [PMID: 27800608 DOI: 10.1002/1873-3468.12470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
Adenine bases in DNA, RNA, and nucleotides are deaminated during normal metabolism via hydrolytic and nitrosative reactions. In RNA, the deaminated product inosine is resolved by human endonuclease V, and mice deficient in this enzyme are cancer-prone. We have now produced, purified, and characterized naturally occurring variants of human endonuclease V (V29I, R112Q, K114R, H141Y, and D201N). We found that H141Y, but not other variants, is catalytically impaired, suggesting that individuals homozygous for H141Y may be predisposed to disease.
Collapse
Affiliation(s)
- Jung In Kim
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Kosuke Tohashi
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Nie H, Huang H, Li W, Yang T. A Label-free Time-resolved Luminescent Platform for Sensitive Endonuclease V Detection Based on Exonuclease III Regulated DNA-Tb 3+ Luminescence. ANAL SCI 2016; 32:1245-1250. [PMID: 27829633 DOI: 10.2116/analsci.32.1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endonuclease V (EndoV) plays the important role of nucleotide excision repair (NER) in the maintenance of genomic stability. Highly sensitive detection of EndoV was achieved through an oligonucleotides sensitizing Tb3+ luminescent technique. We found that although both guanine-rich (G-rich) single-stranded DNA and dGMP could enhance the time-resolved luminescence of Tb3+, their efficiencies of enhancement were considerably different. Employing such interesting phenomenon, a label-free and time-resolved luminescent strategy for the sensitive detection of EndoV activity was developed based on DNA-enhanced time-resolved luminescence (TRL) of Tb3+. The EndoV was used to cut off the deoxyinosine site (dI) and convert the 3'-protruding termini to a recessed end, and Exonuclease III (Exo III) was used to enhance the signal contrast via digestion of G-rich DNA to dNTP. Combining with the natural advantages of the TRL, the proposed method exhibited a good linear response to EndoV ranging from 0.005 to 0.4 U/mL, with a low limit of detection of 0.005 U/mL.
Collapse
Affiliation(s)
- Huaijun Nie
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Drinking Water Source Safety Control, Shenzhen Research Academy of Environmental Sciences
| | | | | | | |
Collapse
|
12
|
Yoneshima Y, Abolhassani N, Iyama T, Sakumi K, Shiomi N, Mori M, Shiomi T, Noda T, Tsuchimoto D, Nakabeppu Y. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells. Sci Rep 2016; 6:32849. [PMID: 27618981 PMCID: PMC5020429 DOI: 10.1038/srep32849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity.
Collapse
Affiliation(s)
- Yasuto Yoneshima
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
| | - Teruaki Iyama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Center for Nucleotide Pool, Kyushu University, Fukuoka 812-8581, Japan
| | - Naoko Shiomi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masahiko Mori
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tadahiro Shiomi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tetsuo Noda
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Center for Nucleotide Pool, Kyushu University, Fukuoka 812-8581, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8581, Japan
- Research Center for Nucleotide Pool, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
13
|
Crystal structure of E. coli endonuclease V, an essential enzyme for deamination repair. Sci Rep 2015; 5:12754. [PMID: 26244280 PMCID: PMC4650699 DOI: 10.1038/srep12754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022] Open
Abstract
Endonuclease V (EndoV) is a ubiquitous protein present in all three kingdoms of life, responsible for the specific cleavages at the second phosphodiester bond 3’ to inosine. E. coli EndoV (EcEndoV) is the first member discovered in the EndoV family. It is a small protein with a compact gene organization, yet with a wide spectrum of substrate specificities. However, the structural basis of its substrate recognition is not well understood. In this study, we determined the 2.4 Å crystal structure of EcEndoV. The enzyme preserves the general ‘RNase H-like motif’ structure. Two subunits are almost fully resolved in the asymmetric unit, but they are not related by any 2-fold axes. Rather, they establish “head-to-shoulder” contacts with loose interactions between each other. Mutational studies show that mutations that disrupt the association mode of the two subunits also decrease the cleavage efficiencies of the enzyme. Further biochemical studies suggest that EcEndoV is able to bind to single-stranded, undamaged DNA substrates without sequence specificity, and forms two types of complexes in a metal-independent manner, which may explain the wide spectrum of substrate specificities of EcEndoV.
Collapse
|
14
|
Alseth I, Dalhus B, Bjørås M. Inosine in DNA and RNA. Curr Opin Genet Dev 2014; 26:116-23. [PMID: 25173738 DOI: 10.1016/j.gde.2014.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/25/2022]
Abstract
Deamination of the nucleobases in DNA and RNA is a result of spontaneous hydrolysis, endogenous or environmental factors as well as deaminase enzymes. Adenosine is deaminated to inosine which is miscoding and preferentially base pairs with cytosine. In the case of DNA, this is a premutagenic event that is counteracted by DNA repair enzymes specifically engaged in recognition and removal of inosine. However, in RNA, inosine is an essential modification introduced by specialized enzymes in a highly regulated manner to generate transcriptome diversity. Defect editing is seen in various human disease including cancer, viral infections and neurological and psychiatric disorders. Enzymes catalyzing the deaminase reaction are well characterized and recently an unexpected function of Endonuclease V in RNA processing was revealed. Whereas bacterial Endonuclease V enzymes are classified as DNA repair enzymes, it appears that the mammalian enzymes are involved in processing of inosine in RNA. This yields an interesting yet unexplored, link between DNA and RNA processing. Further work is needed to gain understanding of the impact of inosine in DNA and RNA under normal physiology and disease progression.
Collapse
Affiliation(s)
- Ingrun Alseth
- Department of Microbiology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
15
|
Zhang Z, Hao Z, Wang Z, Li Q, Xie W. Structure of human endonuclease V as an inosine-specific ribonuclease. ACTA ACUST UNITED AC 2014; 70:2286-94. [PMID: 25195743 DOI: 10.1107/s139900471401356x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/11/2014] [Indexed: 11/10/2022]
Abstract
The 6-aminopurine ring of adenosine (A) can be deaminated to form the 6-oxopurine of inosine (I). Endonuclease Vs (EndoVs) are inosine-specific nucleases that cleave at the second phosphodiester bond 3' to inosine. EndoV proteins are highly conserved in all domains of life, but the bacterial and human enzymes seem to display distinct substrate preferences. While the bacterial enzymes exhibit high cleavage efficiency on various nucleic acid substrates, human EndoV (hEndoV) is most active towards ssRNA but is much less active towards other substrates. However, the structural basis of substrate recognition by hEndoV is not well understood. In this study, the 2.3 Å resolution crystal structure of hEndoV was determined and its unusual RNA-cleaving properties were investigated. The enzyme preserves the general `RNase H-like' structure, especially in the wedge motif, the metal-binding site and the hypoxanthine-binding pocket. hEndoV also features several extra insertions and a characteristic four-cysteine motif, in which Cys227 and Cys228, two cysteines that are highly conserved in higher eukaryotes, play important roles in catalysis. The structure presented here helps in understanding the substrate preference of hEndoV catalysis.
Collapse
Affiliation(s)
- Zhemin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhitai Hao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhong Wang
- Centre for Cellular and Structural Biology, The Sun Yat-Sen University, 132 East Circle Road, University City, Guangzhou 510006, People's Republic of China
| | - Qing Li
- Centre for Cellular and Structural Biology, The Sun Yat-Sen University, 132 East Circle Road, University City, Guangzhou 510006, People's Republic of China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
16
|
Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat Commun 2014; 4:2273. [PMID: 23912718 PMCID: PMC3741642 DOI: 10.1038/ncomms3273] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/09/2013] [Indexed: 01/21/2023] Open
Abstract
Deamination of DNA bases can create missense mutations predisposing humans to cancer and also interfere with other basic molecular genetic processes; this deamination generates deoxyinosine from deoxyadenosine. In Escherichia coli, the highly conserved endonuclease V is involved in alternative excision repair that removes deoxyinosine from DNA. However, its exact activities and roles in humans are unknown. Here we characterize the FLJ35220 protein, the human homologue of E. coli endonuclease V, hEndoV as a ribonuclease specific for inosine-containing RNA. hEndoV preferentially binds to RNA and efficiently hydrolyses the second phosphodiester bond located 3′ to the inosine in unpaired inosine-containing ssRNA regions in dsRNA. It localizes to the cytoplasm in cells. The ribonuclease activity is promoted by Tudor staphylococcal nuclease and detected on inosine-containing dsRNA created by the action of adenosine deaminases acting on RNA. These results demonstrate that hEndoV controls the fate of inosine-containing RNA in humans. In Escherichia coli, the highly conserved enzyme endonuclease V has a role in DNA repair. Here the authors show that human endonuclease V is an inosine 3' endoribonuclease and that Tudor Staphylococcal nuclease enhances this activity, suggesting a role for human endonuclease V in RNA metabolism.
Collapse
|
17
|
Cao W. Endonuclease V: an unusual enzyme for repair of DNA deamination. Cell Mol Life Sci 2013; 70:3145-56. [PMID: 23263163 PMCID: PMC11114013 DOI: 10.1007/s00018-012-1222-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Endonuclease V (endo V) was first discovered as the fifth endonuclease in Escherichia coli in 1977 and later rediscovered as a deoxyinosine 3' endonuclease. Decades of biochemical and genetic investigations have accumulated rich information on its role as a DNA repair enzyme for the removal of deaminated bases. Structural and biochemical analyses have offered invaluable insights on its recognition capacity, catalytic mechanism, and multitude of enzymatic activities. The roles of endo V in genome maintenance have been validated in both prokaryotic and eukaryotic organisms. The ubiquitous nature of endo V in the three domains of life: Bacteria, Archaea, and Eukaryotes, indicates its existence in the early evolutionary stage of cellular life. The application of endo V in mutation detection and DNA manipulation underscores its value beyond cellular DNA repair. This review is intended to provide a comprehensive account of the historic aspects, biochemical, structural biological, genetic and biotechnological studies of this unusual DNA repair enzyme.
Collapse
Affiliation(s)
- Weiguo Cao
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 049 Life Science Building, 190 Collings Street, Clemson, SC, 29634, USA.
| |
Collapse
|
18
|
Simone PD, Pavlov YI, Borgstahl GEO. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pools to human disease and pharmacogenetics. Mutat Res 2013; 753:131-146. [PMID: 23969025 DOI: 10.1016/j.mrrev.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.
Collapse
Affiliation(s)
- Peter D Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, USA; Department of Genetics, St-Petersburg University, St-Petersburg, 199034, Russia
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, USA.
| |
Collapse
|
19
|
Li Y, Pan Z, Tang J, Pu D, Xiao P, Lu Z. Endonuclease V-assisted accurate cleavage of oligonucleotide probes controlled by deoxyinosine and deoxynucleoside phosphorothioate for sequencing-by-ligation. Analyst 2013; 137:4421-4. [PMID: 22896836 DOI: 10.1039/c2an35595g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequencing-by-ligation (SBL) is one of the next-generation sequencing methods for massive parallel sequencing. The ligated probes used in SBL should be accurately cleaved for a better ligation in the next cycle. Here, a novel kind of oligonucleotide probe that could be accurately cleaved at the given position was proposed. Deoxynucleoside phosphorothioates were introduced into the deoxyoxanosine-containing oligonucleotide probes in order to increase the cleavage accuracy of endonuclease V on double-stranded DNA templates. The results illustrated that incorporating deoxynucleoside phosphorothioates could greatly reduce the effect of the nonsynchronous sequencing primer, and the queried bases of the DNA templates were unambiguously identified with 5 cycles of sequencing ligations. Additionally, the read length can reach up to 25 bp with high accuracy. The SBL-based method is inexpensive, has high-throughput, and is easy to operate allowing massive scale-up, miniaturization and automation.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Castillo-Acosta VM, Aguilar-Pereyra F, Bart JM, Navarro M, Ruiz-Pérez LM, Vidal AE, González-Pacanowska D. Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei. DNA Repair (Amst) 2012; 11:986-95. [DOI: 10.1016/j.dnarep.2012.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 12/25/2022]
|
21
|
Fladeby C, Vik ES, Laerdahl JK, Gran Neurauter C, Heggelund JE, Thorgaard E, Strøm-Andersen P, Bjørås M, Dalhus B, Alseth I. The human homolog of Escherichia coli endonuclease V is a nucleolar protein with affinity for branched DNA structures. PLoS One 2012; 7:e47466. [PMID: 23139746 PMCID: PMC3489907 DOI: 10.1371/journal.pone.0047466] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/11/2012] [Indexed: 12/19/2022] Open
Abstract
Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3′ of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3′-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription.
Collapse
Affiliation(s)
- Cathrine Fladeby
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Erik Sebastian Vik
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Jon K. Laerdahl
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Christine Gran Neurauter
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Julie E. Heggelund
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Eirik Thorgaard
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Pernille Strøm-Andersen
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience (CMBN), Oslo University Hospital HF and University of Oslo, Rikshospitalet, Oslo, Norway
- * E-mail:
| |
Collapse
|
22
|
Mi R, Alford-Zappala M, Kow YW, Cunningham RP, Cao W. Human endonuclease V as a repair enzyme for DNA deamination. Mutat Res 2012; 735:12-8. [PMID: 22664237 DOI: 10.1016/j.mrfmmm.2012.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
The human endonuclease V gene is located in chromosome 17q25.3 and encodes a 282 amino acid protein that shares about 30% sequence identity with bacterial endonuclease V. This study reports biochemical properties of human endonuclease V with respect to repair of deaminated base lesions. Using soluble proteins fused to thioredoxin at the N-terminus, we determined repair activities of human endonuclease V on deoxyinosine (I)-, deoxyxanthosine (X)-, deoxyoxanosine (O)- and deoxyuridine (U)-containing DNA. Human endonuclease V is most active with deoxyinosine-containing DNA but with minor activity on deoxyxanthosine-containing DNA. Endonuclease activities on deoxyuridine and deoxyoxanosine were not detected. The endonuclease activity on deoxyinosine-containing DNA follows the order of single-stranded I>G/I>T/I>A/I>C/I. The preference of the catalytic activity correlates with the binding affinity of these deoxyinosine-containing DNAs. Mg(2+) and to a much less extent, Mn(2+), Ni(2+), Co(2+) can support the endonuclease activity. Introduction of human endonuclease V into Escherichia coli cells deficient in nfi, mug and ung genes caused three-fold reduction in mutation frequency. This is the first report of deaminated base repair activity for human endonuclease V. The relationship between the endonuclease activity and deaminated deoxyadenosine (deoxyinosine) repair is discussed.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 219 Biosystems Research Complex, 105 Collings Street, Clemson, SC 29634, United States
| | | | | | | | | |
Collapse
|
23
|
Roles of endonuclease V, uracil-DNA glycosylase, and mismatch repair in Bacillus subtilis DNA base-deamination-induced mutagenesis. J Bacteriol 2011; 194:243-52. [PMID: 22056936 DOI: 10.1128/jb.06082-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The disruption of ung, the unique uracil-DNA-glycosylase-encoding gene in Bacillus subtilis, slightly increased the spontaneous mutation frequency to rifampin resistance (Rif(r)), suggesting that additional repair pathways counteract the mutagenic effects of uracil in this microorganism. An alternative excision repair pathway is involved in this process, as the loss of YwqL, a putative endonuclease V homolog, significantly increased the mutation frequency of the ung null mutant, suggesting that Ung and YwqL both reduce the mutagenic effects of base deamination. Consistent with this notion, sodium bisulfite (SB) increased the Rif(r) mutation frequency of the single ung and double ung ywqL strains, and the absence of Ung and/or YwqL decreased the ability of B. subtilis to eliminate uracil from DNA. Interestingly, the Rif(r) mutation frequency of single ung and mutSL (mismatch repair [MMR] system) mutants was dramatically increased in a ung knockout strain that was also deficient in MutSL, suggesting that the MMR pathway also counteracts the mutagenic effects of uracil. Since the mutation frequency of the ung mutSL strain was significantly increased by SB, in addition to Ung, the mutagenic effects promoted by base deamination in growing B. subtilis cells are prevented not only by YwqL but also by MMR. Importantly, in nondividing cells of B. subtilis, the accumulations of mutations in three chromosomal alleles were significantly diminished following the disruption of ung and ywqL. Thus, under conditions of nutritional stress, the processing of deaminated bases in B. subtilis may normally occur in an error-prone manner to promote adaptive mutagenesis.
Collapse
|
24
|
Mi R, Abole AK, Cao W. Dissecting endonuclease and exonuclease activities in endonuclease V from Thermotoga maritima. Nucleic Acids Res 2010; 39:536-44. [PMID: 20852258 PMCID: PMC3025561 DOI: 10.1093/nar/gkq791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by making an endonucleolytic incision at the 3'-side 1 nt from a deaminated base lesion. DNA cleavage analysis using mutants defective in DNA binding and Mn(2+) as a metal cofactor reveals a novel 3'-exonuclease activity in endonuclease V [Feng,H., Dong,L., Klutz,A.M., Aghaebrahim,N. and Cao,W. (2005) Defining amino acid residues involved in DNA-protein interactions and revelation of 3'-exonuclease activity in endonuclease V. Biochemistry, 44, 11486-11495.]. This study defines the enzymatic nature of the endonuclease and exonuclease activity in endonuclease V from Thermotoga maritima. In addition to its well-known inosine-dependent endonuclease, Tma endonuclease V also exhibits inosine-dependent 3'-exonuclease activity. The dependence on an inosine site and the exonuclease nature of the 3'-exonuclease activity was demonstrated using 5'-labeled and internally-labeled inosine-containing DNA and a H214D mutant that is defective in non-specific nuclease activity. Detailed kinetic analysis using 3'-labeled DNA indicates that Tma endonuclease V also possesses non-specific 5'-exonuclease activity. The multiplicity of the endonuclease and exonuclease activity is discussed with respect to deaminated base repair.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
25
|
Lee HW, Brice AR, Wright CB, Dominy BN, Cao W. Identification of Escherichia coli mismatch-specific uracil DNA glycosylase as a robust xanthine DNA glycosylase. J Biol Chem 2010; 285:41483-90. [PMID: 20852254 DOI: 10.1074/jbc.m110.150003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene for the mismatch-specific uracil DNA glycosylase (MUG) was identified in the Escherichia coli genome as a sequence homolog of the human thymine DNA glycosylase with activity against mismatched uracil base pairs. Examination of cell extracts led us to detect a previously unknown xanthine DNA glycosylase (XDG) activity in E. coli. DNA glycosylase assays with purified enzymes indicated the novel XDG activity is attributable to MUG. Here, we report a biochemical characterization of xanthine DNA glycosylase activity in MUG. The wild type MUG possesses more robust activity against xanthine than uracil and is active against all xanthine-containing DNA (C/X, T/X, G/X, A/X and single-stranded X). Analysis of potentials of mean force indicates that the double-stranded xanthine base pairs have a relatively narrow energetic difference in base flipping, whereas the tendency for uracil base flipping follows the order of C/U > G/U > T/U > A/U. Site-directed mutagenesis performed on conserved motifs revealed that Asn-140 and Ser-23 are important determinants for XDG activity in E. coli MUG. Molecular modeling and molecular dynamics simulations reveal distinct hydrogen-bonding patterns in the active site of E. coli MUG that account for the specificity differences between E. coli MUG and human thymine DNA glycosylase as well as that between the wild type MUG and the Asn-140 and Ser-23 mutants. This study underscores the role of the favorable binding interactions in modulating the specificity of DNA glycosylases.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson, South Carolina 29634, USA
| | | | | | | | | |
Collapse
|
26
|
Budke B, Kuzminov A. Production of clastogenic DNA precursors by the nucleotide metabolism in Escherichia coli. Mol Microbiol 2009; 75:230-45. [PMID: 19943897 DOI: 10.1111/j.1365-2958.2009.06994.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RdgB is a bacterial dNTPase with a strong in vitro preference for non-canonical DNA precursors dHapTP, dXTP and dITP that contain deaminated or aminogroup-modified purines. Utilization of these nucleotides by replisomes in rdgB mutants of Escherichia coli produces modified DNA, on which EndoV nicking near the base analogues initiates excision repair. Some EndoV-initiated excision events cause chromosomal fragmentation, which becomes inhibitory if recombinational repair is also inactivated (the rdgB recA co-inhibition). To reveal the sources and the identities of the non-canonical DNA precursors, intercepted by RdgB in E. coli, we characterized 17 suppressors of the rdgB recA co-inhibition. Ten suppressors affect genes of the RNA/DNA precursor metabolism, identifying the source of non-canonical DNA precursors. Comparing chromosomal fragmentation with the density of EndoV-recognized DNA modifications distinguishes three mechanisms of suppression: (i) reduction of the non-canonical dNTP production, (ii) inhibition of the base analogue excision from DNA and (iii) enhancement of the cell tolerance to chromosomal fragmentation. The suppressor analysis suggests IMP as the key intermediate in the synthesis of the clastogenic DNA precursor, most likely dITP.
Collapse
Affiliation(s)
- Brian Budke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3709, USA
| | | |
Collapse
|
27
|
Zhang H, Bren U, Kozekov ID, Rizzo CJ, Stec DF, Guengerich FP. Steric and electrostatic effects at the C2 atom substituent influence replication and miscoding of the DNA deamination product deoxyxanthosine and analogs by DNA polymerases. J Mol Biol 2009; 392:251-69. [PMID: 19607842 PMCID: PMC2755575 DOI: 10.1016/j.jmb.2009.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/22/2022]
Abstract
Deoxyinosine (dI) and deoxyxanthosine (dX) are both formed in DNA at appreciable levels in vivo by deamination of deoxyadenosine (dA) and deoxyguanosine (dG), respectively, and can miscode. Structure-activity relationships for dA pairing have been examined extensively using analogs but relatively few studies have probed the roles of the individual hydrogen-bonding atoms of dG in DNA replication. The replicative bacteriophage T7 DNA polymerase/exonuclease and the translesion DNA polymerase Sulfolobus solfataricus pol IV were used as models to discern the mechanisms of miscoding by DNA polymerases. Removal of the 2-amino group from the template dG (i.e., dI) had little impact on the catalytic efficiency of either polymerase, as judged by either steady-state or pre-steady-state kinetic analysis, although the misincorporation frequency was increased by an order of magnitude. dX was highly miscoding with both polymerases, and incorporation of several bases was observed. The addition of an electronegative fluorine atom at the 2-position of dI lowered the oligonucleotide T(m) and strongly inhibited incorporation of dCTP. The addition of bromine or oxygen (dX) at C2 lowered the T(m) further, strongly inhibited both polymerases, and increased the frequency of misincorporation. Linear activity models show the effects of oxygen (dX) and the halogens at C2 on both DNA polymerases as mainly due to a combination of both steric and electrostatic factors, producing a clash with the paired cytosine O2 atom, as opposed to either bulk or perturbation of purine ring electron density alone.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Urban Bren
- National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | - Ivan D. Kozekov
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Carmelo J. Rizzo
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Donald F. Stec
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
28
|
Production of 3-nitrosoindole derivatives by Escherichia coli during anaerobic growth. J Bacteriol 2009; 191:5369-76. [PMID: 19561128 DOI: 10.1128/jb.00586-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Escherichia coli K-12 is grown anaerobically in medium containing tryptophan and sodium nitrate, it produces red compounds. The reaction requires functional genes for trytophanase (tnaA), a tryptophan permease (tnaB), and a nitrate reductase (narG), as well as a natural drop in the pH of the culture. Mass spectrometry revealed that the purified chromophores had mass/charge ratios that closely match those for indole red, indoxyl red, and an indole trimer. These compounds are known products of chemical reactions between indole and nitrous acid. They are derived from an initial reaction of 3-nitrosoindole with indole. Apparently, nitrite that is produced from the metabolic reduction of nitrate is converted in the acid medium to nitrous acid, which leads to the nitrosation of the indole that is generated by tryptophanase. An nfi (endonuclease V) mutant and a recA mutant were selectively killed during the period of chromophore production, and a uvrA strain displayed reduced growth. These effects depended on the addition of nitrate to the medium and on tryptophanase activity in the cells. Unexpectedly, the killing of a tnaA(+) nfi mutant was not accompanied by marked increases in mutation frequencies for several traits tested. The vulnerability of three DNA repair mutants indicates that a nitrosoindole or a derivative of a nitrosoindole produces lethal DNA damage.
Collapse
|
29
|
Mi R, Dong L, Kaulgud T, Hackett KW, Dominy BN, Cao W. Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: switching SMUG1 to UDG. J Mol Biol 2008; 385:761-78. [PMID: 18835277 DOI: 10.1016/j.jmb.2008.09.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022]
Abstract
Single-strand-selective monofunctional uracil DNA glycosylase (SMUG1) belongs to Family 3 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that a bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the human SMUG1 enzyme are not only UDGs but also xanthine DNA glycosylases (XDGs). In addition, mutational analysis and molecular dynamics (MD) simulations of Gme SMUG1 identify important structural determinants in conserved motifs 1 and 2 for XDG and UDG activities. Mutations at M57 (M57L) and H210 (H210G, H210M, and H210N), both of which are involved in interactions with the C2 carbonyl oxygen in uracil or xanthine, cause substantial reductions in XDG and UDG activities. Increased selectivity is achieved in the A214R mutant of Gme SMUG1, which corresponds to a position involved in base flipping. This mutation results in an activity profile resembling a human SMUG1-like enzyme as exemplified by the retention of UDG activity on mismatched base pairs and weak XDG activity. MD simulations indicate that M57L increases the flexibility of the motif 2 loop region and specifically A214, which may account for the reduced catalytic activity. G60Y completely abolishes XDG and UDG activity, which is consistent with a modeled structure in which G60Y blocks the entry of either xanthine or uracil to the base binding pocket. Most interestingly, a proline substitution at the G63 position switches the Gme SMUG1 enzyme to an exclusive UDG as demonstrated by the uniform excision of uracil in both double-stranded and single-stranded DNA and the complete loss of XDG activity. MD simulations indicate that a combination of a reduced free volume and altered flexibility in the active-site loops may underlie the dramatic effects of the G63P mutation on the activity profile of SMUG1. This study offers insights on the important role that modulation of conformational flexibility may play in defining specificity and catalytic efficiency.
Collapse
Affiliation(s)
- Rongjuan Mi
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 219 Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
30
|
Lin J, Gao H, Schallhorn KA, Harris RM, Cao W, Ke PC. Lesion recognition and cleavage by endonuclease V: a single-molecule study. Biochemistry 2007; 46:7132-7. [PMID: 17521169 PMCID: PMC2527690 DOI: 10.1021/bi6024534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endonuclease V (endo V) recognizes and cleaves deoxyinosine in deaminated DNA. These enzymatic activities are precursors of DNA repair and are fueled by metal ions such as Ca2+ and Mg2+, with the former being associated with protein binding and the latter with DNA cleavage. Using the technique of fluorescence resonance energy transfer (FRET), we determined the single-molecule kinetics of endo V in a catalytic cycle using a substrate of deoxyinosine-containing single-stranded DNA (ssDNA). The ssDNA was labeled with TAMRA, a fluorescence donor, while the endo V was labeled with Cy5, a fluorescence acceptor. The time lapses of FRET, resulting from the sequential association, recognition, and dissociation of the deoxyinosine by the endo V, were determined at 5.9, 14.5, and 9.1 s, respectively, in the presence of Mg2+. In contrast, the process of deoxyinosine recognition appeared little affected by the metal type. The prolonged association and dissociation events in the presence of the Ca2+-Mg2+ combination, as compared to that of Mg2+ alone, support the hypothesis that endo V has two metal binding sites to regulate its enzymatic activities.
Collapse
Affiliation(s)
- Jun Lin
- Department of Physics and Astronomy, South Carolina Experiment Station, Room 219 Biosystems Research Complex, 51 New Cherry Street, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
In Escherichia coli, nitrosative mutagenesis may occur during nitrate or nitrite respiration. The endogenous nitrosating agent N2O3 (dinitrogen trioxide, nitrous anhydride) may be formed either by the condensation of nitrous acid or by the autooxidation of nitric oxide, both of which are metabolic by-products. The purpose of this study was to determine which of these two agents is more responsible for endogenous nitrosative mutagenesis. An nfi (endonuclease V) mutant was grown anaerobically with nitrate or nitrite, conditions under which it has a high frequency of A:T-to-G:C transition mutations because of a defect in the repair of hypoxanthine (nitrosatively deaminated adenine) in DNA. These mutations could be greatly reduced by two means: (i) introduction of an nirB mutation, which affects the inducible cytoplasmic nitrite reductase, the major source of nitric oxide during nitrate or nitrite metabolism, or (ii) flushing the anaerobic culture with argon (which should purge it of nitric oxide) before it was exposed to air. The results suggest that nitrosative mutagenesis occurs during a shift from nitrate/nitrite-dependent respiration under hypoxic conditions to aerobic respiration, when accumulated nitric oxide reacts with oxygen to form endogenous nitrosating agents such as N2O3. In contrast, mutagenesis of nongrowing cells by nitrous acid was unaffected by an nirB mutation, suggesting that this mutagenesis is mediated by N2O3 that is formed directly by the condensation of nitrous acid.
Collapse
Affiliation(s)
- Bernard Weiss
- Department of Pathology and Laboratory Medicine, Emory University, Whitehead Bldg., Rm. 141, 615 Michael St., Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Suzuki T. DNA Damage and Mutation Caused by Vital Biomolecules, Water, Nitric Oxide, and Hypochlorous Acid. Genes Environ 2006. [DOI: 10.3123/jemsge.28.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Lukas L, Kuzminov A. Chromosomal fragmentation is the major consequence of the rdgB defect in Escherichia coli. Genetics 2005; 172:1359-62. [PMID: 16322510 PMCID: PMC1456232 DOI: 10.1534/genetics.105.051144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rdgB mutants depend on recombinational repair of double-strand breaks. To assess other consequences of rdgB inactivation in Escherichia coli, we isolated RdgB-dependent mutants. All transposon inserts making cells dependent on RdgB inactivate genes of double-strand break repair, indicating that chromosomal fragmentation is the major consequence of RdgB inactivation.
Collapse
Affiliation(s)
- Lisa Lukas
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
34
|
Dong M, Vongchampa V, Gingipalli L, Cloutier JF, Kow YW, O'Connor T, Dedon PC. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species. Mutat Res 2005; 594:120-34. [PMID: 16274707 DOI: 10.1016/j.mrfmmm.2005.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/17/2005] [Accepted: 08/23/2005] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is associated with a variety of human diseases, including cancer, with one possible mechanistic link involving over-production of nitric oxide (NO*) by activated macrophages. Subsequent reaction of NO* with superoxide in the presence of carbon dioxide yields nitrosoperoxycarbonate (ONOOCO2-), a strong oxidant that reacts with guanine in DNA to form a variety of oxidation and nitration products, such 2'-deoxy-8-oxoguanosine. Alternatively, the reaction of NO and O2 leads to the formation of N2O3, a nitrosating agent that causes nucleobase deamination to form 2'-deoxyxanthosine (dX) and 2'-deoxyoxanosine (dO) from dG; 2'-deoxyinosine (dI) from dA; and 2'-deoxyuridine (dU) from dC, in addition to abasic sites and dG-dG cross-links. The presence of both ONOOCO2- and N2O3 at sites of inflammation necessitates definition of the relative roles of oxidative and nitrosative DNA damage in the genetic toxicology of inflammation. To this end, we sought to develop enzymatic probes for oxidative and nitrosative DNA lesions as a means to quantify the two types of DNA damage in in vitro DNA damage assays, such as the comet assay and as a means to differentially map the lesions in genomic DNA by the technique of ligation-mediated PCR. On the basis of fragmentary reports in the literature, we first systematically assessed the recognition of dX and dI by a battery of DNA repair enzymes. Members of the alkylpurine DNA glycosylase family (E. coli AlkA, murine Aag, and human MPG) all showed repair activity with dX (k(cat)/Km 29 x 10(-6), 21 x 10(-6), and 7.8 x 10(-6) nM(-1) min(-1), respectively), though the activity was considerably lower than that of EndoV (8 x 10(-3) nM(-1) min(-1)). Based on these results and other published studies, we focused the development of enzymatic probes on two groups of enzymes, one with activity against oxidative damage (formamidopyrimidine-DNA glycosylase (Fpg); endonuclease III (EndoIII)) and the other with activity against nucleobase deamination products (uracil DNA glycosylase (Udg); AlkA). These combinations were assessed for recognition of DNA damage caused by N2O3 (generated with a NO*/O2 delivery system) or ONOOCO2- using a plasmid nicking assay and by LC-MS analysis. Collectively, the results indicate that a combination of AlkA and Udg react selectively with DNA containing only nitrosative damage, while Fpg and EndoIII react selectively with DNA containing oxidative base lesions caused by ONOOCO2-. The results suggest that these enzyme combinations can be used as probes to define the location and quantity of the oxidative and nitrosative DNA lesions produced by chemical mediators of inflammation in systems, such as the comet assay, ligation-mediated polymerase chain reaction, and other assays of DNA damage and repair.
Collapse
Affiliation(s)
- Min Dong
- Biological Engineering Division NE47-277, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Zheng J, Singh VK, Jia Z. Identification of an ITPase/XTPase in Escherichia coli by structural and biochemical analysis. Structure 2005; 13:1511-20. [PMID: 16216582 DOI: 10.1016/j.str.2005.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/14/2005] [Accepted: 07/17/2005] [Indexed: 01/13/2023]
Abstract
Inosine triphosphate (ITP) and xanthosine triphosphate (XTP) are formed upon deamination of ATP and GTP as a result of exposure to chemical mutagens and oxidative damage. Nucleic acid synthesis requires safeguard mechanisms to minimize undesired lethal incorporation of ITP and XTP. Here, we present the crystal structure of YjjX, a protein of hitherto unknown function. The three-dimensional fold of YjjX is similar to those of Mj0226 from Methanococcus janschii, which possesses nucleotidase activity, and of Maf from Bacillus subtilis, which can bind nucleotides. Biochemical analyses of YjjX revealed it to exhibit specific phosphatase activity for inosine and xanthosine triphosphates and have a possible interaction with elongation factor Tu. The enzymatic activity of YjjX as an inosine/xanthosine triphosphatase provides evidence for a plausible protection mechanism by clearing the noncanonical nucleotides from the cell during oxidative stress in E. coli.
Collapse
Affiliation(s)
- Jimin Zheng
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
36
|
Nakano T, Asagoshi K, Terato H, Suzuki T, Ide H. Assessment of the genotoxic potential of nitric oxide-induced guanine lesions by in vitro reactions with Escherichia coli DNA polymerase I. Mutagenesis 2005; 20:209-16. [PMID: 15843389 DOI: 10.1093/mutage/gei027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that carcinogenesis associated with chronic inflammation involves DNA damage by nitric oxide (NO) and other reactive species secreted from macrophages and neutrophils. The guanine moiety of DNA reacts with NO, yielding two major deamination products: xanthine (Xan) and oxanine (Oxa). Oxa reacts further with polyamines and DNA binding proteins to form cross-link adducts. In the present study, we characterized the structure of the cross-link adducts of Oxa with spermine (Oxa-Sp). Spectrometric analysis of Oxa-Sp adducts showed that they are ring-opened adducts of Oxa covalently bonded to the terminal amino (major product) and internal imino (minor product) groups of spermine. To assess genotoxic potential, Xan, Oxa, Oxa-Sp and an abasic (AP) site were site specifically incorporated into oligonucleotide templates. These lesions differentially blocked in vitro DNA synthesis catalyzed by DNA polymerase I Klenow fragment (Pol I Kf). The relative efficiency of translesion synthesis was G (1) > Oxa (0.19) > Xan (0.12) > AP (0.088) > Oxa-Sp (0.035). Primer extension assays with a single nucleotide and Pol I Kf revealed that non-mutagenic dCMP was inserted most efficiently opposite Xan and Oxa, with the extent of primer elongation being 65% for Xan and 68% for Oxa. However, mutagenic nucleotides were also inserted. The extent of primer elongation for Xan was 16% with dTMP and 14% with dGMP, whereas that for Oxa was 49% with dTMP. For Oxa-Sp, mutagenic dAMP (13%) was preferentially inserted. Accordingly, when generated in vivo, Xan and Oxa would constitute moderate blocks to DNA synthesis and primarily elicit G:C to A:T transitions when bypassed, whereas Oxa-Sp would strongly block DNA synthesis and elicit G:C to T:A transversions.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | |
Collapse
|
37
|
Nakano T, Katafuchi A, Shimizu R, Terato H, Suzuki T, Tauchi H, Makino K, Skorvaga M, Van Houten B, Ide H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res 2005; 33:2181-91. [PMID: 15831791 PMCID: PMC1079971 DOI: 10.1093/nar/gki513] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.
Collapse
Affiliation(s)
| | | | | | | | - Toshinori Suzuki
- Department of Biological Pharmacy, School of Pharmacy, Shujitsu University1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Hiroshi Tauchi
- Department of Environmental Sciences, Faculty of Science, Ibaraki UniversityMito, Ibaraki 310-8512, Japan
| | - Keisuke Makino
- Institute of Advanced Energy, Kyoto UniversityGokasho, Uji 611-0011, Japan
| | - Milan Skorvaga
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Hiroshi Ide
- To whom correspondence should be addressed. Tel: +81 82 424 7457; Fax: +81 82 424 7457;
| |
Collapse
|
38
|
Kanugula S, Pauly GT, Moschel RC, Pegg AE. A bifunctional DNA repair protein from Ferroplasma acidarmanus exhibits O6-alkylguanine-DNA alkyltransferase and endonuclease V activities. Proc Natl Acad Sci U S A 2005; 102:3617-22. [PMID: 15731349 PMCID: PMC553313 DOI: 10.1073/pnas.0408719102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recently discovered DNA repair protein of 303 aa from the archaeal organism Ferroplasma acidarmanus was studied. This protein (AGTendoV) consists of a fusion of the C-terminal active site domain of O(6)-alkylguanine-DNA alkyltransferase (AGT) with an endonuclease V domain. The AGTendoV recombinant protein expressed in Escherichia coli and purified to homogeneity repaired O(6)-methylguanine lesions in DNA via alkyl transfer action despite the complete absence of the N-terminal domain and some differences in key active site residues present in known AGTs. The AGTendoV recombinant protein also cleaved DNA substrates that contained the deaminated bases uracil, hypoxanthine, or xanthine in a similar manner to E. coli endonuclease V. Expression of AGTendoV in E. coli GWR109, a strain that lacks endogenous AGT activity, protected against both the killing and mutagenic activity of N-methyl-N'-nitro-N-nitrosoguanidine and was more effective in preventing mutations than human alkyltransferase, suggesting that the endonuclease V activity may also repair a promutagenic lesion produced by this alkylating agent. Expression of AGTendoV in a DNA repair-deficient E. coli nfi(-)alkA(-) strain protected from spontaneous mutations arising in saturated cultures and restored the mutation frequency to that found in the nfi(+) alkA(+) strain. These results demonstrate the physiological occurrence of two completely different but functional DNA repair activities in a single polypeptide chain.
Collapse
Affiliation(s)
- Sreenivas Kanugula
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
39
|
Pincas H, Pingle MR, Huang J, Lao K, Paty PB, Friedman AM, Barany F. High sensitivity EndoV mutation scanning through real-time ligase proofreading. Nucleic Acids Res 2004; 32:e148. [PMID: 15514109 PMCID: PMC528826 DOI: 10.1093/nar/gnh150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5' terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool.
Collapse
Affiliation(s)
- Hanna Pincas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Hitchcock TM, Gao H, Cao W. Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic Acids Res 2004; 32:4071-80. [PMID: 15289580 PMCID: PMC506822 DOI: 10.1093/nar/gkh747] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oxanine (O) is a deamination product derived from guanine with the nitrogen at the N1 position substituted by oxygen. Cytosine, thymine, adenine, guanine as well as oxanine itself can be incorporated by Klenow Fragment to pair with oxanine in a DNA template with similar efficiency, indicating that oxanine in DNA may cause various mutations. As a nucleotide, deoxyoxanosine may substitute for deoxyguanosine to complete a primer extension reaction. Endonuclease V, an enzyme known for its enzymatic activity on uridine-, inosine- and xanthosine-containing DNA, can cleave oxanosine-containing DNA at the second phosphodiester bond 3' to the lesion. Mg2+ or Mn2+, and to a small extent Co2+ or Ni2+, support the oxanosine-containing DNA cleavage activity. All four oxanosine-containing base pairs (A/O, T/O, C/O and G/O) were cleaved with similar efficiency. The cleavage of double-stranded oxanosine-containing DNA was approximately 6-fold less efficient than that of double-stranded inosine-containing DNA. Single-stranded oxanosine-containing DNA was cleaved with a lower efficiency as compared with double-stranded oxanosine-containing DNA. A metal ion enhances the binding of endonuclease V to double-stranded and single-stranded oxanosine-containing DNA 6- and 4-fold, respectively. Hypothetic models of oxanine-containing base pairs and deaminated base recognition mechanism are presented.
Collapse
Affiliation(s)
- Thomas M Hitchcock
- Department of Genetics, Biochemistry and Life Science Studies, South Carolina, Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | |
Collapse
|
41
|
Hitchcock TM, Dong L, Connor EE, Meira LB, Samson LD, Wyatt MD, Cao W. Oxanine DNA glycosylase activity from Mammalian alkyladenine glycosylase. J Biol Chem 2004; 279:38177-83. [PMID: 15247209 DOI: 10.1074/jbc.m405882200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxanine (Oxa) is a deaminated base lesion derived from guanine in which the N(1)-nitrogen is substituted by oxygen. This work reports the mutagenicity of oxanine as well as oxanine DNA glycosylase (ODG) activities in mammalian systems. Using human DNA polymerase beta, deoxyoxanosine triphosphate is only incorporated opposite cytosine (Cyt). When an oxanine base is in a DNA template, Cyt is efficiently incorporated opposite the template oxanine; however, adenine and thymine are also incorporated opposite Oxa with an efficiency approximately 80% of a Cyt/Oxa (C/O) base pair. Guanine is incorporated opposite Oxa with the least efficiency, 16% compared with cytosine. ODG activity was detected in several mammalian cell extracts. Among the known human DNA glycosylases tested, human alkyladenine glycosylase (AAG) shows ODG activity, whereas hOGG1, hNEIL1, or hNEIL2 did not. ODG activity was detected in spleen cell extracts of wild type age-matched mice, but little activity was observed in that of Aag knock-out mice, confirming that the ODG activity is intrinsic to AAG. Human AAG can excise Oxa from all four Oxa-containing double-stranded base pairs, Cyt/Oxa, Thy/Oxa, Ade/Oxa, and Gua/Oxa, with no preference to base pairing. Surprisingly, AAG can remove Oxa from single-stranded Oxa-containing DNA as well. Indeed, AAG can also remove 1,N(6)-ethenoadenine from single-stranded DNA. This study extends the deaminated base glycosylase activities of AAG to oxanine; thus, AAG is a mammalian enzyme that can act on all three purine deamination bases, hypoxanthine, xanthine, and oxanine.
Collapse
Affiliation(s)
- Thomas M Hitchcock
- Department of Genetics, Biochemistry & Life Science Studies, South Carolina Experiment Station, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kouzminova EA, Kuzminov A. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol Microbiol 2004; 51:1279-95. [PMID: 14982624 DOI: 10.1111/j.1365-2958.2003.03924.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C & LSL, 601 South Goodwin Ave., Urbana, IL 61801-3709, USA
| | | |
Collapse
|
43
|
Abstract
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.
Collapse
Affiliation(s)
- Jill S Bradshaw
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Ave., 61801-3709, USA
| | | |
Collapse
|
44
|
Abstract
Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York 12222, USA
| | | | | |
Collapse
|
45
|
Qing H, Xu H, Wei Z, Gibson K, Li XM. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci 2003; 17:1563-70. [PMID: 12752374 DOI: 10.1046/j.1460-9568.2003.02590.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examined the effects of the atypical antipsychotic drugs clozapine, olanzapine, quetiapine and risperidone, on N-methyl-4-phenylpyridinium ion-induced apoptosis and DNA damage in PC12 cells, and explored the molecular mechanisms underlying these effects. Haloperidol, a typical antipsychotic drug, was used for comparison. Exposure of PC12 cells to 50 micro m N-methyl-4-phenylpyridinium ion for 24 h resulted in a 35-45% loss of cells in culture. Pretreatment with the aforementioned atypical antipsychotic drugs significantly reduced the N-methyl-4-phenylpyridinium ion-induced cell loss, whereas haloperidol (10-100 micro m) did not have this protective effect. Hoechst 33258 staining revealed the apoptotic nuclear features of the N-methyl-4-phenylpyridinium ion-induced cell death, and showed that the atypical antipsychotic drugs, but not haloperidol, effectively prevented PC12 cells from this N-methyl-4-phenylpyridinium ion-induced apoptosis. DNA fragmentation assays further confirmed the N-methyl-4-phenylpyridinium ion-induced nuclear fragmentation. Pretreatment with the atypical antipsychotic drugs completely prevented this nuclear fragmentation, whereas haloperidol only partially prevented it. In vitro oligonucleotide assays indicated an activation of a specific glycosylase that recognizes and cleaves bases (at the 8-hydroxyl-2-deoxyguanine site) that were damaged by N-methyl-4-phenylpyridinium ion. Pretreatment with the atypical antipsychotic drugs more effectively attenuated this N-methyl-4-phenylpyridinium ion-induced activation than did haloperidol. Northern blot analyses showed that the atypical antipsychotic drugs, but not haloperidol, blocked the N-methyl-4-phenylpyridinium ion-induced substantial increase of copper/zinc superoxide dismutase mRNA in PC12 cells. Atypical antipsychotic drugs slightly up-regulated the expression of copper/zinc superoxide dismutase mRNA, whereas haloperidol strongly increased the expression of copper/zinc superoxide dismutase mRNA. These data may account for the different therapeutic effects and side-effect profiles of typical and atypical antipsychotic drugs in schizophrenia.
Collapse
Affiliation(s)
- Hong Qing
- Neuropsychiatric Research Unit, Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
46
|
Vongchampa V, Dong M, Gingipalli L, Dedon P. Stability of 2'-deoxyxanthosine in DNA. Nucleic Acids Res 2003; 31:1045-51. [PMID: 12560502 PMCID: PMC149198 DOI: 10.1093/nar/gkg177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The deamination of nucleobases in DNA occurs by a variety of mechanisms and results in the formation of hypoxanthine from adenine, uracil from cytosine, and xanthine and oxanine from guanine. 2'-Deoxyxanthosine (dX) has been assumed to be an unstable lesion in cells, yet no study has been performed under biological conditions. We now report that dX is a relatively stable lesion at pH 7, 37 degrees C and 110 mM ionic strength, with a half-life (t(1/2)) of 2.4 years in double-stranded DNA. The stability of dX as a 2'-deoxynucleoside (t(1/2) = 3.7 min at pH 2; 1104 h at pH 6) was increased substantially upon incorporation into a single-stranded oligodeoxynucleotide, in which the half-life of dX at different pH values was found to range from 7.7 h at pH 2 to 17 700 h at pH 7. Incorporation of dX into a double-stranded oligodeoxynucleotide resulted in a statistically insignificant increase in the half-life to 20 900 h at pH 7. Data for the pH dependence of the stability of dX in single-stranded DNA were used to determine the rate constants for the acid-catalyzed (2.6 x 10(-5) x s(-1)) and pH-independent (1.4 x 10(-8) x s(-1)) depurination reactions for dX as well as the dissociation constant for the N7 position of dX (6.1 x 10(-4) M). We conclude that dX is a relatively stable lesion that could play a role in deamination-induced mutagenesis.
Collapse
Affiliation(s)
- Viengsai Vongchampa
- Biological Engineering Division, 56-787, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
47
|
Terato H, Masaoka A, Asagoshi K, Honsho A, Ohyama Y, Suzuki T, Yamada M, Makino K, Yamamoto K, Ide H. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Nucleic Acids Res 2002; 30:4975-84. [PMID: 12434002 PMCID: PMC137176 DOI: 10.1093/nar/gkf630] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitrosation of guanine in DNA by nitrogen oxides such as nitric oxide (NO) and nitrous acid leads to formation of xanthine (Xan) and oxanine (Oxa), potentially cytotoxic and mutagenic lesions. In the present study, we have examined the repair capacity of DNA N-glycosylases from Escherichia coli for Xan and Oxa. The nicking assay with the defined substrates containing Xan and Oxa revealed that AlkA [in combination with endonuclease (Endo) IV] and Endo VIII recognized Xan in the tested enzymes. The activity (V(max)/K(m)) of AlkA for Xan was 5-fold lower than that for 7-methylguanine, and that of Endo VIII was 50-fold lower than that for thymine glycol. The activity of AlkA and Endo VIII for Xan was further substantiated by the release of [(3)H]Xan from the substrate. The treatment of E.coli with N-methyl-N'-nitro-N-nitrosoguanidine increased the Xan-excising activity in the cell extract from alkA(+) but not alkA(-) strains. The alkA and nei (the Endo VIII gene) double mutant, but not the single mutants, exhibited increased sensitivity to nitrous acid relative to the wild type strain. AlkA and Endo VIII also exhibited excision activity for Oxa, but the activity was much lower than that for Xan.
Collapse
Affiliation(s)
- Hiroaki Terato
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil, hypoxanthine, and xanthine. When cells are under oxidative stress that is induced either by oxidizing agents or by mitochondrial dysfunction, additional deamination products such as 5-hydroxymethyluracil (5-HMU) and 5-hydroxyuracil (5-OH-Ura) are formed. The cellular level of these highly mutagenic lesions is increased substantially when cells are exposed to DNA damaging agent, such as ionizing radiation, redox reagents, nitric oxide, and others. The cellular repair of deamination products is predominantly through the base excision repair (BER) pathway, a major cellular repair pathway that is initiated by lesion specific DNA glycosylases. In BER, the lesions are removed by the combined action of a DNA glycosylase and an AP endonuclease, leaving behind a one-base gap. The gapped product is then further repaired by the sequential action of DNA polymerase and DNA ligase. DNA glycosylases that recognize uracil, 5-OH-Ura, 5-HMU (derived from 5-methylcytosine) and a T/G mismatch (derived from a 5-methylcytosine/G pair) are present in most cells. Many of these glycosylases have been cloned and well characterized. In yeast and mammalian cells, hypoxanthine is efficiently removed by methylpurine N-glycosylase, and it is thought that BER might be an important pathway for the repair of hypoxanthine. In contrast, no glycosylase that can recognize xanthine has been identified in either yeast or mammalian cells. In Escherichia coli, the major enzyme activity that initiates the repair of hypoxanthine and xanthine is endonuclease V. Endonuclease V is an endonuclease that hydrolyzes the second phosphodiester bond 3' to the lesion. It is hypothesized that the cleaved DNA is further repaired through an alternative excision repair (AER) pathway that requires the participation of either a 5' endonuclease or a 3'-5' exonuclease to remove the damaged base. The repair process is then completed by the sequential actions of DNA polymerase and DNA ligase. Endonuclease V sequence homologs are present in all kingdoms, and it is conceivable that endonuclease V might also be a major enzyme that initiates the repair of hypoxanthine and xanthine in mammalian cells.
Collapse
Affiliation(s)
- Yoke W Kow
- Department of Radiation Oncology, Laughlin Radiation Center, Emory University School of Medicine, 145 Edgewood Avenue, Atlanta, GA 30335, USA.
| |
Collapse
|
49
|
Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002; 418:99-103. [PMID: 12097915 DOI: 10.1038/nature00862] [Citation(s) in RCA: 696] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After gene rearrangement, immunoglobulin variable genes are diversified by somatic hypermutation or gene conversion, whereas the constant region is altered by class-switch recombination. All three processes depend on activation-induced cytidine deaminase (AID), a B-cell-specific protein that has been proposed (because of sequence homology) to function by RNA editing. But indications that the three gene diversification processes might be initiated by a common type of DNA lesion, together with the proposal that there is a first phase of hypermutation that targets dC/dG, suggested to us that AID may function directly at dC/dG pairs. Here we show that expression of AID in Escherichia coli gives a mutator phenotype that yields nucleotide transitions at dC/dG in a context-dependent manner. Mutation triggered by AID is enhanced by a deficiency of uracil-DNA glycosylase, which indicates that AID functions by deaminating dC residues in DNA. We propose that diversification of functional immunoglobulin genes is triggered by AID-mediated deamination of dC residues in the immunoglobulin locus with the outcome--that is, hypermutation phases 1 and 2, gene conversion or switch recombination--dependent on the way in which the initiating dU/dG lesion is resolved.
Collapse
|
50
|
Chung JH, Back JH, Park YI, Han YS. Biochemical characterization of a novel hypoxanthine/xanthine dNTP pyrophosphatase from Methanococcus jannaschii. Nucleic Acids Res 2001; 29:3099-107. [PMID: 11452035 PMCID: PMC55802 DOI: 10.1093/nar/29.14.3099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel dNTP pyrophosphatase, Mj0226 from Methanococcus jannaschii, which catalyzes the hydrolysis of nucleoside triphosphates to the monophosphate and PPi, has been characterized. Mj0226 protein catalyzes hydrolysis of two major substrates, dITP and XTP, suggesting that the 6-keto group of hypoxanthine and xanthine is critical for interaction with the protein. Under optimal reaction conditions the k(ca)(t) /K(m) value for these substrates was approximately 10 000 times that with dATP. Neither endonuclease nor 3'-exonuclease activities were detected in this protein. Interestingly, dITP was efficiently inserted opposite a dC residue in a DNA template and four dNTPs were also incorporated opposite a hypoxanthine residue in template DNA by DNA polymerase I. Two protein homologs of Mj0226 from Escherichia coli and Archaeoglobus fulgidus were also cloned and purified. These have catalytic activities similar to Mj0226 protein under optimal conditions. The implications of these results have significance in understanding how homologous proteins, including Mj0226, act biologically in many organisms. It seems likely that Mj0226 and its homologs have a major role in preventing mutations caused by incorporation of dITP and XTP formed spontaneously in the nucleotide pool into DNA. This report is the first identification and functional characterization of an enzyme hydrolyzing non-canonical nucleotides, dITP and XTP.
Collapse
Affiliation(s)
- J H Chung
- Structural Biology Research Center, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul, Korea and The Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|