1
|
Wang DS, Wang ZQ, Chen G, Peng JW, Wang W, Deng YH, Wang FH, Zhang JW, Liang HL, Feng F, Xie CB, Ren C, Jin Y, Shi SM, Fan WH, Lu ZH, Ding PR, Wang F, Xu RH, Li YH. Phase III randomized, placebo-controlled, double-blind study of monosialotetrahexosylganglioside for the prevention of oxaliplatin-induced peripheral neurotoxicity in stage II/III colorectal cancer. Cancer Med 2019; 9:151-159. [PMID: 31724334 PMCID: PMC6943144 DOI: 10.1002/cam4.2693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
Background Monosialotetrahexosylganglioside (GM1) is a neuroprotective glycosphingolipid that repairs nerves. Oxaliplatin‐based chemotherapy is neurotoxic. This study assessed the efficacy of GM1 for preventing oxaliplatin‐induced peripheral neurotoxicity (OIPN) in colorectal cancer (CRC) patients receiving oxaliplatin‐based chemotherapy. Methods In total, 196 patients with stage II/III CRC undergoing adjuvant chemotherapy with mFOLFOX6 were randomly assigned to intravenous GM1 or a placebo. The primary endpoint was the rate of grade 2 or worse cumulative neurotoxicity (NCI‐CTCAE). The secondary endpoints were chronic cumulative neurotoxicity (EORTCQLQ‐CIPN20), time to grade 2 neurotoxicity (NCI‐CTCAE or the oxaliplatin‐specific neuropathy scale), acute neurotoxicity (analog scale), rates of dose reduction or withdrawal due to OIPN, 3‐year disease‐free survival (DFS) and adverse events. Results There were no significant differences between the arms in the rate of NCI‐CTCAE grade 2 or worse neurotoxicity (GM1: 33.7% vs placebo: 31.6%; P = .76) or neuropathy measured by the EORTCQLQ‐CIPN20 or time to grade 2 neurotoxicity using NCI‐CTCAE and the oxaliplatin‐specific neuropathy scale. GM1 substantially decreased participant‐reported acute neurotoxicity (sensitivity to cold items [P < .01], discomfort swallowing cold liquids [P < .01], throat discomfort [P < .01], muscle cramps [P < .01]). The rates of dose reduction or withdrawal were not significantly different between the arms (P = .08). The 3‐year DFS rates were 85% and 83% in the GM1 and placebo arms, respectively (P = .19). There were no differences in toxicity between the arms. Conclusion Patients receiving GM1 were less troubled by the symptoms of acute neuropathy. However, we do not support the use of GM1 to prevent cumulative neurotoxicity. (http://ClinicalTrials.gov number, NCT02251977).
Collapse
Affiliation(s)
- De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Wei Wang
- The First People's Hospital of Foshan City, Foshan, China
| | - Yan-Hong Deng
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Wei Zhang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Fen Feng
- The First People's Hospital of Foshan City, Foshan, China
| | - Chuan-Bo Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chao Ren
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Mei Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Hua Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen-Hai Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Rong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
2
|
Hollais AW, Patti CL, Zanin KA, Fukushiro DF, Berro LF, Carvalho RC, Kameda SR, Frussa-Filho R. Effects of acute and long-term typical or atypical neuroleptics on morphine-induced behavioural effects in mice. Clin Exp Pharmacol Physiol 2014; 41:255-63. [PMID: 24471703 DOI: 10.1111/1440-1681.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
1. It has been suggested that the high prevalence of drug abuse in schizophrenics is related to chronic treatment with typical neuroleptics and dopaminergic supersensitivity that develops as a consequence. Within this context, atypical neuroleptics do not seem to induce this phenomenon. In the present study, we investigated the effects of acute administration or withdrawal from long-term administration of haloperidol and/or ziprasidone on morphine-induced open-field behaviour in mice. 2. In the first experiment, mice were given a single injection of haloperidol (1 mg/kg, i.p.) or several doses of ziprasidone (2, 4 or 6 mg/kg, i.p.) and motor activity was quantified by the open-field test. The aim of the second experiment was to verify the effects of an acute injection of haloperidol (1 mg/kg) or ziprasidone (6 mg/kg) on 20 mg/kg morphine-induced behaviours in the open-field test. In the third experiment, mice were treated with 1 mg/kg haloperidol and/or 2, 4 or 6 mg/kg ziprasidone for 20 days. Seventy-two hours after the last injection, mice were injected with 20 mg/kg, i.p., morphine and then subjected to the open-field test. Acute haloperidol or ziprasidone decreased spontaneous general activity and abolished morphine-induced locomotor stimulation. 3. Withdrawal from haloperidol or ziprasidone did not modify morphine-elicited behaviours in the open-field test. The results suggest that withdrawal from neuroleptic treatments does not contribute to the acute effect of morphine in schizophrenic patients.
Collapse
Affiliation(s)
- André W Hollais
- Department of Pharmacology, São Paulo Federal University, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring. Behav Brain Res 2010; 211:77-82. [PMID: 20226214 DOI: 10.1016/j.bbr.2010.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/05/2010] [Accepted: 03/04/2010] [Indexed: 11/23/2022]
Abstract
Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical injuries in both the mother and pups. Previous investigations by our group showed that prenatal LPS administration (100 microg/kg, i.p.) on gestational day 9.5 impaired the male offspring's social behavior in infancy and adulthood. In the present study, we investigated whether these social behavioral changes were associated with motor activity impairment. Male rat pups treated prenatally with LPS or not were tested for reflexological development and open field general activity during infancy. In adulthood, animals were tested for open field general activity, haloperidol-induced catalepsy and apomorphine-induced stereotypy; striatal dopamine levels and turnover were also measured. Moreover, LPS-treated or untreated control pups were challenged with LPS in adulthood and observed for general activity in the open field. In relation to the control group, the motor behavior of prenatally treated male pups was unaffected at basal levels, both in infancy and in adulthood, but decreased general activity was observed in adulthood after an immune challenge. Also, striatal dopamine and metabolite levels were decreased in adulthood. In conclusion, prenatal LPS exposure disrupted the dopaminergic system involved with motor function, but this neurochemical effect was not accompanied by behavioral impairment, probably due to adaptive plasticity processes. Notwithstanding, behavioral impairment was revealed when animals were challenged with LPS, resulting in enhanced sickness behavior.
Collapse
|
4
|
Valdomero A, Hansen C, de Burgos NG, Cuadra GR, Orsingher OA. GM1 ganglioside enhances the rewarding properties of cocaine in rats. Eur J Pharmacol 2010; 630:79-83. [PMID: 20044989 DOI: 10.1016/j.ejphar.2009.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/26/2009] [Accepted: 12/15/2009] [Indexed: 11/28/2022]
Abstract
GM1 pretreatment enhanced the rewarding properties of cocaine as assessed in the conditioned place preference paradigm. This effect was shown by the lower dosage of cocaine necessary to induce conditioning compared with rats receiving cocaine alone, as well as by the fewer number of sessions necessary to induce place preference. GM1 pretreatment did not modify the plasma level of cocaine, but it induced a significant increase in the brain cocaine level compared with animals receiving cocaine alone. In order to evaluate the possibility that GM1 pretreatment may alter the pharmacokinetic parameters of cocaine, the brain and plasma esterase activities, the plasma bound/free cocaine ratio and the brain blood barrier permeability to i.v. Evans Blue administration were assessed. None of these parameters was modified by the GM1 administration. In addition, GM1 (100microM) did not alter the dopamine transporter inhibition induced by cocaine (10(-7)-10(-5)M), as determined by the uptake of [(3-)H]-dopamine in the microsacs of nucleus accumbens. In conclusion, GM1 pretreatment, which did not have any effect per se, increased the rewarding effect of cocaine, a phenomenon correlated with a significant increase in the brain cocaine levels. The different pharmacokinetic parameters evaluated, as well as the inhibitory effect of cocaine on the dopamine transporter, were not modified by GM1, but it modifies the brain cocaine disposition. Thus, the mechanisms by which GM1 enhanced the rewarding effects of cocaine merit further study.
Collapse
Affiliation(s)
- Analía Valdomero
- Departamento de Farmacología (IFEC - CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
5
|
Carvalho RC, Fukushiro DF, Helfer DC, Callegaro-Filho D, Trombin TF, Zanlorenci LHF, Sanday L, Silva RH, Frussa-Filho R. Long-term haloperidol treatment (but not risperidone) enhances addiction-related behaviors in mice: role of dopamine D2 receptors. Addict Biol 2009; 14:283-93. [PMID: 19298320 DOI: 10.1111/j.1369-1600.2008.00145.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high prevalence of psychostimulant abuse observed in schizophrenic patients may be related to the development of mesolimbic dopaminergic supersensitivity (MDS) or nigrostriatal dopaminergic supersensitivity (NDS) in response to the chronic blockade of dopamine receptors produced by typical neuroleptic treatment. We compared the effects of withdrawal from long-term administration of the typical neuroleptic haloperidol (Hal) and/or the atypical agent risperidone (Ris) on MDS and NDS, behaviorally evaluated by amphetamine-induced locomotor stimulation (AILS) and apomorphine-induced stereotypy (AIS) in mice, respectively. We further evaluated the duration of MDS and investigated the specific role of dopamine D2 receptors in this phenomenon by administering the D2 agonist quinpirole (Quin) to mice withdrawn from long-term treatment with these neuroleptics. Withdrawal (48 hours) from long-term (20 days) Hal (0.5 mg/kg i.p.) (but not 0.5 mg/kg Ris i.p.) treatment potentiated both AILS and AIS. Ris co-administration abolished the potentiation of AILS and AIS observed in Hal-withdrawn mice. Ten days after withdrawal from long-term treatment with Hal (but not with Ris or Ris + Hal), a potentiation in AILS was still observed. Only Hal-withdrawn mice presented an attenuation of locomotor inhibition produced by Quin. Our data suggest that the atypical neuroleptic Ris has a pharmacological property that counteracts the compensatory MDS and NDS developed in response to the chronic blockade of dopamine receptors imposed by Ris itself or by typical neuroleptics such as Hal. They also indicate that MDS may be long lasting and suggest that an upregulation of dopamine D2 receptors in response to long-term treatment with the typical neuroleptic is involved in this phenomenon.
Collapse
Affiliation(s)
- Rita C Carvalho
- Department of Pharmacology, Universidade Federal de São Paulo, Rua Botucatu 862, São Paulo-SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Furian AF, Oliveira MS, Royes LFF, Fiorenza NG, Fighera MR, Myskiw JC, Weiblen R, Rubin MA, Frussa-Filho R, Mello CF. GM1 ganglioside induces vasodilation and increases catalase content in the brain. Free Radic Biol Med 2007; 43:924-32. [PMID: 17697937 DOI: 10.1016/j.freeradbiomed.2007.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 05/27/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Monosialoganglioside (GM1) is a glycosphingolipid present in most cell membranes that displays antioxidant and neuroprotective properties. GM1 increases catalase activity in cerebral cortices in vivo, but the mechanisms underlying this effect of GM1 are not known. In the current study we investigated the effect of GM1 (50 mg/kg, ip) on the content of hemoglobin and catalase activity of hippocampus, cortex, and striatum of rats. GM1 administration increased catalase activity and hemoglobin content in brain samples after 30 min, but had no effect on blood catalase activity. GM1-induced increase in catalase activity was abolished by brain perfusion with heparinized saline. Brain catalase activity in the absence of blood, estimated by regression analysis of data from perfused and nonperfused animals, was not altered by the systemic injection of GM1. Moreover, the addition of GM1 (30 or 100 microM) did not increase catalase activity in slices of cerebral cortex in situ, further suggesting that blood circulation is required for this effect. The GM1-induced vasodilation was confirmed in vivo, because the systemic injection of GM1 (50 mg/kg, ip) increased (1.2-1.6 times) the width of pial vessels.
Collapse
Affiliation(s)
- Ana Flávia Furian
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fighera MR, Royes LFF, Furian AF, Oliveira MS, Fiorenza NG, Frussa-Filho R, Petry JC, Coelho RC, Mello CF. GM1 ganglioside prevents seizures, Na+,K+-ATPase activity inhibition and oxidative stress induced by glutaric acid and pentylenetetrazole. Neurobiol Dis 2006; 22:611-23. [PMID: 16516483 DOI: 10.1016/j.nbd.2006.01.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 12/23/2005] [Accepted: 01/02/2006] [Indexed: 11/17/2022] Open
Abstract
Monosialoganglioside (GM1) is a glycosphingolipid that protects against some neurological conditions, such as seizures and ischemia. Glutaric acidemia type I (GA-I) is an inherited disease characterized by striatal degeneration, seizures, and accumulation of glutaric acid (GA). In this study, we show that GA inhibits Na+,K+-ATPase activity and increases oxidative damage markers (total protein carbonylation and thiobarbituric acid-reactive substances-TBARS) production in striatal homogenates from rats in vitro and ex vivo. It is also shown that GM1 (50 mg/kg, i.p., twice) protects against GA-induced (4 micromol/striatum) seizures, protein carbonylation, TBARS increase, and inhibition of Na+,K+-ATPase activity ex vivo. Convulsive episodes induced by GA strongly correlated with Na+,K+-ATPase activity inhibition in the injected striatum but not with oxidative stress marker measures. Muscimol (46 pmol/striatum), but not MK-801 (3 nmol/striatum) and DNQX (8 nmol/striatum) prevented GA-induced convulsions, increase of TBARS and protein carbonylation and inhibition of Na+,K+-ATPase activity. The protection of GM1 and muscimol against GA-induced seizures strongly correlated with Na+,K+-ATPase activity maintenance ex vivo. In addition, GM1 (50-200 microM) protected against Na+,K+-ATPase inhibition induced by GA (6 mM) but not against oxidative damage in vitro. GM1 also decreased pentylenetetrazole (PTZ)-induced (1.8 micromol/striatum) seizures, Na+,K+-ATPase inhibition, and increase of TBARS and protein carbonyl in the striatum. These data suggest that Na+,K+-ATPase and GABA(A) receptor-mediated mechanisms may play important roles in GA-induced seizures and in their prevention by GM1.
Collapse
Affiliation(s)
- Michele Rechia Fighera
- Laboratório de Psicofarmacologia e Neurotoxicologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|