1
|
Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development. PLoS One 2017; 12:e0184473. [PMID: 28934221 PMCID: PMC5608218 DOI: 10.1371/journal.pone.0184473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/24/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. PURPOSE To address the temporal requirement of Pdgfra in embryonic development. METHODS We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. RESULTS Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. CONCLUSION Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.
Collapse
|
2
|
Nagasawa DT, Trang A, Choy W, Spasic M, Yew A, Zarinkhou G, Garcia HM, Yang I. Genetic expression profiles of adult and pediatric ependymomas: molecular pathways, prognostic indicators, and therapeutic targets. Clin Neurol Neurosurg 2013; 115:388-99. [PMID: 23374238 DOI: 10.1016/j.clineuro.2012.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 11/06/2012] [Accepted: 12/02/2012] [Indexed: 12/21/2022]
Abstract
Ependymomas are tumors that can present within either the intracranial or spinal regions. While 90% of all pediatric ependymomas are intracranial, spinal cord ependymomas are more commonly found in patients 20-40 years old. Treatment for spinal lesions has achieved local control rates up to 100% following gross total resection, while pediatric intracranial tumors have 40-60% mortality. Given the inability to effectively treat ependymomas with current standard practices, researchers have focused their efforts on evaluating chromosomal alterations, genetic expression profiles, epigenetic events, and molecular pathways. While these studies have provided critical insight into the potential mechanisms underlying ependymoma pathogenesis, understanding of the intricate interplay between the various pathways involved in tumor initiation, development, and progression will require deeper investigation. However, several potential prognostic markers and therapeutic targets have been identified, providing key areas of focus for future research. The utilization of unique genetic expression profiles based upon patient age, tumor location, tumor grade, and subtype has revealed a multitude of findings warranting further study. Inspection of various molecular pathways associated with ependymomas may establish the foundation for developing novel therapies capable of achieving significant clinical improvements with individualized regimens specifically designed for personalized treatment strategies.
Collapse
Affiliation(s)
- Daniel T Nagasawa
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
4
|
Pereira LA, Wong MS, Mossman AK, Sourris K, Janes ME, Knezevic K, Hirst CE, Lim SM, Pimanda JE, Stanley EG, Elefanty AG. Pdgfrα and Flk1 are direct target genes of Mixl1 in differentiating embryonic stem cells. Stem Cell Res 2011; 8:165-79. [PMID: 22265737 DOI: 10.1016/j.scr.2011.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022] Open
Abstract
The Mixl1 homeodomain protein plays a key role in mesendoderm patterning during embryogenesis, but its target genes remain to be identified. We compared gene expression in differentiating heterozygous Mixl1(GFP/w) and homozygous null Mixl1(GFP/Hygro) mouse embryonic stem cells to identify potential downstream transcriptional targets of Mixl1. Candidate Mixl1 regulated genes whose expression was reduced in GFP+ cells isolated from differentiating Mixl1(GFP/Hygro) embryoid bodies included Pdgfrα and Flk1. Mixl1 bound to ATTA sequences located in the Pdgfrα and Flk1 promoters and chromatin immunoprecipitation assays confirmed Mixl1 occupancy of these promoters in vivo. Furthermore, Mixl1 transactivated the Pdgfrα and Flk1 promoters through ATTA sequences in a DNA binding dependent manner. These data support the hypothesis that Mixl1 directly regulates Pdgfrα and Flk1 gene expression and strengthens the position of Mixl1 as a key regulator of mesendoderm development during mammalian gastrulation.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bleyl SB, Moshrefi A, Shaw GM, Saijoh Y, Schoenwolf GC, Pennacchio LA, Slavotinek AM. Candidate genes for congenital diaphragmatic hernia from animal models: sequencing of FOG2 and PDGFRα reveals rare variants in diaphragmatic hernia patients. Eur J Hum Genet 2007; 15:950-8. [PMID: 17568391 DOI: 10.1038/sj.ejhg.5201872] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common, life threatening birth defect. Although there is strong evidence implicating genetic factors in its pathogenesis, few causative genes have been identified, and in isolated CDH, only one de novo, nonsense mutation has been reported in FOG2 in a female with posterior diaphragmatic eventration. We report here that the homozygous null mouse for the Pdgfralpha gene has posterolateral diaphragmatic defects and thus is a model for human CDH. We hypothesized that mutations in this gene could cause human CDH. We sequenced PDGFRalpha and FOG2 in 96 patients with CDH, of which 53 had isolated CDH (55.2%), 36 had CDH and additional anomalies (37.5%), and 7 had CDH and known chromosome aberrations (7.3%). For FOG2, we identified novel sequence alterations predicting p.M703L and p.T843A in two patients with isolated CDH that were absent in 526 and 564 control chromosomes respectively. These altered amino acids were highly conserved. However, due to the lack of available parental DNA samples we were not able to determine if the sequence alterations were de novo. For PDGFRalpha, we found a single variant predicting p.L967V in a patient with CDH and multiple anomalies that was absent in 768 control chromosomes. This patient also had one cell with trisomy 15 on skin fibroblast culture, a finding of uncertain significance. Although our study identified sequence variants in FOG2 and PDGFRalpha, we have not definitively established the variants as mutations and we found no evidence that CDH commonly results from mutations in these genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chromosomes, Human, Pair 15
- Cohort Studies
- DNA-Binding Proteins/genetics
- Disease Models, Animal
- Embryo, Mammalian/abnormalities
- Genetic Variation
- Hernia, Diaphragmatic/genetics
- Hernias, Diaphragmatic, Congenital
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Trisomy
Collapse
Affiliation(s)
- S B Bleyl
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Toepoel M, Ackerschott B, van Zoelen EJJ. Haplotype-dependent binding of nuclear proteins to the promoter of the neural tube defects-associated platelet-derived growth factor alpha-receptor gene. Biochim Biophys Acta Mol Basis Dis 2006; 1741:350-7. [PMID: 16126374 DOI: 10.1016/j.bbadis.2005.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
We have previously shown that polymorphisms in the promoter of the human platelet-derived growth factor alpha-receptor (PDGFRA) gene can be grouped into five distinct haplotypes, designated H1, H 2 alpha, H 2 beta, H 2 gamma and H 2 delta, and that specific combinations of these promoter haplotypes predispose to neural tube defects (NTDs). These promoter haplotypes differ strongly in their ability to drive reporter gene expression in various human cell lines, with highest activity for H 2 alpha and H 2 beta. Here, we show that the haplotype-linked PDGFRA promoter region extends to 3.6 kb upstream from the transcription start site, and contains a total of ten polymorphic sites. For two of these polymorphic sites, i.e. -909 C/A and +68 GAins/del, we observed differential binding of nuclear proteins from human osteosarcoma (HOS) cells. The protein complex binding specifically to -909 C, which is present in all haplotypes except the low activity haplotype H 2 gamma, contained members of the upstream stimulatory factor (USF) family of transcription factors. Furthermore, we identified a protein complex of 125 kDa which bound specifically to the low activity haplotype H1 at position +68 GAdel and may represent an H1-specific PDGFRA transcriptional repressor. The current identification of cis-acting elements in the PDGFRA promoter and the transcription factors that bind them, provides a new strategy for the identification of genes that are potentially involved in neural tube defects.
Collapse
Affiliation(s)
- Mascha Toepoel
- Department of Cell Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | |
Collapse
|
7
|
De Bustos C, Smits A, Strömberg B, Collins VP, Nistér M, Afink G. A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas. J Med Genet 2006; 42:31-7. [PMID: 15635072 PMCID: PMC1735903 DOI: 10.1136/jmg.2004.024034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet derived growth factor receptor alpha (PDGFRalpha) expression is typical for a variety of brain tumours, while in normal adult brain PDGFRalpha expression is limited to a small number of neural progenitor cells. The molecular mechanisms responsible for the PDGFRalpha expression in tumours are not known, but in the absence of amplification, changes in transcriptional regulation might be an important factor in this process. METHODS AND RESULTS We have investigated the link between single nucleotide polymorphisms (SNPs) within the PDGFRalpha gene promoter and the occurrence of brain tumours (medulloblastomas, supratentorial primitive neuroectodermal tumours (PNETs), ependymal tumours, astrocytomas, oligodendrogliomas, and mixed gliomas). These SNPs give rise to five different promoter haplotypes named H1 and H2alpha-delta. It is apparent from the haplotype frequency distribution that both PNET (10-fold) and ependymoma (6.5-fold) patient groups display a significant over-representation of the H2delta haplotype. The precise functional role in PDGFRalpha gene transcription for the H2delta haplotype is not known yet, but we can show that the H2delta haplotype specifically disrupts binding of the transcription factor ZNF148 as compared to the other promoter haplotypes. CONCLUSIONS The specific over-representation of the H2delta haplotype in both patients with PNETs and ependymomas suggests a functional role for the ZNF148/PDGFRalpha pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- C De Bustos
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Boyles AL, Hammock P, Speer MC. Candidate gene analysis in human neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 135C:9-23. [PMID: 15816061 DOI: 10.1002/ajmg.c.30048] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biochemical and developmental pathways, mouse models, and positional evidence have provided numerous candidate genes for the study of human neural tube defects. In a survey of 80 studies on 38 candidate genes, few found significant results in human populations through case-control or family-based association studies. While the folate pathway has been explored extensively, only the MTHFR 677C > T polymorphism was significant, and only in an Irish population. Developmental pathways such as the Wnt signaling pathway and Hox genes have also been explored without positive results. More than 90 mouse candidates have been identified through spontaneous and knockout mutations, but only the T locus (mouse Brachyury gene) showed association in an initial study that was not confirmed on follow-up. Positional candidates have been derived from cytogenetic evidence, but preliminary genomic screens have limited power due to small sample sizes. Future studies would increase their power to detect association by using more samples. In addition a clarification of the phenotype would be beneficial as many studies used different inclusion criteria. Incorporating several types of data could highlight better candidates, as would looking beyond the traditional sources for candidate genes. Recent studies of an energy metabolism gene (UCP2) and vitamin B metabolism (Transcoalbumin) have produced promising results. Utilizing other model organisms may also be beneficial, as in a recent study from a chick model of NTDs in NCAM1. New approaches combined with traditional methods and increased sample sizes will help prioritize human NTD candidate genes and clarify the complex etiology of this condition.
Collapse
Affiliation(s)
- Abee L Boyles
- Duke University Program in Genetics and Genomics, USA
| | | | | |
Collapse
|
9
|
Afink G, Westermark UK, Lammerts E, Nistér M. C/EBP is an essential component of PDGFRA transcription in MG-63 cells. Biochem Biophys Res Commun 2004; 315:313-8. [PMID: 14766209 DOI: 10.1016/j.bbrc.2004.01.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Indexed: 11/19/2022]
Abstract
Interleukin-1beta (IL-1beta) is a potent inhibitor of platelet-derived growth factor alpha receptor (PDGFRalpha) expression in MG-63 cells. Its effect is mediated at the transcriptional level, but the transcription factors involved in this process are unknown. In the current study, we found that IL-1beta could inhibit the PDGFRalpha gene promoter activity, and this effect was strongly correlated with increased binding of CCAAT/enhancer-binding protein (C/EBP) to the responsive promoter region. In addition, forced expression of C/EBPbeta could mimic the IL-1beta effect on the promoter activity, but subsequent mutation analysis of the C/EBP binding sites indicated that direct C/EBP binding to the promoter is not required for the IL-1beta response. However, our data clearly demonstrated that the C/EBP binding site at position-162 relative to the transcriptional start site is essential for high basal level PDGFRalpha promoter activity.
Collapse
Affiliation(s)
- Gijs Afink
- Department of Cell Biology, University of Nijmegen, Toernooiveld 1, 6523 ED Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Zhu H, Wicker NJ, Volcik K, Zhang J, Shaw GM, Lammer EJ, Suarez L, Canfield M, Finnell RH. Promoter haplotype combinations for the human PDGFRA gene are associated with risk of neural tube defects. Mol Genet Metab 2004; 81:127-32. [PMID: 14741194 DOI: 10.1016/j.ymgme.2003.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent animal studies suggested that deregulated expression of the platelet-derived growth factor receptor alpha (PDGFRalpha) may contribute to the failure of normal neural tube closure (NTC). There is also suggestive evidence that the promoter haplotype of the PDGFRA is associated with genetic susceptibility in human neural tube defects (NTDs). The purpose of our study was to investigate the association between promoter haplotype combinations of the human PDGFRA gene and risk for NTDs in a Hispanic population from the Texas-Mexico border region. This population has a considerably higher prevalence of NTDs (16/10,000 live births) than that generally reported in the United States (8-10/10,000 live births). In the present study, NTDs were defined as spina bifida or anencephaly. The haplotype of PDGFRA gene promoter was determined by direct DNA sequence analysis. Two novel haplotypes, H2epsilon and H1beta, were found. We observed significant differences among variable haplotype groups from in vitro transient transfection studies in U2-OS osteosarcoma cell and two other cell lines (HeLa cell and MCF7 cell). Result from our case-control study demonstrated that the frequencies of haplotypes with low transcription activity were significantly higher in NTD mothers than that observed in control mothers (odds ratio=2.2, 95% CI=1.0-4.6). Infants with at least one low activity allele showed slightly higher risk (odds ratio=1.5, 95%=0.8-3.1). Our study suggests that the reduced transcriptional activity of PDGFRA gene could increase the risk of having an NTD-affected pregnancy.
Collapse
Affiliation(s)
- Huiping Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|