1
|
Zhou Q, Wu Y, Deng J, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial metabolic engineering enables high yield production of α-arbutin from sucrose by biocatalysis. Appl Microbiol Biotechnol 2023; 107:2897-2910. [PMID: 37000229 DOI: 10.1007/s00253-023-12496-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
α-Arbutin has been widely used as a skin-whitening ingredient. Previously, we successfully produced α-arbutin via whole-cell biocatalysis and found that the conversion rate of sucrose to α-arbutin was low (~45%). To overcome this issue, herein, we knocked out the genes of enzymes related to the sucrose hydrolysis, including sacB, sacC, levB, and sacA. The sucrose consumption was reduced by 17.4% in 24 h, and the sucrose conversion rate was increased to 51.5%. Furthermore, we developed an inducible protein degradation system with Lon protease isolated from Mesoplasma florum (MfLon) and proteolytic tag to control the PfkA activity, so that more fructose-6-phosphate (F6P) can be converted into glucose-1-phosphate (Glc1P) for α-arbutin synthesis, which can reduce the addition of sucrose and increase the sucrose conversion efficiency. Finally, the pathway of F6P to Glc1P was enhanced by integrating another copy of glucose 6-phosphate isomerase (Pgi) and phosphoglucomutase (PgcA); a high α-arbutin titer (~120 g/L) was obtained. The sucrose conversion rate was increased to 60.4% (mol/mol). In this study, the substrate utilization rate was boosted due to the attenuation of its hydrolysis and the assistance of the intracellular enzymes that converted the side product back into the substrate for α-arbutin synthesis. This strategy provides a new idea for the whole-cell biocatalytic synthesis of other products using sucrose as substrate, especially valuable glycosides.Key points The genes of sucrose metabolic pathway were knocked out to reduce the sucrose consumption. The by-product fructose was reused to synthesize α-arbutin. The optimized whole-cell system improved sucrose conversion by 15.3%.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Wuxi Food Safety Inspection and Test Center & Technology Innovation Center of Special Food for State Market Regulation, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jieying Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Garcia CA, Gardner JG. Bacterial α-diglucoside metabolism: perspectives and potential for biotechnology and biomedicine. Appl Microbiol Biotechnol 2021; 105:4033-4052. [PMID: 33961116 PMCID: PMC8237927 DOI: 10.1007/s00253-021-11322-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
In a competitive microbial environment, nutrient acquisition is a major contributor to the survival of any individual bacterial species, and the ability to access uncommon energy sources can provide a fitness advantage. One set of soluble carbohydrates that have attracted increased attention for use in biotechnology and biomedicine is the α-diglucosides. Maltose is the most well-studied member of this class; however, the remaining four less common α-diglucosides (trehalose, kojibiose, nigerose, and isomaltose) are increasingly used in processed food and fermented beverages. The consumption of trehalose has recently been shown to be a contributing factor in gut microbiome disease as certain pathogens are using α-diglucosides to outcompete native gut flora. Kojibiose and nigerose have also been examined as potential prebiotics and alternative sweeteners for a variety of foods. Compared to the study of maltose metabolism, our understanding of the synthesis and degradation of uncommon α-diglucosides is lacking, and several fundamental questions remain unanswered, particularly with regard to the regulation of bacterial metabolism for α-diglucosides. Therefore, this minireview attempts to provide a focused analysis of uncommon α-diglucoside metabolism in bacteria and suggests some future directions for this research area that could potentially accelerate biotechnology and biomedicine developments. KEY POINTS: • α-diglucosides are increasingly important but understudied bacterial metabolites. • Kinetically superior α-diglucoside enzymes require few amino acid substitutions. • In vivo studies are required to realize the biotechnology potential of α-diglucosides.
Collapse
Affiliation(s)
- Cecelia A Garcia
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
3
|
Åqvist J, Sočan J, Purg M. Hidden Conformational States and Strange Temperature Optima in Enzyme Catalysis. Biochemistry 2020; 59:3844-3855. [PMID: 32975950 PMCID: PMC7584337 DOI: 10.1021/acs.biochem.0c00705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Indexed: 11/29/2022]
Abstract
The existence of temperature optima in enzyme catalysis that occur before protein melting sets in can be described by different types of kinetic models. Such optima cause distinctly curved Arrhenius plots and have, for example, been observed in several cold-adapted enzymes from psychrophilic species. The two main explanations proposed for this behavior either invoke conformational equilibria with inactive substrate-bound states or postulate differences in heat capacity between the reactant and transition states. Herein, we analyze the implications of the different types of kinetic models in terms of apparent activation enthalpies, entropies, and heat capacities, using the catalytic reaction of a cold-adapted α-amylase as a prototypic example. We show that the behavior of these thermodynamic activation parameters is fundamentally different between equilibrium and heat capacity models, and in the α-amylase case, computer simulations have shown the former model to be correct. A few other enzyme-catalyzed reactions are also discussed in this context.
Collapse
Affiliation(s)
- Johan Åqvist
- Department of Cell &
Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Jaka Sočan
- Department of Cell &
Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Miha Purg
- Department of Cell &
Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
4
|
Garcia-Gonzalez M, Minguet-Lobato M, Plou FJ, Fernandez-Lobato M. Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars. Microb Cell Fact 2020; 19:140. [PMID: 32652991 PMCID: PMC7353701 DOI: 10.1186/s12934-020-01397-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND α-Glucosidases are widely distributed enzymes with a varied substrate specificity that are traditionally used in biotechnological industries based on oligo- and polysaccharides as starting materials. According to amino acid sequence homology, α-glucosidases are included into two major families, GH13 and GH31. The members of family GH13 contain several α-glucosidases with confirmed hydrolytic activity on sucrose. Previously, a sucrose splitting activity from the nectar colonizing yeast Metschnikowia reukaufii which produced rare sugars with α-(1→1), α-(1→3) and α-(1→6) glycosidic linkages from sucrose was described. RESULTS In this study, genes codifying for α-glucosidases from the nectaries yeast M. gruessii and M. reukaufii were characterised and heterologously expressed in Escherichia coli for the first time. Recombinant proteins (Mg-αGlu and Mr-αGlu) were purified and biochemically analysed. Both enzymes mainly displayed hydrolytic activity towards sucrose, maltose and p-nitrophenyl-α-D-glucopyranoside. Structural analysis of these proteins allowed the identification of common features from the α-amylase family, in particular from glycoside hydrolases that belong to family GH13. The three acidic residues comprising the catalytic triad were identified and their relevance for the protein hydrolytic mechanism confirmed by site-directed mutagenesis. Recombinant enzymes produced oligosaccharides naturally present in honey employing sucrose as initial substrate and gave rise to mixtures with the same products profile (isomelezitose, trehalulose, erlose, melezitose, theanderose and esculose) previously obtained with M. reukaufii cell extracts. Furthermore, the same enzymatic activity was detected with its orthologous Mg-αGlu from M. gruessii. Interestingly, the isomelezitose amounts obtained in reactions mediated by the recombinant proteins, ~ 170 g/L, were the highest reported so far. CONCLUSIONS Mg/Mr-αGlu were heterologously overproduced and their biochemical and structural characteristics analysed. The recombinant α-glucosidases displayed excellent properties in terms of mild reaction conditions, in addition to pH and thermal stability. Besides, the enzymes produced a rare mixture of hetero-gluco-oligosaccharides by transglucosylation, mainly isomelezitose and trehalulose. These compounds are natural constituents of honey which purification from this natural source is quite unviable, what make these enzymes very interesting for the biotechnological industry. Finally, it should be remarked that these sugars have potential applications as food additives due to their suitable sweetness, viscosity and humectant capacity.
Collapse
Affiliation(s)
- Martin Garcia-Gonzalez
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2. Cantoblanco, 28049, Madrid, Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Singh P, Chung HJ, Lee IA, D'Souza R, Kim HJ, Hong ST. Elucidation of the anti-hyperammonemic mechanism of Lactobacillus amylovorus JBD401 by comparative genomic analysis. BMC Genomics 2018; 19:292. [PMID: 29695242 PMCID: PMC5918772 DOI: 10.1186/s12864-018-4672-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background Recent experimental evidence showed that lactobacilli could be used as potential therapeutic agents for hyperammonemia. However, lack of understanding on how lactobacilli reduce blood ammonia levels limits application of lactobacilli to treat hyperammonemia. Results We report the finished and annotated genome sequence of L. amylovorus JBD401 (GenBank accession no. CP012389). L. amylovorus JBD401 reducing blood ammonia levels dramatically was identified by high-throughput screening of several thousand probiotic strains both within and across Lactobacillus species in vitro. Administration of L. amylovorus JBD401 to hyperammonemia-induced mice reduced the blood ammonia levels of the mice to the normal range. Genome sequencing showed that L. amylovorus JBD401 had a circular chromosome of 1,946,267 bp with an average GC content of 38.13%. Comparative analysis of the L. amylovorus JBD401 genome with L. acidophilus and L. amylovorus strains showed that L. amylovorus JBD401 possessed genes for ammonia assimilation into various amino acids and polyamines Interestingly, the genome of L. amylovorus JBD401 contained unusually large number of various pseudogenes suggesting an active stage of evolution. Conclusions L. amylovorus JBD401 has genes for assimilation of free ammonia into various amino acids and polyamines which results in removal of free ammonia in intestinal lumen to reduce the blood ammonia levels in the host. This work explains the mechanism of how probiotics reduce blood ammonia levels. Electronic supplementary material The online version of this article (10.1186/s12864-018-4672-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea
| | - Hea-Jong Chung
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea
| | - In-Ah Lee
- Present address: Department of Chemistry, Gunsan National University, Gunsan, Chonbuk, 51450, South Korea
| | - Roshan D'Souza
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea
| | - Hyeon-Jin Kim
- JINIS BDRD institute, JINIS Biopharmaceuticals Co., 913 Gwahak-Ro, Bongdong, Wanju, Chonbuk, 55321, South Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea.
| |
Collapse
|
6
|
Youngster T, Wushensky JA, Aristilde L. Profiling glucose-induced selective inhibition of disaccharide catabolism in Bacillus megaterium QM B1551 by stable isotope labelling. MICROBIOLOGY-SGM 2017; 163:1509-1514. [PMID: 28954687 DOI: 10.1099/mic.0.000540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigated the co-catabolism of carbohydrate mixtures in Bacillus megaterium QM B1551 using a 13C-assisted metabolomics profiling approach. Specifically, we monitored the ability of B. megaterium to achieve the simultaneous catabolism of glucose and a common disaccharide - cellobiose, maltose, or sucrose. Growth experiments indicated that each disaccharide alone can serve as a sole carbon source for B. megaterium, in accordance with the genetic analysis of this bacterium, which predicted diverse metabolic capabilities. However, following growth on 13C-labelled glucose and each unlabelled disaccharide, the labelling patterns of the intracellular metabolites in glycolysis and the pentose phosphate pathway revealed a hierarchy in disaccharide catabolism: (i) complete inhibition of cellobiose catabolism, (ii) minimal catabolism of maltose and (iii) unbiased catabolism of sucrose. The labelling of amino acids confirmed this selective assimilation of each substrate in biomass precursors. This study highlights the fact that B. megaterium exhibits a mixed-carbohydrate utilization that is different from that of B. subtilis, the most studied model Bacillus species.
Collapse
Affiliation(s)
- Tracy Youngster
- Soil and Crop Sciences Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Julie A Wushensky
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.,Soil and Crop Sciences Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities. Appl Environ Microbiol 2017; 83:AEM.00038-17. [PMID: 28455338 DOI: 10.1128/aem.00038-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023] Open
Abstract
Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose.IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis.
Collapse
|
8
|
Stegues CG, Arthur RA, Hashizume LN. Effect of the association of maltodextrin and sucrose on the acidogenicity and adherence of cariogenic bacteria. Arch Oral Biol 2016; 65:72-6. [DOI: 10.1016/j.archoralbio.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
9
|
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A. Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. J Proteomics 2016; 131:140-148. [DOI: 10.1016/j.jprot.2015.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 01/08/2023]
|
10
|
Dunlap CA, Kim SJ, Kwon SW, Rooney AP. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. Int J Syst Evol Microbiol 2015; 65:2104-2109. [PMID: 25835027 DOI: 10.1099/ijs.0.000226] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rhizosphere-isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of commercial interest. Here, we present the draft genome sequence of B. methylotrophicus KACC 13105(T) ( = CBMB205(T)). Comparative genomic analysis showed only minor differences between this strain and the genome of the B. amyloliquefaciens subsp. plantarum type strain, with the genomes sharing approximately 95% of the same genes. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the type strains of these two taxa are highly similar. In fact, our results show that the type strain of B. amyloliquefaciens subsp. plantarum FZB42(T) ( = DSM 23117(T) = BGSC 10A6(T)) does not cluster with other members of the B. amyloliquefaciens taxon. Instead, it clusters well within a clade of strains that are assigned to B. methylotrophicus, including the type strain of that species. Therefore, we propose that the subspecies B. amyloliquefaciens subsp. plantarum should be reclassified as a later heterotypic synonym of B. methylotrophicus.
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Units, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Soo-Jin Kim
- Crop Bioprotection Research Units, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Soon-Wo Kwon
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Alejandro P Rooney
- Crop Bioprotection Research Units, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
11
|
Wang J, Mei H, Zheng C, Qian H, Cui C, Fu Y, Su J, Liu Z, Yu Z, He J. The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics. Mol Cell Proteomics 2013; 12:1363-76. [PMID: 23408684 DOI: 10.1074/mcp.m112.023986] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacillus thuringiensis is a well-known entomopathogenic bacterium used worldwide as an environmentally compatible biopesticide. During sporulation, B. thuringiensis accumulates a large number of parasporal crystals consisting of insecticidal crystal proteins (ICPs) that can account for nearly 20-30% of the cell's dry weight. However, the metabolic regulation mechanisms of ICP synthesis remain to be elucidated. In this study, the combined efforts in transcriptomics and proteomics mainly uncovered the following 6 metabolic regulation mechanisms: (1) proteases and the amino acid metabolism (particularly, the branched-chain amino acids) became more active during sporulation; (2) stored poly-β-hydroxybutyrate and acetoin, together with some low-quality substances provided considerable carbon and energy sources for sporulation and parasporal crystal formation; (3) the pentose phosphate shunt demonstrated an interesting regulation mechanism involving gluconate when CT-43 cells were grown in GYS medium; (4) the tricarboxylic acid cycle was significantly modified during sporulation; (5) an obvious increase in the quantitative levels of enzymes and cytochromes involved in energy production via the electron transport system was observed; (6) most F0F1-ATPase subunits were remarkably up-regulated during sporulation. This study, for the first time, systematically reveals the metabolic regulation mechanisms involved in the supply of amino acids, carbon substances, and energy for B. thuringiensis spore and parasporal crystal formation at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- Jieping Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PRC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 2012; 3:340. [PMID: 23055996 PMCID: PMC3458588 DOI: 10.3389/fmicb.2012.00340] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023] Open
Abstract
Oligosaccharides, compounds that are composed of 2-10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp.
Collapse
Affiliation(s)
- Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Rainer Follador
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
13
|
Nimpiboon P, Nakapong S, Pichyangkura R, Ito K, Pongsawasdi P. Synthesis of a novel prebiotic trisaccharide by a type I α-glucosidase from B. licheniformis strain TH4-2. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
15
|
Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J Bacteriol 2009; 191:4835-44. [PMID: 19465663 DOI: 10.1128/jb.00176-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological functions of two amylolytic enzymes, a maltogenic amylase (MAase) encoded by yvdF and a debranching enzyme (pullulanase) encoded by amyX, in the carbohydrate metabolism of Bacillus subtilis 168 were investigated using yvdF, amyX, and yvdF amyX mutant strains. An immunolocalization study revealed that YvdF was distributed on both sides of the cytoplasmic membrane and in the periplasm during vegetative growth but in the cytoplasm of prespores. Small carbohydrates such as maltoheptaose and beta-cyclodextrin (beta-CD) taken up by wild-type B. subtilis cells via two distinct transporters, the Mdx and Cyc ABC transporters, respectively, were hydrolyzed immediately to form smaller or linear maltodextrins. On the other hand, the yvdF mutant exhibited limited degradation of the substrates, indicating that, in the wild type, maltodextrins and beta-CD were hydrolyzed by MAase while being taken up by the bacterium. With glycogen and branched beta-CDs as substrates, pullulanase showed high-level specificity for the hydrolysis of the outer side chains of glycogen with three to five glucosyl residues. To investigate the roles of MAase and pullulanase in glycogen utilization, the following glycogen-overproducing strains were constructed: a glg mutant with a wild-type background, yvdF glg and amyX glg mutants, and a glg mutant with a double mutant (DM) background. The amyX glg and glg DM strains accumulated significantly larger amounts of glycogen than the glg mutant, while the yvdF glg strain accumulated an intermediate amount. Glycogen samples from the amyX glg and glg DM strains exhibited average molecular masses two and three times larger, respectively, than that of glycogen from the glg mutant. The results suggested that glycogen breakdown may be a sequential process that involves pullulanase and MAase, whereby pullulanase hydrolyzes the alpha-1,6-glycosidic linkage at the branch point to release a linear maltooligosaccharide that is then hydrolyzed into maltose and maltotriose by MAase.
Collapse
|
16
|
Abstract
The growth and nutritional requirements of mycobacteria have been intensively studied since the discovery of Mycobacterium tuberculosis more than a century ago. However, the identity of many transporters for essential nutrients of M. tuberculosis and other mycobacteria is still unknown despite a wealth of genomic data and the availability of sophisticated genetic tools. Recently, considerable progress has been made in recognizing that two lipid permeability barriers have to be overcome in order for a nutrient molecule to reach the cytoplasm of mycobacteria. Uptake processes are discussed by comparing M. tuberculosis with Mycobacterium smegmatis. For example, M. tuberculosis has only five recognizable carbohydrate transporters in the inner membrane, while M. smegmatis has 28 such transporters at its disposal. The specificities of inner-membrane transporters for sulfate, phosphate and some amino acids have been determined. Outer-membrane channel proteins in both organisms are thought to contribute to nutrient uptake. In particular, the Msp porins have been shown to be required for uptake of carbohydrates, amino acids and phosphate by M. smegmatis. The set of porins also appears to be different for M. tuberculosis and M. smegmatis. These differences likely reflect the lifestyles of these mycobacteria and the availability of nutrients in their natural habitats: the soil and the human body. The comprehensive identification and the biochemical and structural characterization of the nutrient transporters of M. tuberculosis will not only promote our understanding of the physiology of this important human pathogen, but might also be exploited to improve tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Titgemeyer F, Amon J, Parche S, Mahfoud M, Bail J, Schlicht M, Rehm N, Hillmann D, Stephan J, Walter B, Burkovski A, Niederweis M. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol 2007; 189:5903-15. [PMID: 17557815 PMCID: PMC1952047 DOI: 10.1128/jb.00257-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a comprehensive analysis of carbohydrate uptake systems of the soil bacterium Mycobacterium smegmatis and the human pathogen Mycobacterium tuberculosis. Our results show that M. smegmatis has 28 putative carbohydrate transporters. The majority of sugar transport systems (19/28) in M. smegmatis belong to the ATP-binding cassette (ABC) transporter family. In contrast to previous reports, we identified genes encoding all components of the phosphotransferase system (PTS), including permeases for fructose, glucose, and dihydroxyacetone, in M. smegmatis. It is anticipated that the PTS of M. smegmatis plays an important role in the global control of carbon metabolism similar to those of other bacteria. M. smegmatis further possesses one putative glycerol facilitator of the major intrinsic protein family, four sugar permeases of the major facilitator superfamily, one of which was assigned as a glucose transporter, and one galactose permease of the sodium solute superfamily. Our predictions were validated by gene expression, growth, and sugar transport analyses. Strikingly, we detected only five sugar permeases in the slow-growing species M. tuberculosis, two of which occur in M. smegmatis. Genes for a PTS are missing in M. tuberculosis. Our analysis thus brings the diversity of carbohydrate uptake systems of fast- and a slow-growing mycobacteria to light, which reflects the lifestyles of M. smegmatis and M. tuberculosis in their natural habitats, the soil and the human body, respectively.
Collapse
Affiliation(s)
- Fritz Titgemeyer
- Lehrstuhl für Mikrobiologie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schönert S, Seitz S, Krafft H, Feuerbaum EA, Andernach I, Witz G, Dahl MK. Maltose and maltodextrin utilization by Bacillus subtilis. J Bacteriol 2006; 188:3911-22. [PMID: 16707683 PMCID: PMC1482931 DOI: 10.1128/jb.00213-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis can utilize maltose and maltodextrins that are derived from polysaccharides, like starch or glycogen. In this work, we show that maltose is taken up by a member of the phosphoenolpyruvate-dependent phosphotransferase system and maltodextrins are taken up by a maltodextrin-specific ABC transporter. Uptake of maltose by the phosphoenolpyruvate-dependent phosphotransferase system is mediated by maltose-specific enzyme IICB (MalP; synonym, GlvC), with an apparent K(m) of 5 microM and a V(max) of 91 nmol . min(-1) . (10(10) CFU)(-1). The maltodextrin-specific ABC transporter is composed of the maltodextrin binding protein MdxE (formerly YvdG), with affinities in the low micromolar range for maltodextrins, and the membrane-spanning components MdxF and MdxG (formerly YvdH and YvdI, respectively), as well as the energizing ATPase MsmX. Maltotriose transport occurs with an apparent K(m) of 1.4 microM and a V(max) of 4.7 nmol . min(-1) . (10(10) CFU)(-1).
Collapse
Affiliation(s)
- Stefan Schönert
- Lehrstuhl für Mikrobiologie, Fachbereich Biologie der Universität Konstanz, Universitätsstrasse 10, M605, D-78457 Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Najafi MF, Deobagkar D, Deobagkar D. Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr Purif 2005; 41:349-54. [PMID: 15866721 DOI: 10.1016/j.pep.2005.02.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/02/2005] [Indexed: 11/19/2022]
Abstract
A Bacillus subtilis AX20 from soil with ability to produce extracellular alpha-amylases was isolated. The characterization of microorganism was performed by biochemical tests as well as 16S rDNA sequencing. Maximum amylase activity (38 U/ml) was obtained at stationery phase when the culture was grown at 37 degrees C. The enzyme was purified to homogeneity with an overall recovery of 24.2% and specific activity of 4133 U/mg. The native protein showed a molecular mass of 149 kDa composed of a homodimer of 78 kDa polypeptide by SDS-PAGE. The optimum pH and temperature of the amylase were 6 and 55 degrees C, respectively. The enzyme was inhibited by Hg(2+), Ag(2+), and Cu(2+) and it did not show an obligate requirement of metal ions. The enzyme was not inhibited by EDTA or EGTA, suggesting that this enzyme is not a metalloenzyme. The end products of corn starch and soluble starch were glucose (70-75%) and maltose (20-25%). Rapid reduction of blue value and the end products suggest an endo mode of action for the amylase. The purified amylase shows interesting properties useful for industrial applications.
Collapse
|
20
|
Rowe GE, Margaritis A. Enzyme kinetic properties of α-1,4-glucosidase in Bacillus thuringiensis. Biochem Eng J 2004. [DOI: 10.1016/s1369-703x(03)00147-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Kamionka A, Dahl MK. Bacillus subtilis contains a cyclodextrin-binding protein which is part of a putative ABC-transporter. FEMS Microbiol Lett 2001; 204:55-60. [PMID: 11682178 DOI: 10.1111/j.1574-6968.2001.tb10862.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacillus subtilis is able to grow on alpha-, beta- and gamma-cyclodextrins as a carbon source via a yet unknown metabolizing system. Sequence analysis of the B. subtilis genome reveals that the putative yvfK-yvfO operon seems to be involved in cyclodextrin utilization, containing the open reading frame yvfK, now termed cycB. The amino acid sequence derived from the DNA sequence bears high similarities to solute-binding proteins from B. subtilis, as well as to cymE from Klebsiella oxytoca and malE from Escherichia coli, both encoding solute-binding proteins able to interact with cyclodextrins. A [His](6)-tagged variant of CycB from B. subtilis was constructed, overproduced in E. coli and purified. The modified protein has been used to study its substrate specificity by surface plasmon resonance and fluorescence spectroscopy. From these data, CycB can be classified as a cyclodextrin-binding protein which interacts with all three natural cyclodextrins: alpha, beta and gamma, thereby showing the highest affinity to gamma-cyclodextrin.
Collapse
Affiliation(s)
- A Kamionka
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | |
Collapse
|
22
|
Yamamoto H, Serizawa M, Thompson J, Sekiguchi J. Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J Bacteriol 2001; 183:5110-21. [PMID: 11489864 PMCID: PMC95387 DOI: 10.1128/jb.183.17.5110-5121.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maltose metabolism and the regulation of the glv operon of Bacillus subtilis, comprising three genes, glvA (6-phospho-alpha-glucosidase), yfiA (now designated glvR), and glvC (EIICB transport protein), were investigated. Maltose dissimilation was dependent primarily upon the glv operon, and insertional inactivation of either glvA, glvR, or glvC markedly inhibited growth on the disaccharide. A second system (MalL) contributed to a minor extent to maltose metabolism. Northern blotting revealed two transcripts corresponding to a monocistronic mRNA of glvA and a polycistronic mRNA of glvA-glvR-glvC. Primer extension analysis showed that both transcripts started at the same base (G) located 26 bp upstream of the 5' end of glvA. When glvR was placed under control of the spac promoter, expression of the glv operon was dependent upon the presence of isopropyl-beta-D-thiogalactopyranoside (IPTG). In regulatory studies, the promoter sequence of the glv operon was fused to lacZ and inserted into the amyE locus, and the resultant strain (AMGLV) was then transformed with a citrate-controlled glvR plasmid, pHYCM2VR. When cultured in Difco sporulation medium containing citrate, this transformant [AMGLV(pHYCM2VR)] expressed LacZ activity, but synthesis of LacZ was repressed by glucose. In an isogenic strain, [AMGLVCR(pHYCM2VR)], except for a mutation in the sequence of a catabolite-responsive element (cre), LacZ activity was expressed in the presence of citrate and glucose. Insertion of a citrate-controlled glvR plasmid at the amyE locus of ccpA(+) and ccpA mutant organisms yielded strains AMCMVR and AMCMVRCC, respectively. In the presence of both glucose and citrate, AMCMVR failed to express the glv operon, whereas under the same conditions high-level expression of both mRNA transcripts was found in strain AMCMVRCC. Collectively, our findings suggest that GlvR (the product of the glvR gene) is a positive regulator of the glv operon and that glucose exerts its effect via catabolite repression requiring both CcpA and cre.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | | | | | | |
Collapse
|
23
|
Abstract
The gram-positive bacterium Bacillus subtilisis capable of using numerous carbohydrates as single sources of carbon and energy. In this review, we discuss the mechanisms of carbon catabolism and its regulation. Like many other bacteria, B. subtilis uses glucose as the most preferred source of carbon and energy. Expression of genes involved in catabolism of many other substrates depends on their presence (induction) and the absence of carbon sources that can be well metabolized (catabolite repression). Induction is achieved by different mechanisms, with antitermination apparently more common in B. subtilis than in other bacteria. Catabolite repression is regulated in a completely different way than in enteric bacteria. The components mediating carbon catabolite repression in B. subtilis are also found in many other gram-positive bacteria of low GC content.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|