1
|
Emig AA, Hansen M, Grimm S, Coarfa C, Lord ND, Williams MK. Temporal dynamics of BMP/Nodal ratio drive tissue-specific gastrulation morphogenesis. Development 2025; 152:dev202931. [PMID: 39651654 PMCID: PMC12070064 DOI: 10.1242/dev.202931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
Anteroposterior elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of anteroposterior axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
Collapse
Affiliation(s)
- Alyssa A. Emig
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Hansen
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra Grimm
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Goutam RS, Kumar V, Lee U, Kim J. Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae. Mol Cells 2024; 47:100058. [PMID: 38522664 PMCID: PMC11031840 DOI: 10.1016/j.mocell.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
- Laboratory of Regenerative Medicine, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| |
Collapse
|
3
|
Emig AA, Hansen M, Grimm S, Coarfa C, Lord ND, Williams MK. Temporal dynamics of BMP/Nodal ratio drive tissue-specific gastrulation morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579243. [PMID: 38370754 PMCID: PMC10871350 DOI: 10.1101/2024.02.06.579243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Anteroposterior (AP) elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of AP axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
Collapse
Affiliation(s)
- Alyssa A Emig
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Megan Hansen
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sandra Grimm
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Nathan D Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Previous address: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
5
|
Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. Development 2018; 145:dev.159368. [PMID: 29866901 DOI: 10.1242/dev.159368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase 3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina.,Aix Marseille Université, CNRS, IBDM, 13288 Marseille, France
| | - Paula I Encinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - María Verónica Baez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Renato J Monti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Mateo Rodríguez Abinal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| |
Collapse
|
6
|
Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 2017; 7:43010. [PMID: 28220837 PMCID: PMC5318956 DOI: 10.1038/srep43010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.
Collapse
Affiliation(s)
- Bärbel Ulmer
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Melanie Tingler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Andre
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dina Mönch
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Marina Campione
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Kirsten Deißler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | - Axel Schweickert
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem 9112102, Israel
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Martin Blum
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
7
|
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. PLoS One 2012; 7:e36855. [PMID: 22606298 PMCID: PMC3351468 DOI: 10.1371/journal.pone.0036855] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/10/2012] [Indexed: 11/23/2022] Open
Abstract
Vertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states.
Collapse
|
8
|
Hufton AL, Vinayagam A, Suhai S, Baker JC. Genomic analysis of Xenopus organizer function. BMC DEVELOPMENTAL BIOLOGY 2006; 6:27. [PMID: 16756679 PMCID: PMC1513553 DOI: 10.1186/1471-213x-6-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 06/06/2006] [Indexed: 11/15/2022]
Abstract
Background Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. Results To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. Conclusion Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues. Meanwhile, Wnt inhibition acts later during gastrulation, and is essential for maintenance of organizer gene expression throughout gastrulation, a role which may depend on its ability to block the expression of a host of ventral, posterior, and lateral fate-specifying factors.
Collapse
Affiliation(s)
- Andrew L Hufton
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Arunachalam Vinayagam
- Department of Molecular Biophysics, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Sándor Suhai
- Department of Molecular Biophysics, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Julie C Baker
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Marom K, Levy V, Pillemer G, Fainsod A. Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases. Dev Biol 2005; 282:442-54. [PMID: 15950609 DOI: 10.1016/j.ydbio.2005.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
BMP signaling performs multiple important roles during early embryogenesis. Signaling through the BMP pathway is mediated by different BMP ligands expressed in partially overlapping temporal and spatial patterns. Assignment of different BMP-dependent activities to the individual ligands has relied on the patterns of expression of the various BMP genes. Temporal analysis of BMP signaling prior to and during gastrulation was performed using glucocorticoid-controlled Smad proteins. Overexpression of the BMP-specific Smad1 and Smad5 revealed that suppression of Spemann's organizer formation in Xenopus embryos can only take place by activating the BMP pathway prior to the onset of gastrulation. Blocking BMP signaling with the inhibitory Smad, Smad6, results in dorsalized embryos or secondary axis induction, only when activated up to early gastrula stages. BMP2 efficiently represses organizer-specific transcription from the midblastula transition onwards while BMP4 is unable to prevent the early activation of organizer-specific genes. Manipulation of the BMP pathway during mid/late gastrula affects mesodermal patterning with no external phenotypic effects. These observations suggest that the malformations resulting from inhibition or promotion of organizer formation, ventralized or dorsalized, respectively, are the result of a very early BMP function, through its antagonism of organizer formation. This function is apparently fulfilled by BMP2 and only at its latest phase by BMP4. Subsequently, BMP functions in the patterning of the mesoderm with no apparent phenotypic effects.
Collapse
Affiliation(s)
- Karen Marom
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
10
|
Yelin R, Schyr RBH, Kot H, Zins S, Frumkin A, Pillemer G, Fainsod A. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol 2005; 279:193-204. [PMID: 15708568 DOI: 10.1016/j.ydbio.2004.12.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/17/2004] [Accepted: 12/06/2004] [Indexed: 11/26/2022]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer.
Collapse
Affiliation(s)
- Ronit Yelin
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Hwang YS, Lee HS, Roh DH, Cha SW, Lee SY, Seo JJ, Kim J, Park MJ. Active repression of organizer genes by C-terminal domain of PV.1. Biochem Biophys Res Commun 2003; 308:79-86. [PMID: 12890483 DOI: 10.1016/s0006-291x(03)01321-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PV.1, a homeotic protein, ventralizes dorsal mesoderm and inhibits neuralization by mediating BMP-4 signaling in Xenopus embryo. In our previous report antimorphic PV.1 causes a secondary axis by inducing the ectopic organizer. We analyzed the structure of this transcription factor through domain level assessment. In a phenotype-inducing test, half of the N-terminus at the N-terminal side was unessential for inducing ventralization of embryos. We examined the transacting activity of several regions of PV.1 utilizing GAL4 hybrid system. The C-terminal region/GAL4DBD (DNA binding domain) exhibited strong repressive activity on a reporter gene (operator/promoter/reporter; Gal4-TK-luc) as much as the whole polypeptide/GAL4DBD, whereas the N-terminal region/GAL4DBD showed only modest repression. The results suggest that PV.1 functions as a transcriptional repressor and this repressive activity is localized mostly to the C-terminal region. Additional characterizations of N- and C-terminus with respect to the effects on the expression of other genes are described.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- Department of Anatomy, School of Medicine, Kyungpook National University, Taegu 700-422, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Levy V, Marom K, Zins S, Koutsia N, Yelin R, Fainsod A. The competence of marginal zone cells to become Spemann's organizer is controlled by Xcad2. Dev Biol 2002; 248:40-51. [PMID: 12142019 DOI: 10.1006/dbio.2002.0705] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organizer in vertebrate embryos is responsible for the formation of the primary body axis. In amphibian embryos, the organizer forms in the dorsal marginal zone (prospective dorsal mesoderm) at a location determined by the point of sperm entry. Using inducible versions of axis-inducing proteins, it has been shown that, irrespective of the mode of secondary axis induction, organizer formation in the ventral marginal zone is temporally restricted from the midblastula transition to the onset of gastrulation. Here, we show that the competence of marginal zone cells to respond to organizer-inducing signals is under temporal control, one of the regulators being the homeobox transcription factor Xcad2. Overexpression of Xcad2 restricts the temporal competence for axis induction, whereas partial loss of function expands this competence, supporting our suggestion. We propose that Xcad2 competes with putative axis-inducing signals within the marginal zone to prevent expression of organizer-specific genes. Elimination of endogenous Xcad2 allows for the activation of organizer genes beyond the normal competence window during early/mid-gastrulation. We conclude that Xcad2, through its early expression in the ventrolateral marginal zone, terminates the competence of this embryonic region to respond to organizer-inducing signals by preventing the activation of organizer-specific genes.
Collapse
Affiliation(s)
- Vered Levy
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
13
|
Hwang YS, Seo JJ, Cha SW, Lee HS, Lee SY, Roh DH, Kung Hf HF, Kim J, Ja Park M. Antimorphic PV.1 causes secondary axis by inducing ectopic organizer. Biochem Biophys Res Commun 2002; 292:1081-6. [PMID: 11944926 DOI: 10.1006/bbrc.2002.6740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Xenopus homeobox gene, PV.1 ventralizes activin-induced dorsal mesoderm and inhibits neuralization of ectoderm in animal cap when overexpressed. Here we generated PV.1/engrailed fusion construct (N-PV1-EnR) to perform loss-of-function study for this transcription factor. N-PV1-EnR showed an extremely antimorphic effect, causing a partial secondary embryonic axis when expressed at ventral marginal zone of blastula. In ventral marginal zone cells, this chimeric protein induced organizer genes and suppressed ventral markers mimicking those effects reported for dominant negative BMP-4 receptor (DNBR). Moreover, N-PV1-EnR rescued the ventralized embryos caused by the ectopic dorsal expression of PV.1 but not by that of Xvent-2. These results suggested that PV.1 functions at downstream of BMP-4 as a ventralizing effector which acts separately from Xvent-2 and the dominant negative effect gained by this specific mutant is applicable for the further studies of BMP-4 downstream pathway.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Animals
- Body Patterning/drug effects
- Body Patterning/physiology
- Bone Morphogenetic Protein Receptors, Type I
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/physiology
- Embryonic Induction/drug effects
- Genes, Dominant
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/pharmacology
- In Vitro Techniques
- Microinjections
- Organizers, Embryonic/drug effects
- Organizers, Embryonic/metabolism
- Phenotype
- Protein Serine-Threonine Kinases
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Receptors, Growth Factor
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transcription Factors
- Xenopus
- Xenopus Proteins
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- Department of Anatomy, School of Medicine, Kyungpook National University, Taegu, 700-422, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tour E, Pillemer G, Gruenbaum Y, Fainsod A. Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus. Mech Dev 2002; 112:141-51. [PMID: 11850185 DOI: 10.1016/s0925-4773(01)00653-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Anterior-posterior patterning of the embryo requires the activity of multiple homeobox genes among them Hox, caudal (Cdx, Xcad) and Otx2. During early gastrulation, Otx2 and Xcad2 establish a cross-regulatory network, which is an early event in the anterior-posterior patterning of the embryo. As gastrulation proceeds and the embryo elongates, a new domain forms, which expresses neither, Otx2 nor Xcad2 genes. Early transcription of the Xenopus Gbx2 homologue, Xgbx2a, is spatially restricted between Otx2 and Xcad2. When overexpressed, Otx2 and Xcad2 repress Xgbx2a transcription, suggesting their role in setting the early Xgbx2a expression domain. Homeobox genes have been shown to play crucial roles in the specification of the vertebrate brain. The border between the transcription domains of Otx2 and Gbx2 is the earliest known marker of the region where the midbrain/hindbrain boundary (MHB) organizer will develop. Xgbx2a is a negative regulator of Otx2 and a weak positive regulator of Xcad2. Using obligatory activator and repressor versions of Xgbx2a, we demonstrate that, during early embryogenesis, Xgbx2a acts as a transcriptional repressor. In addition, taking advantage of hormone-inducible versions of Xgbx2a and its antimorph, we show that the ability of Xgbx2a to induce head malformations is restricted to gastrula stages and correlates with its ability to repress Otx2 during the same developmental stages. We therefore suggest that the earliest known step of the MHB formation, the establishment of Otx2/Gbx2 boundary, takes place via mutual inhibitory interactions between these two genes and this process begins as early as at midgastrulation.
Collapse
Affiliation(s)
- Ella Tour
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
15
|
Schuler-Metz A, Knöchel S, Kaufmann E, Knöchel W. The homeodomain transcription factor Xvent-2 mediates autocatalytic regulation of BMP-4 expression in Xenopus embryos. J Biol Chem 2000; 275:34365-74. [PMID: 10938274 DOI: 10.1074/jbc.m003915200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Like other genes of the transforming growth factor-beta family, the BMP-4 gene is regulated by an autocatalytic loop. In Xenopus embryos this loop can be ectopically induced by injection of BMP-2 RNA. However, cycloheximide treatment subsequent to BMP-2 overexpression revealed that BMP signaling is not direct but requires additional factor(s). As putative mediator we have identified Xvent-2 which is activated by BMP-2/4 signaling and, in turn, activates BMP-4 transcription. Using promoter/reporter assays we have delineated Xvent-2 responsive elements within the BMP-4 gene. We further demonstrate that Xvent-2 which has recently been characterized as a transcriptional repressor can also act, context dependent, as an activator binding two copies of a 5'-CTAATT-3' motif in the second intron of the BMP-4 gene. Replacement of Xvent-2 target sites within the goosecoid (gsc) promoter by the BMP-4 enhancer converts Xvent-2 caused repression of gsc to strong activation. This switch is obviously due to adjacent nucleotides probably binding a transcriptional co-activator interacting with Xvent-2. A model is presented describing the mechanism of BMP-4 gene activation in Xenopus embryos at the early gastrula stage.
Collapse
Affiliation(s)
- A Schuler-Metz
- Abteilung Biochemie, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
16
|
Kawahara A, Wilm T, Solnica-Krezel L, Dawid IB. Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc Natl Acad Sci U S A 2000; 97:12121-6. [PMID: 11050240 PMCID: PMC17304 DOI: 10.1073/pnas.97.22.12121] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During zebrafish development, zygotic gene expression initiated at the midblastula transition converts maternal information on embryo polarity into a transcriptional read-out. Expression of a homeobox gene, vega1, is activated at midblastula transition in all blastomeres, but is down-regulated dorsally before gastrulation. Ubiquitous expression of vega1 is maintained in bozozok mutants, in which the dorsal-specific homeobox gene bozozok/dharma (boz/dha) is disrupted and organizer formation is impaired. Vega1 inhibits expression of boz/dha and organizer-specific genes, and causes ventralization resulting in a headless phenotype. In contrast, VP16-vega1, a fusion including the Vega1 homeodomain and VP16 activation domain, elicits ectopic expression of organizer genes and suppresses several aspects of the boz mutant phenotype. We propose that boz/dha-dependent down-regulation of vega1 in the dorsal region is an early essential step in organizer formation in zebrafish.
Collapse
Affiliation(s)
- A Kawahara
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
17
|
Gilbert SF. Diachronic Biology Meets Evo-Devo: C. H. Waddington's Approach to Evolutionary Developmental Biology1. ACTA ACUST UNITED AC 2000. [DOI: 10.1668/0003-1569(2000)040[0729:dbmedc]2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|