1
|
Van Ende M, Timmermans B, Vanreppelen G, Siscar-Lewin S, Fischer D, Wijnants S, Romero CL, Yazdani S, Rogiers O, Demuyser L, Van Zeebroeck G, Cen Y, Kuchler K, Brunke S, Van Dijck P. The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence 2021; 12:329-345. [PMID: 33356857 PMCID: PMC7808424 DOI: 10.1080/21505594.2020.1868825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen and is frequently present in the human microbiome. It has a high relative resistance to environmental stresses and several antifungal drugs. An important component involved in microbial stress tolerance is trehalose. In this work, we characterized the three C. glabrata trehalase enzymes Ath1, Nth1 and Nth2. Single, double and triple deletion strains were constructed and characterized both in vitro and in vivo to determine the role of these enzymes in virulence. Ath1 was found to be located in the periplasm and was essential for growth on trehalose as sole carbon source, while Nth1 on the other hand was important for oxidative stress resistance, an observation which was consistent by the lower survival rate of the NTH1 deletion strain in human macrophages. No significant phenotype was observed for Nth2. The triple deletion strain was unable to establish a stable colonization of the gastrointestinal (GI) tract in mice indicating the importance of having trehalase activity for colonization in the gut.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Bea Timmermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Giel Vanreppelen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ona Rogiers
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, VIB, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Yuke Cen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
2
|
Wijnants S, Vreys J, Van Dijck P. Interesting antifungal drug targets in the central metabolism of Candida albicans. Trends Pharmacol Sci 2021; 43:69-79. [PMID: 34756759 DOI: 10.1016/j.tips.2021.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
To treat infections caused by Candida albicans, azoles, polyenes, and echinocandins are used. However, resistance occurs against all three, so there is an urgent need for new antifungal drugs with a novel mode of action. Recently, it became clear that central metabolism plays an important role in the virulence of C. albicans. Glycolysis is, for example, upregulated during virulence conditions, whereas the glyoxylate cycle is important upon phagocytosis by host immune cells. These findings indicate that C. albicans adapts its metabolism to the environment for maximal virulence. In this review, we provide an overview of the potency of different central metabolic pathways and their key enzymes as potential antifungal drug targets.
Collapse
Affiliation(s)
- Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jolien Vreys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|
3
|
Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence. J Microbiol 2013; 51:345-51. [PMID: 23812815 DOI: 10.1007/s12275-013-2577-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/16/2013] [Indexed: 10/26/2022]
Abstract
We previously showed that the expression of ENO1 (enolase) in the fungal pathogen Candida albicans is critical for cell growth. In this study, we investigate the contribution of the ENO1 gene to virulence. We conducted our functional study of ENO1 in C. albicans by constructing an eno1/eno1 null mutant strain in which both ENO1 alleles in the genome were knockouted with the SAT1 flipper cassette that contains the nourseothricin-resistance marker. Although the null mutant failed to grow on synthetic media containing glucose, it was capable of growth on media containing yeast extract, peptone, and non-fermentable carbon sources. The null mutant was more susceptible to certain antifungal drugs. It also exhibited defective hyphal formation, and was avirulent in BALB/c mice.
Collapse
|
4
|
González-Párraga P, Sánchez-Fresneda R, Zaragoza O, Argüelles JC. Amphotericin B induces trehalose synthesis and simultaneously activates an antioxidant enzymatic response in Candida albicans. Biochim Biophys Acta Gen Subj 2011; 1810:777-83. [PMID: 21570449 DOI: 10.1016/j.bbagen.2011.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Enzymes involved in trehalose metabolism have been proposed as potential targets for new antifungals. To analyse this proposal, the susceptibility to Amphotericin B (AmB) of the C. albicans trehalose-deficient mutant tps1Δ/tps1Δ, was examined. METHODS Determination of endogenous trehalose and antioxidant enzymatic activities as well as RT-PCR analysis in cells subjected to AmB treatments was performed. RESULTS Exponential tps1Δ null cultures showed high degree of cell killing upon exposure to increasing AmB doses respect to CAI.4 parental strain. Reintroduction of the TPS1 gene restored the percentage of cell viability. AmB induced significant synthesis of endogenous trehalose in parental cells, due to the transitory accumulation of TPS1 mRNA or to the moderate activation of trehalose synthase (Tps1p) with the simultaneous deactivation of neutral trehalase (Ntc1p). Since tps1Δ/tps1Δ mutant cells are highly susceptible to acute oxidative stress, the putative antioxidant response to AmB was also measured. A conspicuous activation of catalase and glutathione reductase (GR), but not of superoxide dismutase (SOD), was observed when the two cell types were exposed to high concentrations of AmB (5μg/ml). However, no significant differences were detected between parental and tps1Δ null strains as regards the level of activities. CONCLUSIONS The protective intracellular accumulation of trehalose together with the induction of antioxidant enzymatic defences are worthy mechanisms involved in the resistance of C. albicans to the fungicidal action of AmB. GENERAL SIGNIFICANCE The potential usefulness of trehalose synthesis proteins as an interesting antifungal target is reinforced. More importantly, AmB elicits a complex defensive response in C. albicans.
Collapse
Affiliation(s)
- Pilar González-Párraga
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071, Murcia, Spain
| | | | | | | |
Collapse
|
5
|
Noble SM, French S, Kohn LA, Chen V, Johnson AD. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 2010; 42:590-8. [PMID: 20543849 PMCID: PMC2893244 DOI: 10.1038/ng.605] [Citation(s) in RCA: 550] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/12/2010] [Indexed: 01/07/2023]
Abstract
Candida albicans is the most common cause of serious fungal disease in humans. Creation of isogenic null mutants of this diploid organism, which requires sequential gene targeting, allows dissection of virulence mechanisms. Published analyses of such mutants show a near-perfect correlation between C. albicans pathogenicity and the ability to undergo a yeast-to-hypha morphological switch in vitro. However, most studies used mutants constructed with a marker that is itself a virulence determinant and therefore complicates their interpretation. Using alternative markers, we created ~3000 homozygous deletion strains affecting 674 genes or roughly 11% of the C. albicans genome. Screening for infectivity in a mouse model and for morphological switching and cell proliferation in vitro, we identified 115 infectivity-attenuated mutants, of which nearly half demonstrated normal morphological switching and proliferation. Analysis of such mutants identified the glycolipid, glucosylceramide, as the first small molecule synthesized by this pathogen to be required specifically for virulence.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
6
|
Martínez-Esparza M, Martínez-Vicente E, González-Párraga P, Ros JM, García-Peñarrubia P, Argüelles JC. Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans. Int J Med Microbiol 2009; 299:453-64. [PMID: 19231283 DOI: 10.1016/j.ijmm.2008.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/21/2008] [Accepted: 12/14/2008] [Indexed: 11/16/2022] Open
Abstract
Disruption of the TPS2 gene encoding the only trehalose-6P phosphatase activity in Candida albicans caused a pleiotropic defective phenotype, maintaining the cell wall integrity and the ability to form chlamydospores. A homozygous tps2Delta/tps2Delta showed reduced growth at high temperatures and a marked sensitivity to heat shock (42 degrees C) and severe oxidative exposure (50mM H(2)O(2)). Reintroduction of the TPS2 gene reversed these alterations. A more detailed study of the antioxidant response showed that exponential tps2Delta null cells displayed an adaptive response to oxidative stress as well as cross-tolerance between temperature and oxidative stress. Differential measurement of trehalose and trehalose-6P, using reliable new HPLC methodology, revealed a significant accumulation of trehalose-6P in tps2Delta cells, which was enhanced after oxidative exposure. In contrast, the level of trehalose-6P in parental cells was virtually undetectable, and oxidative treatment only induced the synthesis of free trehalose. A transitory increase in the expression of TPS2 and TPS1 genes was promoted in wild-type cells in response to acute (50mM) but not gentle (5mM) oxidative exposure. TPS1 and TPS2 oxidative-induced transcriptions were completely absent from the tps2Delta mutant. Exponential blastoconidia from both parental and tps2Delta/tps2Delta strains were completely phagocytosed by murine and human macrophages, triggering a subsequent proinflammatory response manifested by the release of TNF-alpha. Reflecting the lower resistance to oxidative stress displayed by the tps2Delta mutant, intracellular survival in resting and IFN-gamma and LPS-stimulated macrophages was also diminished. Taken together, our results confirm the mainly protective role played by the trehalose biosynthetic pathway in the cellular response to oxidative stress and subsequently in the resistance to phagocytosis in C. albicans, a defensive mechanism in which TPS2 would be involved.
Collapse
Affiliation(s)
- María Martínez-Esparza
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Teramoto N, Sachinvala ND, Shibata M. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 2008; 13:1773-816. [PMID: 18794785 PMCID: PMC6245314 DOI: 10.3390/molecules13081773] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 08/11/2008] [Indexed: 12/20/2022] Open
Abstract
Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears), and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1→1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-d-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives. Trehalose-chemistry is a relatively new and emerging field, and polymers of trehalose derivatives appear environmentally benign, biocompatible, and biodegradable. The discriminating properties of trehalose are attributed to its structure, symmetry, solubility, kinetic and thermodynamic stability and versatility. While syntheses of trehalose-based polymer networks can be straightforward, syntheses and characterization of well defined linear polymers with tailored properties using trehalose-based monomers is challenging, and typically involves protection and deprotection of hydroxyl groups to attain desired structural, morphological, biological, and physical and chemical properties in the resulting products. In this review, we will overview known literature on trehalose’s fascinating involvement in cryptobiology; highlight its applications in many fields; and then discuss methods we used to prepare new trehalose-based monomers and polymers and explain their properties.
Collapse
Affiliation(s)
- Naozumi Teramoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
- Author to whom correspondence should be addressed; E-Mail:
| | - Navzer D. Sachinvala
- Retired, Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA; Home: 2261 Brighton Place, Harvey, LA 70058; E-mail:
| | - Mitsuhiro Shibata
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
| |
Collapse
|
8
|
Pedreño Y, González-Párraga P, Martínez-Esparza M, Sentandreu R, Valentín E, Argüelles JC. Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress. MICROBIOLOGY-SGM 2007; 153:1372-1381. [PMID: 17464051 DOI: 10.1099/mic.0.2006/003921-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Candida albicans, the ATC1 gene, encoding a cell wall-associated acid trehalase, has been considered as a potentially interesting target in the search for new antifungal compounds. A phenotypic characterization of the double disruptant atc1Delta/atc1Delta mutant showed that it was unable to grow on exogenous trehalose as sole carbon source. Unlike actively growing cells from the parental strain (CAI4), the atc1Delta null mutant displayed higher resistance to environmental insults, such as heat shock (42 degrees C) or saline exposure (0.5 M NaCl), and to both mild and severe oxidative stress (5 and 50 mM H(2)O(2)), which are relevant during in vivo infections. Parallel measurements of intracellular trehalose and trehalose-metabolizing enzymes revealed that significant amounts of the disaccharide were stored in response to thermal and oxidative challenge in the two cell types. The antioxidant activities of catalase and glutathione reductase were triggered by moderate oxidative exposure (5 mM H(2)O(2)), whereas superoxide dismutase was inhibited dramatically by H(2)O(2), where a more marked decrease was observed in atc1Delta cells. In turn, the atc1Delta mutant exhibited a decreased capacity of hypha and pseudohypha formation tested in different media. Finally, the homozygous null mutant in a mouse model of systemic candidiasis displayed strongly reduced pathogenicity compared with parental or heterozygous strains. These results suggest not only a novel role for the ATC1 gene in dimorphism and infectivity, but also that an interconnection between stress resistance, dimorphic conversion and virulence in C. albicans may be reconsidered. They also support the hypothesis that Atc1p is not involved in the physiological hydrolysis of endogenous trehalose.
Collapse
Affiliation(s)
- Yolanda Pedreño
- Departamento de Microbiología y Ecología, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071 Murcia, Spain
| | - Pilar González-Párraga
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071 Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Universidad de Murcia, E-30071 Murcia, Spain
| | - Rafael Sentandreu
- Departamento de Microbiología y Ecología, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain
| | - Eulogio Valentín
- Departamento de Microbiología y Ecología, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071 Murcia, Spain
| |
Collapse
|
9
|
Martínez-Esparza M, Aguinaga A, González-Párraga P, García-Peñarrubia P, Jouault T, Argüelles JC. Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin Microbiol Infect 2007; 13:384-94. [PMID: 17359322 DOI: 10.1111/j.1469-0691.2007.01663.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Accumulation of trehalose by yeast is an important protective mechanism against different stress conditions. This study examined the effect of trehalose on several growth features, as well as its association with the intracellular survival of yeasts exposed to macrophages. A tps1/tps1 mutant and its parental counterpart, CAI4, exhibited similar growth rates and preserved their dimorphic conversion and agglutination ability. However, electron-microscopy of cell-wall architecture showed a partial loss of material from the outer cell-wall layer in the tps1/tps1 mutant. Flow-cytometry revealed that the mutant had lower auto-fluorescence levels and a higher fluorescein isothiocynate staining efficiency. When co-cultured with macrophages, a slight reduction in binding to macrophages and slower ingestion kinetics were revealed for the tps1/tps1 mutant, but these did not interfere significantly with the amount of yeast ingested by macrophages after co-incubation for 2 h. Under the same conditions, CAI4 cells were more resistant to macrophage killing than was the tps1 null mutant, provided that the macrophages had been stimulated previously with interferon-gamma. Measurement of trehalose content and the anti-oxidant activities of yeast cells recovered after phagocytosis revealed that the trehalose content and the glutathione reductase activity were increased only in CAI4 cells, whereas levels of catalase activity were increased similarly in both strains. These results suggest that the presence of trehalose in Candida albicans is a contributory factor that protects the cell from injury caused by macrophages.
Collapse
Affiliation(s)
- M Martínez-Esparza
- Department of Biochemistry, Molecular Biology (B) and Immunology, Medical School, University of Murcia, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
González-Párraga P, Marín FR, Argüelles JC, Hernández JA. Correlation between the intracellular content of glutathione and the formation of germ-tubes induced by human serum in Candida albicans. Biochim Biophys Acta Gen Subj 2005; 1722:324-30. [PMID: 15777624 DOI: 10.1016/j.bbagen.2005.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 12/02/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
The physiological role of the tripeptide glutathione (GSH) and its oxidized form (GSSG) was investigated during the initial steps of dimorphism (formation of germ-tubes), which is induced by human serum in exponential yeast-like cells (blastoconidia) of the Candida albicans strain CAI-4 (wild type) and its congenic tps1/tps1 mutant, deficient in trehalose synthesis. The content of glutathione, measured both as GSH and the ratio GSH/GSSG, underwent a moderate drop in parallel with the induction of a significant degree of germ-tube emergence. Whereas the supply of exogenous glutathione did not affect the degree of dimorphic transition, depletion of intracellular glutathione by addition of 1-chloro-2,4 dinitrobenzene (CDNB) caused a clear reduction in the percentage of hyphae formation; although this effect must be due to the severe cell mortality produced by CDNB. Simultaneous measurements of GSH-metabolizing activities revealed a moderate decrease of glutathione reductase concomitant with the activation of glutathione peroxidase. In turn, catalase activity did not show noticeable changes. The putative correlation between the redox status of glutathione and the dimorphic conversion in C. albicans is discussed.
Collapse
Affiliation(s)
- Pilar González-Párraga
- Area de Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30071 Murcia, Spain
| | | | | | | |
Collapse
|
11
|
De Backer MD, Van Dijck P, Luyten WHML. Functional genomics approaches for the identification and validation of antifungal drug targets. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:113-27. [PMID: 12083946 DOI: 10.2165/00129785-200202020-00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
So far, antifungal drug discovery seems to have benefited little from the enormous advances in the field of genomics in the last decade. Although it has become clear that traditional drug screening is not delivering the long-awaited novel potent antifungals, little has been reported on efforts to use novel genome-based methodologies in the quest for new drugs acting on human pathogenic fungi. Although the market for a novel systemic and even topical broad-spectrum antifungal appears considerable, many large pharmaceutical companies have decided to scale back their activities in antifungal drug discovery. Here we report on some of the recent advances in genomics-based technologies that will allow us not only to identify and validate novel drug targets but hopefully also to discover active therapeutic agents. Novel drug targets have already been found by 'en masse' gene inactivation strategies (e.g. using antisense RNA inhibition). In addition, genome expression profiling using DNA microarrays helps to assign gene function but also to understand better the mechanism of action of known drugs (e.g. itraconazole) and to elucidate how new drug candidates work. No doubt, we have a long way to go just to catch up with the advances made in other therapeutic areas, but all tools are at hand to derive practical benefits from the genomics revolution. The next few years should prove a very exciting time in the history of antifungal drug discovery.
Collapse
|
12
|
Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles JC. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2599-2606. [PMID: 12177354 DOI: 10.1099/00221287-148-8-2599] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cellular response to the oxidative stress caused by hydrogen peroxide and its putative correlation with the stress protector trehalose was investigated in Candida albicans CAI.4 and the tps1/tps1 double mutant, which is deficient in trehalose synthesis. When exponential wild-type blastoconidia were exposed to high concentrations of hydrogen peroxide, they displayed a high cell survival, accompanied by a marked rise of intracellular trehalose. The latter is due to a moderate activation of trehalose synthase and the concomitant inactivation of neutral trehalase. Identical challenge in the tps1/tps1 double mutant severely reduced cell viability, a phenotype which was suppressed by overexpression of the TPS1 gene. Pretreatment of growing cultures from both strains with either a low, non-lethal concentration of H(2)O(2) (0.5 mM) or a preincubation at 37 degrees C, induced an adaptive response that protected cells from being killed by a subsequent exposure to oxidative stress. During these mild oxidative preincubations, trehalose was not induced in CAI.4 cells and remained undetectable in their tps1/tps1 counterpart. Blastoconidia from the two strains exhibited a similar degree of cell protection during the adaptive response. The induction of trehalose accumulation by H(2)O(2) was not due to an increased expression of TPS1 mRNA. These results are consistent with a mainly protective role of trehalose in C. albicans during direct oxidative stress but not during acquired oxidative tolerance.
Collapse
Affiliation(s)
- Francisco J Alvarez-Peral
- Area de Microbiologia, Facultad de Biologia, Universidad de Murcia, Campus de Espinardo, E-30071 Murcia, Spain1
| | - Oscar Zaragoza
- Instituto de Investigaciones Biomédicas del CSIC, Unidad de Bioquimica y Genética de Levaduras, 28029 Madrid, Spain2
| | - Yolanda Pedreno
- Area de Microbiologia, Facultad de Biologia, Universidad de Murcia, Campus de Espinardo, E-30071 Murcia, Spain1
| | - Juan-Carlos Argüelles
- Area de Microbiologia, Facultad de Biologia, Universidad de Murcia, Campus de Espinardo, E-30071 Murcia, Spain1
| |
Collapse
|
13
|
Van Dijck P, De Rop L, Szlufcik K, Van Ael E, Thevelein JM. Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect Immun 2002; 70:1772-82. [PMID: 11895938 PMCID: PMC127825 DOI: 10.1128/iai.70.4.1772-1782.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of trehalose-6-phosphate phosphatase, encoded by TPS2, in Saccharomyces cerevisiae results in accumulation of trehalose-6-phosphate (Tre6P) instead of trehalose under stress conditions. Since trehalose is an important stress protectant and Tre6P accumulation is toxic, we have investigated whether Tre6P phosphatase could be a useful target for antifungals in Candida albicans. We have cloned the C. albicans TPS2 (CaTPS2) gene and constructed heterozygous and homozygous deletion strains. As in S. cerevisiae, complete inactivation of Tre6P phosphatase in C. albicans results in 50-fold hyperaccumulation of Tre6P, thermosensitivity, and rapid death of the cells after a few hours at 44 degrees C. As opposed to inactivation of Tre6P synthase by deletion of CaTPS1, deletion of CaTPS2 does not affect hypha formation on a solid glucose-containing medium. In spite of this, virulence of the homozygous deletion mutant is strongly reduced in a mouse model of systemic infection. The pathogenicity of the heterozygous deletion mutant is similar to that of the wild-type strain. CaTPS2 is a new example of a gene not required for growth under standard conditions but required for pathogenicity in a host. Our results suggest that Tre6P phosphatase may serve as a potential target for antifungal drugs. Neither Tre6P phosphatase nor its substrate is present in mammals, and assay of the enzymes is simple and easily automated for high-throughput screening.
Collapse
Affiliation(s)
- Patrick Van Dijck
- Laboratory of Molecular Cell Biology and Flemish Institute for Biotechnology, Instituut voor Plantkunde en Microbiologie, Katholieke Universiteit Leuven, B-3001 Heverlee, Flanders, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Navarro-García F, Sánchez M, Nombela C, Pla J. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 2001; 25:245-68. [PMID: 11250036 DOI: 10.1111/j.1574-6976.2001.tb00577.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In recent years, the incidence of fungal infections has been rising all over the world. Although the amount of research in the field of pathogenic fungi has also increased, there is still a need for the identification of reliable determinants of virulence. In this review, we focus on identified Candida albicans genes whose deletant strains have been tested in experimental virulence assays. We discuss the putative relationship of these genes to virulence and also outline the use of new different systems to examine the precise effect in virulence of different genes.
Collapse
Affiliation(s)
- F Navarro-García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Alvarez-Peral FJ, Argüelles JC. Changes in external trehalase activity during human serum-induced dimorphic transition in Candida albicans. Res Microbiol 2000; 151:837-43. [PMID: 11191809 DOI: 10.1016/s0923-2508(00)01150-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Yeast-like cells (blastoconidia) of Candida albicans growing exponentially on a glucose-containing medium (YPD) exhibited low external trehalase activity and stored a negligible amount of intracellular trehalose. The addition of human serum at 37 degrees C to exponential cultures promoted a high degree of germ-tube formation with no significant changes in trehalase activity or trehalose content. In contrast, stationary cells accumulated a large amount of trehalose, while external trehalase remained at a low and practically constant level. However, resting cultures were unable to enter the dimorphic program, except when they were supplemented with fresh YPD and serum together. Only under these conditions was trehalase activated and trehalose hydrolyzed. Specific inhibition of external trehalase by validoxylamine A caused a certain delay in, and a lower level of, germ-tube formation, but did not totally block the dimorphic conversion. These results suggest that external trehalase is not involved in the serum-induced morphological transition in C. albicans.
Collapse
Affiliation(s)
- F J Alvarez-Peral
- Area de Microbiologia, Facultad de Biologia, Universidad de Murcia, Spain
| | | |
Collapse
|