1
|
Menzel F, Kramp K, Amorim DDS, Gorab E, Uliana JVC, Sauaia H, Monesi N. Pseudolycoriella hygida (Sauaia and Alves)-An Overview of a Model Organism in Genetics, with New Aspects in Morphology and Systematics. INSECTS 2024; 15:118. [PMID: 38392537 PMCID: PMC10889529 DOI: 10.3390/insects15020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Pseudolycoriella hygida (Sauaia & Alves, 1968) is a sciarid that has been continuously cultured in the laboratory for nearly 60 years. Studies on this species have contributed to the understanding of DNA puffs, which are characteristic of Sciaridae, and to the knowledge of more general aspects of insect biology, including cell death, nucleolar organization, and the role of the hormone ecdysone during molting. The genome of Psl. hygida has now been sequenced, and it is the third publicly available sciarid genome. The aim of this work is to expand the current knowledge on Psl. hygida. The morphology of the adults is revisited. The morphology of larvae and pupae is described, together with the behavior of immature stages under laboratory conditions. Cytogenetic maps of the salivary gland polytene chromosomes are presented, together with a comparative analysis of the mitotic chromosomes of six different sciarid species. Pseudolycoriella hygida was originally described as a species of Bradysia and recently moved to Pseudolycoriella. We examine here the systematic position of Psl. hygida in the latter genus. Our results extend the characterization of an unconventional model organism and constitute an important resource for those working on the cytogenetics, ecology, taxonomy, and phylogenetic systematics of sciarids.
Collapse
Affiliation(s)
- Frank Menzel
- Senckenberg Deutsches Entomologisches Institut (SDEI), Eberswalder Straße 90, 15374 Müncheberg, Germany
| | - Katja Kramp
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Dalton de Souza Amorim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto 14040-900, SP, Brazil
| | - Eduardo Gorab
- Independent Researcher, Rua Marcus Pereira 167/213, São Paulo 05642-020, SP, Brazil
| | - João Vitor Cardoso Uliana
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto 14049-900, SP, Brazil
| | - Heni Sauaia
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto 14049-900, SP, Brazil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Vila Monte Alegre, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|
2
|
de Cassia Santos Przepiura T, Navarro AM, da Rosa Ribeiro R, Gomes JR, Pitthan KV, de Miranda Soares MA. Mechanisms of programmed cell death in the midgut and salivary glands from Bradysia hygida (Diptera: Sciaridae) during pupal-adult metamorphosis. Cell Biol Int 2020; 44:1981-1990. [PMID: 32497316 DOI: 10.1002/cbin.11404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real-time observations, morphological analysis, glycogen detection, filamentous-actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.
Collapse
Affiliation(s)
| | - Aryelle M Navarro
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Rafaela da Rosa Ribeiro
- Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE), São Paulo, São Paulo, Brazil
| | - José R Gomes
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Karina V Pitthan
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Maria A de Miranda Soares
- Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
3
|
Wester JVWC, Lima CAC, Machado MCR, Zampar PV, Tavares SS, Monesi N. Characterization of a novel Drosophila melanogaster cis-regulatory module that drives gene expression to the larval tracheal system and adult thoracic musculature. Genesis 2018; 56:e23222. [PMID: 30096221 DOI: 10.1002/dvg.23222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 11/05/2022]
Abstract
In a previous bioinformatics analysis we identified 10 conserved Drosophila melanogaster sequences that reside upstream from protein coding genes (CGs). Here we characterize one of these genomic regions, which constitutes a Drosophila melanogaster cis-regulatory module (CRM) that we denominate TT-CRM. The TT-CRM is 646 bp long and is located in one of the introns of CG32239 and resides about 3,500 bp upstream of CG13711 and about 620 bp upstream of CG12493. Analysis of 646 bp-lacZ lines revealed that TT-CRM drives gene expression not only to the larval, prepupal, and pupal tracheal system but also to the adult dorsal longitudinal muscles. The patterns of mRNA expression of the transgene and of the CGs that lie in the vicinity of TT-CRM were investigated both in dissected trachea and in adult thoraces. Through RT-qPCR we observed that in the tracheal system the pattern of expression of 646 bp-lacZ is similar to the pattern of expression of CG32239 and CG13711, whereas in the thoracic muscles 646 bp-lacZ expression accompanies the expression of CG12493. Together, these results suggest new functions for two previously characterized D. melanogaster genes and also contribute to the initial characterization of a novel CRM that drives a dynamic pattern of expression throughout development.
Collapse
Affiliation(s)
- Jorge Victor Wilfredo Cachay Wester
- Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Antonio Couto Lima
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maiaro Cabral Rosa Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Vieira Zampar
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Simone Sakagute Tavares
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Frank HO, Sanchez DG, de Freitas Oliveira L, Kobarg J, Monesi N. The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter. Genesis 2017; 55. [PMID: 28971561 DOI: 10.1002/dvg.23075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
Abstract
The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida.
Collapse
Affiliation(s)
- Henrique Oliveira Frank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Danilo Garcia Sanchez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, sem número, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lucas de Freitas Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, sem número, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas e Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-970, Brazil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, sem número, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
5
|
Simon CR, Siviero F, Monesi N. Beyond DNA puffs: What can we learn from studying sciarids? Genesis 2016; 54:361-78. [PMID: 27178805 DOI: 10.1002/dvg.22946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/07/2022]
Abstract
Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Roberto Simon
- Departamento de Biologia Estrutural, Universidade Federal do Triângulo Mineiro-UFTM, Instituto de Ciências Biológicas e Naturais, Uberaba, MG, Brazil, CEP 38025-015
| | - Fábio Siviero
- Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP, Brazil, CEP 05508-900
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Candido-Silva JA, Machado MCR, Hartfelder KH, de Almeida JC, Paçó-Larson ML, Monesi N. Amplification and expression of a salivary gland DNA puff gene in the prothoracic gland of Bradysia hygida (Diptera: Sciaridae). JOURNAL OF INSECT PHYSIOLOGY 2015; 74:30-37. [PMID: 25666977 DOI: 10.1016/j.jinsphys.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
The DNA puff BhC4-1 gene, located in DNA puff C4 of Bradysiahygida, is amplified and expressed in the salivary gland at the end of the fourth larval instar as a late response to the increase in 20-hydroxyecdysone titer that triggers metamorphosis. Functional studies revealed that the mechanisms that regulate BhC4-1 expression in the salivary gland are conserved in transgenic Drosophila. These studies also led to the identification of a cis-regulatory module that drives developmentally regulated expression of BhC4-1-lacZ in the prothoracic gland cells of the ring gland, a compound organ which in Drosophila results from the fusion of the prothoracic glands, the corpus allatum and the corpus cardiacum. Here we have investigated the occurrence of BhC4-1 expression in B. hygida prothoracic glands. We report the identification of the B. hygida prothoracic gland and demonstrate that it releases ecdysone. Using RT-qPCR, western blots and immunolocalization experiments, we demonstrate that the BhC4-1 mRNA and the BhC4-1 protein are both expressed in the B. hygida prothoracic glands at the same time that DNA puff C4 is formed in the salivary gland. We also show that BhC4-1 is concomitantly amplified 4.8-fold in the prothoracic gland and 23-fold in the salivary gland. Our results reveal the occurrence of stage specific expression of a DNA puff gene in the prothoracic glands of B. hygida, and extend previous studies that have shown that DNA puff genes expression is not restricted to the salivary gland. In addition, the description of stage specific gene amplification in the prothoracic glands of B. hygida constitutes the first demonstration that gene amplification in Diptera might occur concomitantly in two different tissues in the same developmental stage.
Collapse
Affiliation(s)
- Juliana Aparecida Candido-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-903, Brazil.
| | - Maiaro Cabral Rosa Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Klaus Hartmann Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Jorge Cury de Almeida
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Maria Luisa Paçó-Larson
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-903, Brazil.
| |
Collapse
|
7
|
Garcia AC, Gitaí DLG, Humann FC, Paçó-Larson ML, Monesi N. Functional characterization of the sciarid BhC4-1 core promoter in transgenic Drosophila. BMC Mol Biol 2011; 12:32. [PMID: 21806810 PMCID: PMC3160885 DOI: 10.1186/1471-2199-12-32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/01/2011] [Indexed: 11/16/2022] Open
Abstract
Background Core promoters are cis-regulatory modules to which bind the basal transcriptional machinery and which participate in the regulation of transcription initiation. Although core promoters have not been extensively investigated through functional assays in a chromosomal context, the available data suggested that the response of a given core promoter might vary depending on the promoter context. Previous studies suggest that a (-57/+40) fragment constitutes the core promoter of the BhC4-1 gene which is located in DNA puff C4 of the sciarid fly Bradysia hygida. Here we tested this (-57/+40) fragment in distinct regulatory contexts in order to verify if promoter context affects its core promoter activity. Results Consistent with the activity of a core promoter, we showed that in the absence of upstream regulatory sequences the (-57/+40) fragment drives low levels of reporter gene mRNA expression throughout development in transgenic Drosophila. By assaying the (-57/+40) fragment in two distinct regulatory contexts, either downstream of the previously characterized Fbp1 enhancer or downstream of the UAS element, we showed that the BhC4-1 core promoter drives regulated transcription in both the germline and in various tissues throughout development. Furthermore, the use of the BhC4-1 core promoter in a UAS construct significantly reduced salivary gland ectopic expression in third instar larvae, which was previously described to occur in the context of the GAL4/UAS system. Conclusions Our results from functional analysis in transgenic Drosophila show that the BhC4-1 core promoter drives gene expression regardless of the promoter context that was assayed. New insights into the functioning of the GAL4/UAS system in Drosophila were obtained, indicating that the presence of the SV40 sequence in the 3' UTR of a UAS construct does not preclude expression in the germline. Furthermore, our analysis indicated that ectopic salivary gland expression in the GAL4/UAS system does not depend only on sequences present in the GAL4 construct, but can also be affected by the core promoter sequences in the UAS construct. In this context, we propose that the sciarid BhC4-1 core promoter constitutes a valuable core promoter which can be employed in functional assays in insects.
Collapse
Affiliation(s)
- Adriana C Garcia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil, 14040-903
| | | | | | | | | |
Collapse
|
8
|
Yao Q, Zhang D, Tang B, Chen J, Chen J, Lu L, Zhang W. Identification of 20-hydroxyecdysone late-response genes in the chitin biosynthesis pathway. PLoS One 2010; 5:e14058. [PMID: 21124981 PMCID: PMC2987807 DOI: 10.1371/journal.pone.0014058] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/28/2010] [Indexed: 12/04/2022] Open
Abstract
Background 20-hydroxyecdysone (20E) and its receptor complex ecdysone receptor (EcR) and ultraspiracle (USP) play a crucial role in controlling development, metamorphosis, reproduction and diapause. The ligand-receptor complex 20E-EcR/USP directly activates a small set of early-response genes and a much larger set of late-response genes. However, ecdysone-responsive genes have not been previously characterized in the context of insect chitin biosynthesis. Principal Findings Here, we show that injection-based RNA interference (RNAi) directed towards a common region of the two isoforms of SeEcR in a lepidopteron insect Spodoptera exigua was effective, with phenotypes including a high mortality prior to pupation and developmental defects. After gene specific RNAi, chitin contents in the cuticle of an abnormal larva significantly decreased. The expression levels of five genes in the chitin biosynthesis pathway, SeTre-1, SeG6PI, SeUAP, SeCHSA and SeCHSB, were significantly reduced, while there was no difference in the expression of SeTre-2 prior to 72 hr after injection of EcR dsRNA. Meanwhile, injection of 20E in vivo induced the expression of the five genes mentioned above. Moreover, the SeTre-1, SeG6PI, SeUAP and SeCHSB genes showed late responses to the hormone and the induction of SeTre-1, SeG6PI, SeUAP and SeCHSB genes by 20E were able to be inhibited by the protein synthesis inhibitor cycloheximide in vitro indicating these genes are 20E late-response genes. Conclusions We conclude that SeTre-1, SeG6PI, SeUAP and SeCHSB in the chitin biosynthesis pathway are 20E late-response genes and 20E and its specific receptors plays a key role in the regulation of chitin biosynthesis via inducing their expression.
Collapse
Affiliation(s)
- Qiong Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Daowei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, China
| | - Jie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
9
|
Zanarotti GM, Cândido-Silva JA, de Almeida JC. BhSGAMP-1, a gene that encodes an antimicrobial peptide, is developmentally regulated by the direct action of 20-OH ecdysone in the salivary gland ofBradysia hygida(Diptera, Sciaridae). Genesis 2009; 47:847-57. [DOI: 10.1002/dvg.20576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Candido-Silva JA, de Carvalho DP, Coelho GR, de Almeida JC. Indirect immune detection of ecdysone receptor (EcR) during the formation of DNA puffs in Bradysia hygida (Diptera, Sciaridae). Chromosome Res 2008; 16:609-22. [PMID: 18483872 DOI: 10.1007/s10577-008-1215-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/18/2008] [Accepted: 02/18/2008] [Indexed: 11/24/2022]
Abstract
Gene amplification occurs in Bradysia hygida salivary glands, at the end of the fourth larval instar. The hormone 20-hydroxyecdysone (20E) triggers this process, which results in DNA puff formation. Amplified genes are activated in two distinct groups. The activity of the first group is dependent on high levels of 20E, while the second group needs low hormone levels. Consequently, the salivary glands of B. hygida constitute an interesting biological model to study how 20E, and its receptors, affect gene amplification and activity. We produced polyclonal antibodies against B. hygida EcR (BhEcR). In western blots a polypeptide of about 66 kDa was detected in salivary gland extracts. The antibodies were also used for indirect immune-localization of BhEcR in polytene chromosomes. RNA-polymerase II was also immune-detected. We did not detect the receptor in chromosome C where the first and second groups of DNA puffs form during DNA puff anlage formation, but it was present during puff expansion. During the active phase of both groups of DNA puffs, RNA polymerase II co-localized with BhEcR. After puff regression, these antigens were not detected. Apparently, EcR plays a direct role in the transcription of amplified genes, but its role in gene amplification remains enigmatic.
Collapse
Affiliation(s)
- Juliana Aparecida Candido-Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, CEP 14049-900, Brazil
| | | | | | | |
Collapse
|
11
|
Lecci MS, Malta TM, Flausino VT, Gitaí DL, Ruiz JC, Monesi N. Functional and bioinformatics analyses reveal conservation ofcis-regulatory elements between sciaridae and drosophilidae. Genesis 2008; 46:43-51. [DOI: 10.1002/dvg.20364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Candido-Silva JA, Zanarotti GM, Gallina AP, de Almeida JC. Developmental regulation ofBhSGAMP-1, a gene encoding an antimicrobial peptide in the salivary glands ofBradysia hygida (Diptera, Sciaridae). Genesis 2007; 45:630-8. [DOI: 10.1002/dvg.20337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Basso LR, de C Neves M, Monesi N, Paçó-Larson ML. Broad-Complex,E74, andE75early genes control DNA puffBhC4-1expression in prepupal salivary glands. Genesis 2006; 44:505-14. [PMID: 17083105 DOI: 10.1002/dvg.20239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The DNA puff BhC4-1 gene of the sciarid Bradysia hygida is induced in salivary glands prior to the pupal molt as a secondary response to the increase in ecdysone titers. Previous studies demonstrated that the BhC4-1 promoter is activated in transgenic Drosophila melanogaster salivary glands as a late response to the ecdysone peak that triggers metamorphosis, revealing that this aspect of BhC4-1 transcriptional regulation is conserved in the Drosophila background. To identify regulators of BhC4-1 expression, we utilized a candidate gene approach and tested the roles of the ecdysone-induced genes BR-C, E74, and E75. Our results reveal that the BR-C Z3 isoform is essential for BhC4-1-lacZ induction in prepupal salivary glands and constitute the first demonstration of the participation of early genes products on DNA puff genes regulation.
Collapse
Affiliation(s)
- L R Basso
- Departamento de Biologia Celular e Molecular e de Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Saccuti CF, Soares MADM, Falco JRP, Fernandez MA. Genome size of three Brazilian flies from the Sciaridae family. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000500015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Ribeiro LDFC, Fernandez MA. Molecular characterization of the 5S ribosomal gene of the Bradysia hygida(Diptera:Sciaridae). Genetica 2004; 122:253-60. [PMID: 15609548 DOI: 10.1007/s10709-004-1704-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rRNA genes are amongst the most extensively studied eukaryotic genes. They contain both highly conserved and rapidly evolving regions. The aim of this work was to clone and to sequence the Bradysia hygida 5S rDNA gene. A positive clone was sequenced and its 346 bp sequence was analyzed against the GenBank database. Sequence analysis revealed that the B. hygida 5S (Bh5S) rDNA gene is 120 bp long and is 87% identical to the aphid Acyrthosiphon magnoliae 5S rDNA gene. The Bh5S rDNA gene presents two unusual features: a GG pair at the 5' end of the gene sequence and the localization of the polyT signal immediately after the 3' end of the gene. In situ hybridization experiments revealed that the Bh5S rDNA gene is localized in the autosomal A chromosome.
Collapse
|
16
|
Monesi N, Silva JA, Martins PCM, Teixeira AB, Dornelas EC, Moreira JE, Paçó Larson ML. Immunocharacterization of the DNA puff BhC4-1 protein of Bradysia hygida (Diptera: Sciaridae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:531-542. [PMID: 15147755 DOI: 10.1016/j.ibmb.2004.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 02/13/2004] [Indexed: 05/24/2023]
Abstract
The DNA puff BhC4-1 gene is amplified and highly expressed in the salivary gland of Bradysia hygida late larvae. Using affinity-purified polyclonal antibodies we have identified the product of the BhC4-1 gene as a 43 kDa polypeptide which is present in extracts of salivary glands from late fourth instar larvae and in the corresponding gland secretion, but not in glands from earlier stages. We also demonstrate that this protein is produced mainly in the S1 and S3 regions of the salivary gland, where BhC4-1 amplification levels are more pronounced and larger amounts of mRNA are produced. By immunoelectron microscopy the BhC4-1 protein was detected in secretory granules of the S1 and S3 regions, and localized in fibrous structures present in the saliva.
Collapse
Affiliation(s)
- N Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Soares MAM, Monesi N, Basso LR, Stocker AJ, Paçó-Larson ML, Lara FJS. Analysis of the amplification and transcription of the C3-22 gene of Rhynchosciara americana (Diptera: Sciaridae) in transgenic lines of Drosophila melanogaster. Chromosoma 2003; 112:144-51. [PMID: 14579130 DOI: 10.1007/s00412-003-0254-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 08/04/2003] [Accepted: 08/14/2003] [Indexed: 10/26/2022]
Abstract
Drosophila melanogaster was transformed with an 18 kb fragment of the C3 DNA puff of Rhynchosciara americana, including the C3-22 gene and the origins of replication that direct amplification. Different tissues and developmental stages of five independent transgenic lines were analyzed by quantitative Southern blot hybridization. No indication was found that the transformed fragment was amplified, strongly suggesting that factors involved in DNA puff amplification have not been conserved in Drosophila. Transcription of the C3-22 gene in the transgenic lines was found to be at a low and constitutive level throughout development. These results indicate that, unlike other DNA puff genes, the factors that regulate the C3-22 gene are not conserved in Drosophila.
Collapse
Affiliation(s)
- M A M Soares
- Departamento de Biologia e Genética, Instituto de Biociências, Universidade de São Paulo, São Paulo, S.P., Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Monesi N, Basso LR, Paçó-Larson ML. Identification of regulatory regions in the DNA puff BhC4-1 promoter. INSECT MOLECULAR BIOLOGY 2003; 12:247-254. [PMID: 12752658 DOI: 10.1046/j.1365-2583.2003.00408.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mechanisms that control DNA puff BhC4-1 expression in the salivary gland of sciarid late larvae have been shown to be conserved in Drosophila. By analysing Drosophila transformed with constructs carrying progressive deletions of the BhC4-1 promoter fragment (-3314/+40) fused to the lacZ reporter gene we show that the elements required for the correct BhC4-1-lacZ developmental regulation in prepupal salivary glands are contained in a 226 bp fragment (-186/+40). Also, interestingly, this study identified a 67 bp fragment (-253/-187) that activates BhC4-1-lacZ expression specifically in the ring gland.
Collapse
Affiliation(s)
- N Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil.
| | | | | |
Collapse
|
19
|
Abstract
There are three major classes of insect genetic systems: those with diploid males (diplodiploidy), those with effectively haploid males (haplodiploidy), and those without males (thelytoky). Mixed systems, involving cyclic or facultative switching between thelytoky and either of the other systems, also occur. I present a classification of the genetic systems of insects and estimate the number of evolutionary transitions between them that have occurred. Obligate thelytoky has arisen from each of the other systems, and there is evidence that over 900 such origins have occurred. The number of origins of facultative thelytoky and the number of reversions from obligate thelytoky to facultative and cyclic thelytoky are difficult to estimate. The other transitions are few in number: five origins of cyclic thelytoky, eight origins of obligate haplodiploidy (including paternal genome elimination), the strange case of Micromalthus, and the two reversions from haplodiploidy to diplodiploidy in scale insects. Available evidence tends to support W.D. Hamilton's hypothesis that maternally transmitted endosymbionts have been involved in the origins of haplodiploidy. Bizarre systems of extrazygotic inheritance in Sternorrhyncha are not easily accommodated into any existing classification of genetic systems.
Collapse
Affiliation(s)
- Benjamin B Normark
- Department of Entomology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|