1
|
Monaco CF, Plewes MR, Przygrodzka E, George JW, Qiu F, Xiao P, Wood JR, Cupp AS, Davis JS. Basic fibroblast growth factor induces proliferation and collagen production by fibroblasts derived from the bovine corpus luteum†. Biol Reprod 2023; 109:367-380. [PMID: 37283496 PMCID: PMC10502575 DOI: 10.1093/biolre/ioad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Cyclic regression of the ovarian corpus luteum, the endocrine gland responsible for progesterone production, involves rapid matrix remodeling. Despite fibroblasts in other systems being known for producing and maintaining extracellular matrix, little is known about fibroblasts in the functional or regressing corpus luteum. Vast transcriptomic changes occur in the regressing corpus luteum, among which are reduced levels of vascular endothelial growth factor A (VEGFA) and increased expression of fibroblast growth factor 2 (FGF2) after 4 and 12 h of induced regression, when progesterone is declining and the microvasculature is destabilizing. We hypothesized that FGF2 activates luteal fibroblasts. Analysis of transcriptomic changes during induced luteal regression revealed elevations in markers of fibroblast activation and fibrosis, including fibroblast activation protein (FAP), serpin family E member 1 (SERPINE1), and secreted phosphoprotein 1 (SPP1). To test our hypothesis, we treated bovine luteal fibroblasts with FGF2 to measure downstream signaling, type 1 collagen production, and proliferation. We observed rapid and robust phosphorylation of various signaling pathways involved in proliferation, such as ERK, AKT, and STAT1. From our longer-term treatments, we determined that FGF2 has a concentration-dependent collagen-inducing effect, and that FGF2 acts as a mitogen for luteal fibroblasts. FGF2-induced proliferation was greatly blunted by inhibition of AKT or STAT1 signaling. Our results suggest that luteal fibroblasts are responsive to factors that are released by the regressing bovine corpus luteum, an insight into the contribution of fibroblasts to the microenvironment in the regressing corpus luteum.
Collapse
Affiliation(s)
- Corrine F Monaco
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Plewes
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Emilia Przygrodzka
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peng Xiao
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| |
Collapse
|
2
|
Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia. Cytotechnology 2017; 69:801-814. [PMID: 28466428 DOI: 10.1007/s10616-017-0095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 01/08/2023] Open
Abstract
Ischemia are common conditions related to lack of blood supply to tissues. Depending on the ischemic sites, ischemia can cause different diseases, such as hindlimb ischemia, heart infarction and stroke. This study aims to evaluate how extracellular vesicles (EVs) derived from ETV2 transfected fibroblasts affect endothelial cell proliferation and neovascularization in a murine model of hindlimb ischemia. Human fibroblasts were isolated and cultured under standard conditions and expanded to the 3th passage before use in experiments. Human fibroblasts were transduced with a viral vector containing the ETV2 gene. Transduced cells were selected by puromycin treatment. These cells were further cultured for collection of EVs, which were isolated from culture supernatant. Following co-culture with endothelial cells, EVs were evaluated for their effect on endothelial cell proliferation and were directly injected into ischemic tissues of a murine model of hindlimb ischemia. The results showed that EVs could induce endothelial cell proliferation in vitro and improved neovascularization in a murine model of hindlimb ischemia. Our results suggest that EVs derived from ETV2-transfected fibroblasts can be promising non-cellular products for the regeneration of blood vessels.
Collapse
|
3
|
Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia. Stem Cell Res Ther 2016; 7:104. [PMID: 27488544 PMCID: PMC4973107 DOI: 10.1186/s13287-016-0368-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
Background Endothelial progenitor cell (EPC) transplantation is a promising therapy for ischemic diseases such as ischemic myocardial infarction and hindlimb ischemia. However, limitation of EPC sources remains a major obstacle. Direct reprogramming has become a powerful tool to produce EPCs from fibroblasts. Some recent efforts successfully directly reprogrammed human fibroblasts into functional EPCs; however, the procedure efficacy was low. This study therefore aimed to improve the efficacy of direct reprogramming of human fibroblasts to functional EPCs. Methods Human fibroblasts isolated from foreskin were directly reprogrammed into EPCs by viral ETV2 transduction. Reprogramming efficacy was improved by culturing transduced fibroblasts in hypoxia conditions (5 % oxygen). Phenotype analyses confirmed that single-factor ETV2 transduction successfully reprogrammed dermal fibroblasts into functional EPCs. Results Hypoxia treatment during the reprogramming procedure increased the efficacy of reprogramming from 1.21 ± 0.61 % in normoxia conditions to 7.52 ± 2.31 % in hypoxia conditions. Induced EPCs in hypoxia conditions exhibited functional EPC phenotypes similar to those in normoxia conditions, such as expression of CD31 and VEGFR2, and expressed endothelial gene profiles similar to human umbilical vascular endothelial cells. These cells also formed capillary-like networks in vitro. Conclusion Our study demonstrates a new simple method to increase the reprogramming efficacy of human fibroblasts to EPCs using ETV2 and hypoxia.
Collapse
|
4
|
Benameur L, Auffan M, Cassien M, Liu W, Culcasi M, Rahmouni H, Stocker P, Tassistro V, Bottero JY, Rose J, Botta A, Pietri S. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology 2014; 9:696-705. [PMID: 25325158 DOI: 10.3109/17435390.2014.968889] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 × 10(-5)-6 × 10(-3) g/l corresponding to a concentration range of 0.22-22 µM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro-CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release.
Collapse
Affiliation(s)
- Laila Benameur
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire UMR 7273, Equipe Sondes Moléculaires en Biologie et Stress Oxydant , Marseille , France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu W, Chaurand P, Di Giorgio C, De Méo M, Thill A, Auffan M, Masion A, Borschneck D, Chaspoul F, Gallice P, Botta A, Bottero JY, Rose J. Influence of the length of imogolite-like nanotubes on their cytotoxicity and genotoxicity toward human dermal cells. Chem Res Toxicol 2012; 25:2513-22. [PMID: 22989002 DOI: 10.1021/tx3003214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physical-chemical parameters such as purity, structure, chemistry, length, and aspect ratio of nanoparticles (NPs) are linked to their toxicity. Here, synthetic imogolite-like nanotubes with a set chemical composition but various sizes and shapes were used as models to investigate the influence of these physical parameters on the cyto- and genotoxicity and cellular uptake of NPs. The NPs were characterized using X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and atomic force microscopy (AFM). Imogolite precursors (PR, ca. 5 nm curved platelets), as well as short tubes (ST, ca. 6 nm) and long tubes (LT, ca. 50 nm), remained stable in the cell culture medium. Internalization into human fibroblasts was observed only for the small particles PR and ST. None of the tested particles induced a significant cytotoxicity up to a concentration of 10(-1) mg·mL(-1). However, small sized NPs (PR and ST) were found to be genotoxic at very low concentration 10(-6) mg·mL(-1), while LT particles exhibited a weak genotoxicity. Our results indicate that small size NPs (PR, ST) were able to induce primary lesions of DNA at very low concentrations and that this DNA damage was exclusively induced by oxidative stress. The higher aspect ratio LT particles exhibited a weaker genotoxicity, where oxidative stress is a minor factor, and the likely involvement of other mechanisms. Moreover, a relationship among cell uptake, particle aspect ratio, and DNA damage of NPs was observed.
Collapse
Affiliation(s)
- Wei Liu
- CEREGE, UMR 7330, CNRS-Aix Marseille University, BP 80, 13545 Aix en Provence, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Benameur L, Orsière T, Rose J, Botta A. Detection of environmental clastogens and aneugens in human fibroblasts by cytokinesis-blocked micronucleus assay associated with immunofluorescent staining of CENP-A in micronuclei. CHEMOSPHERE 2011; 84:676-680. [PMID: 21486675 DOI: 10.1016/j.chemosphere.2011.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 05/30/2023]
Abstract
The cytokinesis-blocked micronucleus (CBMN) assay, in combination with fluorescent in situ hybridization (FISH) of human pan-centromeric DNA probes, or with CREST antibodies that specifically stain kinetochore proteins, is widely used on several cell types. It distinguishes micronuclei containing one or several whole chromosomes, which are positively labeled (centromere positive micronucleus, C+MN, due to aneugenic effect), or acentric chromosome fragments, which are unlabeled due to the absence of centromere (centromere negative micronucleus, C-MN, due to clastogenic effect). However, the very slight level of the centromeric signals obtained with the FISH technique on primary human fibroblasts, a cell type commonly used in environmental genetic toxicology, leads to great difficulties in distinguishing C+MN and C-MN. Furthermore, the CREST technique may lead to inappropriate results particularly with regards to variations in antibody composition between patient sera. Our results show that the in vitro CBMN, in combination with immunofluorescence staining of CENP-A (centromere protein A), efficiently screens genotoxicants for their ability to induce clastogenic and/or aneugenic effects. We propose the in vitro CBMN assay in combination with immunofluorescence staining of CENP-A as a suitable tool in environmental genotoxicity testing of primary human fibroblasts.
Collapse
Affiliation(s)
- Laila Benameur
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale (EA 1784/FR CNRS 3098 ECCOREV), Aix-Marseille Université, Faculté de Médecine, Marseille, France.
| | | | | | | |
Collapse
|
7
|
Liu W, Chaspoul F, Botta C, De Méo M, Gallice P. Bioenergetics and DNA alteration of normal human fibroblasts by hexavalent chromium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:58-63. [PMID: 21787583 DOI: 10.1016/j.etap.2009.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/29/2009] [Accepted: 10/09/2009] [Indexed: 05/31/2023]
Abstract
The effects of hexavalent chromium on mitochondria of normal human fibroblasts were investigated through the measurement of oxygen consumption, and its genotoxic effect through the analysis of chromium DNA adducts and oxidative DNA lesions. ROS production was also quantified. Chromium diminished oxygen consumption by cells in a concentration-dependent manner (IC(50)=66±8μM). This effect can be attributed to an alteration in mitochondrial functions, leading to defective glucose catabolism. The Comet assay, performed with and without the lesion-specific enzyme formamidopyrimidine-DNA glycosylase (Fpg), highlighted the extent of oxidative DNA base damage. DNA base damage was induced with low concentrations (0.5-3μM) of Cr(VI), whereas bioenergetic disturbance was only observed at higher concentrations (20-500μM).
Collapse
Affiliation(s)
- W Liu
- Biogénotoxicologie et Mutagénèse Environnementale (EA 1784-FR 3098 ECCOREV), Faculté de Pharmacie, Aix Marseille Université, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | |
Collapse
|
8
|
Visco V, Bava FA, d'Alessandro F, Cavallini M, Ziparo V, Torrisi MR. Human colon fibroblasts induce differentiation and proliferation of intestinal epithelial cells through the direct paracrine action of keratinocyte growth factor. J Cell Physiol 2009; 220:204-13. [PMID: 19326389 DOI: 10.1002/jcp.21752] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects exerted by the keratinocyte growth factor (KGF) on intestinal epithelial cells cultured in vitro are influenced by cell confluence and differentiation through the modulation of keratinocyte growth factor receptor (KGFR) expression. In order to better define the contribution of KGF on the intestinal epithelial cell differentiation and proliferation, here we developed a coculture model, able to mimick in vitro the epithelial-mesenchymal interactions of the bowel. In consequence of its ability to produce KGF, demonstrated by real-time PCR and Western blot analysis, the human colon fibroblast cell line CCD-18 has been selected as coculture partner for the intestinal epithelial Caco-2 cell line. Analysis of the expression of the differentiation and proliferation markers CEA and Ki67, through double immunofluorescence assays, showed that either the coculture with CCD-18 cells or the incubation with primary colon fibroblast-derived conditioned media (CM-F and CM-F2) induced an increase in differentiation and proliferation of confluent intestinal epithelial Caco-2 or HT29 cells, parallel to that obtained by KGF treatment. Use of anti-KGF blocking antibodies and of a tyrosine kinase KGFR inhibitor demonstrated the contribution of KGF and the direct role of its receptor in the regulation of epithelial growth and differentiation, indicating that KGF is a crucial paracrine factor involved in promoting these effects.
Collapse
Affiliation(s)
- Vincenzo Visco
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Sperimentale, Università La Sapienza, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Wagener FADTG, van Beurden HE, von den Hoff JW, Adema GJ, Figdor CG. The heme-heme oxygenase system: a molecular switch in wound healing. Blood 2003; 102:521-8. [PMID: 12649161 DOI: 10.1182/blood-2002-07-2248] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
When cells are injured they release their contents, resulting in a local accumulation of free heme proteins and heme. Here, we investigated the involvement of heme and its degrading enzyme heme oxygenase (HO) in the inflammatory process during wound healing. We observed that heme directly accumulates at the edges of the wound after inflicting a wound in the palate of Wistar rats. This coincided with an increased adhesion molecule expression and the recruitment of leukocytes. To prove that heme is responsible for the recruitment of leukocytes, heme was administered intradermally 24 hours prior to injury. A clear heme-induced influx of both macrophages and granulocytes was observed. When examining the HO isoforms, HO-1 and HO-2, we found that HO-2 was present in the entire submucosa. Surprisingly, we observed also that HO-1 is significantly expressed in the epithelium of both the mucosa and the skin of animals without wounds. On inflammation, HO-1 expression increased, particularly in infiltrating cells during the resolution phase of inflammation. Interestingly, we observed that heme-induced influx of leukocytes was highly elevated after pharmacologic inhibition of HO activity. These observations suggest that the heme-HO system is closely involved in the control of wound healing. Our results demonstrate that the local release of heme may be a physiologic trigger to start inflammatory processes, whereas HO-1 antagonizes inflammation by attenuating adhesive interactions and cellular infiltration. Moreover, the basal level of HO expression in the skin may serve as a first protective environment against acute oxidative and inflammatory insults.
Collapse
Affiliation(s)
- Frank A D T G Wagener
- Department of Tumor Immunology, University Medical Center Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|