1
|
Kwon H, Choi J, Lim C, Kim J, Osman A, Jho Y, Hwang DS, Lee DW. Strong Hydrophobic Interaction of High Molecular Weight Chitosan in Aqueous Solution. Biomacromolecules 2025; 26:1012-1022. [PMID: 39836774 DOI: 10.1021/acs.biomac.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Chitosan is a versatile bioactive polysaccharide in various industries, such as pharmaceuticals and environmental applications, owing to its abundance, biodegradability, biocompatibility, and antibacterial properties. To effectively harness its potential for various purposes, it is crucial to understand the mechanisms of its interaction in water. This study investigates the interactions between high molecular weight (HMW, >150 kDa) chitosan and four different functionalized self-assembled monolayers (SAMs) at three different pHs (3.0, 6.5, and 8.5) using a surface forces apparatus (SFA). We report that HMW chitosan exhibits the strongest adhesion to methyl-terminated SAM (CH3-SAM) at all pHs, showing potential for strong hydrophobic interactions against other molecules containing hydrophobic moieties. Noting that hydrogen bonding has been considered the dominating interaction mechanism of chitosan, the consequence of this study provides valuable insights into its applications in developing chitosan-based eco-friendly materials.
Collapse
Affiliation(s)
- Haeun Kwon
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jieun Choi
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chanoong Lim
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junseong Kim
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Asila Osman
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
- Department of Chemical Engineering, University of Khartoum, Khartoum 11115, Sudan
| | - Yongseok Jho
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, South Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, South Korea
| | - Dong Woog Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Nava E, Singh A, Williams LO, Arango JC, Nagubandi KA, Pintro CJ, Claridge SA. Sub-10 μm Soft Interlayers Integrating Patterned Multivalent Biomolecular Binding Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44152-44163. [PMID: 39133196 PMCID: PMC11346468 DOI: 10.1021/acsami.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Designing surfaces that enable controlled presentation of multivalent ligand clusters (e.g., for rapid screening of biomolecular binding constants or design of artificial extracellular matrices) is a cross-cutting challenge in materials and interfacial chemistry. Existing approaches frequently rely on complex building blocks or scaffolds and are often specific to individual substrate chemistries. Thus, an interlayer chemistry that enabled efficient nanometer-scale patterning on a transferrable layer and subsequent integration with other classes of materials could substantially broaden the scope of surfaces available for sensors and wearable electronics. Recently, we have shown that it is possible to assemble nanometer-resolution chemical patterns on substrates including graphite, use diacetylene polymerization to lock the molecular pattern together, and then covalently transfer the pattern to amorphous materials (e.g., polydimethylsiloxane, PDMS), which would not natively enable high degrees of control over ligand presentation. Here, we develop a low-viscosity PDMS formulation that generates very thin films (<10 μm) with dense cross-linking, enabling high-efficiency surface functionalization with polydiacetylene arrays displaying carbohydrates and other functional groups (up to 10-fold greater than other soft materials we have used previously) on very thin films that can be integrated with other materials (e.g., glass and soft materials) to enable a highly controlled multivalent ligand display. We use swelling and other characterization methods to relate surface functionalization efficiency to the average distance between cross-links in the PDMS, developing design principles that can be used to create even thinner transfer layers. In the context of this work, we apply this approach using precision glycopolymers presenting structured arrays of N-acetyl glucosamine ligands for lectin binding assays. More broadly, this interlayer approach lays groundwork for designing surface layers for the presentation of ligand clusters on soft materials for applications including wearable electronics and artificial extracellular matrix.
Collapse
Affiliation(s)
- Emmanuel
K. Nava
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Laura O. Williams
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | | | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana, 47907
| |
Collapse
|
3
|
Choi J, Hwang DS, Lim C, Lee DW. Interaction mechanism between low molecular weight chitosan nanofilm and functionalized surfaces in aqueous solutions. Carbohydr Polym 2024; 324:121504. [PMID: 37985092 DOI: 10.1016/j.carbpol.2023.121504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Low-molecular-weight chitosan (LMW chitosan, <10 kDa) have a significant potential for biomedical applications (e.g., antimicrobial and gene/drug delivery) because of their higher water solubility at pH values ranging from 3.0 to 8.5, compared to that of the high-molecular-weight (>100 kDa) chitosan. A comprehensive understanding of the LMW interaction mechanism with specific functional groups is necessary to predict their binding efficiency to other molecules for effectively utilizing their potential within biological systems. In this study, we used a surface forces apparatus (SFA) to investigate molecular interactions between LMW chitosan and four different functionalized self-assembled monolayers (SAMs) in aqueous solutions at pH values of 3.0, 6.5, and 8.5. Chitosan exhibited the strongest interaction energy with methyl-terminated SAM (CH3-SAM), indicating the significance of hydrophobic interaction. Many chitin/chitosan fibers in nature bind polyphenols (e.g., eumelanin) to form robust composites, which can be attributed to the strong attraction between chitosan and phenyl-SAM, presumably caused by cation-π interactions. These findings demonstrate the potential of modulating the magnitude of the interaction energy by controlling the solution pH and types of targeted functional groups to realize the optimal design of chitosan-based hybrid composites with other biomolecules or synthetic materials.
Collapse
Affiliation(s)
- Jieun Choi
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; R&D Center, ANPOLY INC., Pohang, Gyeongsangbuk-do 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, South Korea
| | - Chanoong Lim
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Dong Woog Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
4
|
Sariogullari H, Aroguz AZ, Adiguzel Z. Fabrication of a Patterned Scaffold Using Soft Lithography Technique to be Used in Cell Growth Applications. Mol Biotechnol 2022; 65:786-793. [PMID: 36214977 DOI: 10.1007/s12033-022-00581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, within tissue engineering, cell growth on patterned surfaces have gained significant attention. Growing cells in patterns is important to manufacture polymeric tissues that can be used within the medical field. For this reason, the main focus of this study was to prepare patterned scaffolds using Titanium (Ti) and polyvinyl chloride (PVC) covered on microscope lamellas and examine their liability for cell growth. A polydimethylsiloxane stamp was initially prepared which was then used to transfer a predefined pattern onto PVC- and Ti-covered surfaces. Cell growth experiments were performed on the prepared materials by seeding L929 mouse fibroblasts. The growth of cells seeded on the surface of the scaffolds were spectroscopically followed using Neutral Red uptake assay. The results showed cell proliferation on both patterned surfaces, however, it was higher on Ti-covered samples. In addition, three different alkanethiols were tested for cell adhesion on patterned surfaces. A higher number of cell proliferation was observed with undecanethiol, which has a shorter alkane group among them. The morphological properties of the samples before and after cell-seeding were analyzed via scanning electron microscope and optical microscopy. Significant amount of cell proliferation was observed on all of the prepared samples.
Collapse
Affiliation(s)
- Hidayet Sariogullari
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ayse Z Aroguz
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey.
| | - Zelal Adiguzel
- Basic Medical Sciences, Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| |
Collapse
|
5
|
Ma X, Deng D, Xia N, Hao Y, Liu L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1757. [PMID: 34361143 PMCID: PMC8308108 DOI: 10.3390/nano11071757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Nanocatalysts are a promising alternative to natural enzymes as the signal labels of electrochemical biosensors. However, the surface modification of nanocatalysts and sensor electrodes with recognition elements and blockers may form a barrier to direct electron transfer, thus limiting the application of nanocatalysts in electrochemical immunoassays. Electron mediators can accelerate the electron transfer between nanocatalysts and electrodes. Nevertheless, it is hard to simultaneously achieve fast electron exchange between nanocatalysts and redox mediators as well as substrates. This work presents a scheme for the design of electrochemical immunosensors with nanocatalysts as signal labels, in which pyrroloquinoline quinone (PQQ) is the redox-active center of the nanocatalyst. PQQ was decorated on the surface of carbon nanotubes to catalyze the electrochemical oxidation of tris(2-carboxyethyl)phosphine (TCEP) with ferrocenylmethanol (FcM) as the electron mediator. With prostate-specific antigen (PSA) as the model analyte, the detection limit of the sandwich-type immunosensor was found to be 5 pg/mL. The keys to success for this scheme are the slow chemical reaction between TCEP and ferricinum ions, and the high turnover frequency between ferricinum ions, PQQ. and TCEP. This work should be valuable for designing of novel nanolabels and nanocatalytic schemes for electrochemical biosensors.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| |
Collapse
|
6
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
7
|
Baker A, Wahid I, Hassan Baig M, Alotaibi SS, Khalid M, Uddin I, Dong JJ, Khan MS. Silk Cocoon-Derived Protein Bioinspired Gold Nanoparticles as a Formidable Anticancer Agent. J Biomed Nanotechnol 2021; 17:615-626. [DOI: 10.1166/jbn.2021.3053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We synthesized bioinspired sericin encapsulated gold nanoparticles (SGNPs) using HAuCl4 as the starting material in a bottom-up approach. Further, two-dimensional (2D) and three-dimensional (3D) conformational changes (folding and unfolding) in sericin were studied using
circular dichroism (CD) and fluorescence spectroscopy, respectively, during and after the synthesis of particles. Finally, the synthesized SGNPs were characterized using several physical techniques to ensure their correct synthesis and study the size, stability, and charge over the surface
of particles. At the beginning of the reaction, when gold was in the ionic form (Au+3), sericin exhibited maximum electrostatic interaction and underwent unfolding. Au+3 reduced to Au during the reaction, and sericin regained its 3D confirmation due to a decrease in its
native electrostatic interactions. However, CD revealed the same patterns of unfolding and folding; a decrease in α helix and an increase inβ3 pleated sheets were noticed. Although the 3D structure of sericin was restored after the synthesis of SGNPs, it was substantially
altered. In addition, certain changes in the 2D structure were observed; however, these did not alter the activity of sericin. Furthermore, Fourier-transform infrared spectroscopy (FTIR) confirmed these findings. The SGNPs were found to be effective against lung cancer (A549 cells), with an
IC50 of 145.49 βM, without exerting any toxic effects on normal cells (NRK cells). The effectiveness of SGNPs was examined by MTT cytotoxicity and nuclear fragmentation assays. Furthermore, we assessed their ability to produce excessive ROS and release Cyt-c from the
mitochondria for caspase-3-mediated apoptosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine and Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Iram Wahid
- Nanomedicine and Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Saqer S. Alotaibi
- Department ofBiotechnology, College of Science, Taif University, Taif21944, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam BinAbdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Imran Uddin
- Bio-Nanotechnology Laboratory, Department of Biology, SRM University-AP, Amrawati 522502, India
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Mohd Sajid Khan
- Nanomedicine and Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| |
Collapse
|
8
|
Probing fibronectin adsorption on chemically defined surfaces by means of single molecule force microscopy. Sci Rep 2020; 10:15662. [PMID: 32973270 PMCID: PMC7518417 DOI: 10.1038/s41598-020-72617-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) and a quartz crystal microbalance (QCM) were respectively employed to probe interfacial characteristics of fibronectin fragment FNIII8–14 and full-length fibronectin (FN) on CH3–, OH–, COOH–, and NH2-terminated alkane-thiol self-assembled monolayers (SAMs). Force-distance curves acquired between hexahistidine-tagged FNIII8–14 immobilised on trisNTA-Ni2+ functionalized AFM cantilevers and the OH and COOH SAM surfaces were predominantly ‘loop-like’ (76% and 94% respectively), suggesting domain unfolding and preference for ‘end-on’ oriented binding, while those generated with NH2 and CH3 SAMs were largely ‘mixed type’ (81% and 86%, respectively) commensurate with unravelling and desorption, and ‘side-on’ binding. Time-dependent binding of FN to SAM-coated QCM crystals occurred in at least two phases: initial rapid coverage over the first 5 min; and variably diminishing adsorption thereafter (5–70 min). Loading profiles and the final hydrated surface concentrations reached (~ 950, ~ 1200, ~ 1400, ~ 1500 ng cm−2 for CH3, OH, COOH and NH2 SAMs) were consistent with: space-filling ‘side-on’ orientation and unfolding on CH3 SAM; greater numbers of FN molecules arranged ‘end-on’ on OH and especially COOH SAMs; and initial ‘side-on’ contact, followed by either (1) gradual tilting to a space-saving ‘end-on’ configuration, or (2) bi-/multi-layer adsorption on NH2 SAM.
Collapse
|
9
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
10
|
Shakya A, Imado E, Nguyen PK, Matsuyama T, Horimoto K, Hirata I, Kato K. Oriented immobilization of basic fibroblast growth factor: Bioengineered surface design for the expansion of human mesenchymal stromal cells. Sci Rep 2020; 10:8762. [PMID: 32472000 PMCID: PMC7260242 DOI: 10.1038/s41598-020-65572-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
E. coli expressed recombinant basic fibroblast growth factor (bFGF) with histidine-tag (bFGF-His) was immobilized onto the surface of a glass plate modified with a Ni(II)-chelated alkanethiol monolayer. The immobilization is expected to take place through the coordination between Ni(II) and His-tag. The bFGF-immobilized surface was exposed to citrate buffer solution to refold in situ the surface-immobilized bFGF. The secondary structure of immobilized bFGF-His was analyzed by solid-phase circular dichroism (CD) spectroscopy. Immortalized human mesenchymal stromal cells (hMSCs) were cultured on the bFGF-His-immobilized surface to examine their proliferation. CD spectroscopy revealed that the immobilized bFGF initially exhibited secondary structure rich in α-helix and that the spectrum was gradually transformed to exhibit the formation of β-strands upon exposure to citrate buffer solution, approaching to the spectrum of native bFGF. The rate of hMSC proliferation was 1.2-fold higher on the bFGF-immobilized surface treated with in situ citrate buffer, compared to the polystyrene surface. The immobilized bFGF-His treated in situ with citrate buffer solution seemed to be biologically active because its secondary structure approached its native state. This was well demonstrated by the cell culture experiments. From these results we conclude that immobilization of bFGF on the culture substrate serves to enhance proliferation of hMSCs.
Collapse
Affiliation(s)
- Ajay Shakya
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Imado
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Phuong Kim Nguyen
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Faculty of Odonto-Stomatology, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Tamamo Matsuyama
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Horimoto
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isao Hirata
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichi Kato
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
11
|
Samanta A, Huang W, Chaudhry H, Wang Q, Shaw SK, Ding H. Design of Chemical Surface Treatment for Laser-Textured Metal Alloys to Achieve Extreme Wetting Behavior. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18032-18045. [PMID: 32208599 DOI: 10.1016/j.matdes.2020.108744] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extreme wetting activities of laser-textured metal alloys have received significant interest due to their superior performance in a wide range of commercial applications and fundamental research studies. Fundamentally, extreme wettability of structured metal alloys depends on both the surface structure and surface chemistry. However, compared with the generation of physical topology on the surface, the role of surface chemistry is less explored for the laser texturing processes of metal alloys to tune the wettability. This work introduces a systematic design approach to modify the surface chemistry of laser textured metal alloys to achieve various extreme wettabilities, including superhydrophobicity/superoleophobicity, superhydrophilicity/superoleophilicity, and coexistence of superoleophobicity and superhydrophilicity. Microscale trenches are first created on the aluminum alloy 6061 surfaces by nanosecond pulse laser surface texturing. Subsequently, the textured surface is immersion-treated in several chemical solutions to attach target functional groups on the surface to achieve the final extreme wettability. Anchoring fluorinated groups (-CF2- and -CF3) with very low dispersive and nondispersive surface energy leads to superoleophobicity and superhydrophobicity, resulting in repelling both water and diiodomethane. Attachment of the polar nitrile (-C≡N) group with very high nondispersive and high dispersive surface energy achieves superhydrophilicity and superoleophilicity by drawing water and diiodomethane molecules in the laser-textured capillaries. At last, anchoring fluorinated groups (-CF2- and -CF3) and polar sodium carboxylate (-COONa) together leads to very low dispersive and very high nondispersive surface energy components. It results in the coexistence of superoleophobicity and superhydrophilicity, where the treated surface attracts water but repels diiodomethane.
Collapse
Affiliation(s)
- Avik Samanta
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Wuji Huang
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hassan Chaudhry
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Qinghua Wang
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Scott K Shaw
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hongtao Ding
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Qiu X, Ivasyshyn V, Qiu L, Enache M, Dong J, Rousseva S, Portale G, Stöhr M, Hummelen JC, Chiechi RC. Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. NATURE MATERIALS 2020; 19:330-337. [PMID: 31959952 DOI: 10.1038/s41563-019-0587-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Self-assembled monolayers (SAMs) are widely used to engineer the surface properties of metals. The relatively simple and versatile chemistry of metal-thiolate bonds makes thiolate SAMs the preferred option in a range of applications, yet fragility and a tendency to oxidize in air limit their long-term use. Here, we report the formation of thiol-free self-assembled mono- and bilayers of glycol ethers, which bind to the surface of coinage metals through the spontaneous chemisorption of glycol ether-functionalized fullerenes. As-prepared assemblies are bilayers presenting fullerene cages at both the substrate and ambient interface. Subsequent exposure to functionalized glycol ethers displaces the topmost layer of glycol ether-functionalized fullerenes, and the resulting assemblies expose functional groups to the ambient interface. These layers exhibit the key properties of thiolate SAMs, yet they are stable to ambient conditions for several weeks, as shown by the performance of tunnelling junctions formed from SAMs of alkyl-functionalized glycol ethers. Glycol ether-functionalized spiropyrans incorporated into mixed monolayers lead to reversible, light-driven conductance switching. Self-assemblies of glycol ethers are drop-in replacements for thiolate SAMs that retain all of their useful properties while avoiding the drawbacks of metal-thiolate bonds.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Viktor Ivasyshyn
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Li Qiu
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, China
| | - Mihaela Enache
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jingjin Dong
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Sylvia Rousseva
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jan C Hummelen
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Vajanthri K, Sidu R, Mahto S. Micropatterning and Alignment of Skeletal Muscle Myoblasts Using Microflowed Plasma Process. Ing Rech Biomed 2020. [DOI: 10.1016/j.irbm.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Willems SB, Bunschoten A, Wagterveld RM, van Leeuwen FW, Velders AH. On-Flow Immobilization of Polystyrene Microspheres on β-Cyclodextrin-Patterned Silica Surfaces through Supramolecular Host-Guest Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36221-36231. [PMID: 31487143 PMCID: PMC6778913 DOI: 10.1021/acsami.9b11069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Species-specific isolation of microsized entities such as microplastics and resistant bacteria from waste streams is becoming a growing environmental challenge. By studying the on-flow immobilization of micron-sized polystyrene particles onto functionalized silica surfaces, we ascertain if supramolecular host-guest chemistry in aqueous solutions can provide an alternative technology for water purification. Polystyrene particles were modified with different degrees of adamantane (guest) molecules, and silica surfaces were patterned with β-cyclodextrin (β-CD, host) through microcontact printing (μCP). The latter was exposed to solutions of these particles flowing at different speeds, allowing us to study the effect of flow rate and multivalency on particle binding to the surface. The obtained binding profile was correlated with Comsol simulations. We also observed that particle binding is directly aligned with particle's ability to form host-guest interactions with the β-CD-patterned surface, as particle binding to the functionalized glass surface increased with higher adamantane load on the polystyrene particle surface. Because of the noncovalent character of these interactions, immobilization is reversible and modified β-CD surfaces can be recycled, which provides a positive outlook for their incorporation in water purification systems.
Collapse
Affiliation(s)
- Stan B.J. Willems
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Anton Bunschoten
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| | - R. Martijn Wagterveld
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Fijs W.B. van Leeuwen
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| | - Aldrik H. Velders
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| |
Collapse
|
15
|
Siddique A, Suraraksa B, Horprathum M, Oaew S, Cheunkar S. Wastewater biofilm formation on self-assembled monolayer surfaces using elastomeric flow cells. Anaerobe 2019; 57:11-18. [PMID: 30872074 DOI: 10.1016/j.anaerobe.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 01/18/2023]
Abstract
In anaerobic wastewater treatment, microbial biofilm is beneficial for efficient substrate utilization and for preventing the wash-out of key microorganisms. By providing solid supports, biofilm formation can be accelerated due to the early initial adhesion of residing microbes. Alteration in surface properties is therefore one such approach that helps us understand microbial interfacial interaction. Here, self-assembled monolayers of alkanethiols with carboxyl (-COOH), hydroxyl (-OH), and amine (-NH2) terminal moieties on gold (Au) substrates were employed to study the initial adhesion of wastewater microbes. An elastomeric flow cell was also utilized to simulate the environment of wastewater bioreactor. Results from fluorescence in situ hybridization (FISH) portrayed more enhanced microbial adhesion after 2 h on -NH2 functional group with the calculated surface coverage of 12.8 ± 2.4% as compared to 7.7 ± 1.6% on -COOH, 11.0 ± 2.0% on -OH, and 1.2% on unmodified Au surfaces. This might be because of concomitant electrostatic attraction between negatively-charged bacteria and positively-charged (-NH3+) functional groups. Nevertheless, the average surface coverage by individual biofilm clusters was 28.0 ± 5.0 μm2 and 32.0 ± 9.0 μm2 on -NH2 and -OH surfaces, respectively, while -COOH surfaces resulted in higher value (60.0 ± 5.0 μm2) and no significant cluster formation was observed on Au surfaces. Accordingly, the average inter-cluster distance observed on -NH2 surfaces was relatively smaller (3.0 ± 0.6 μm) as compared to that on other surfaces. Overall, these data suggest favorable initial biofilm growth on more hydrophilic and positively-charged surfaces. Furthermore, the analysis of the mean fluorescence intensity revealed preferred initial adhesion of key microbes (archaea) on -OH and -NH2 surfaces. Indeed, results obtained from this study would be beneficial in designing selective biointerfaces for certain biofilm carriers in a typical wastewater bioreactor. Importantly, our elastomeric flow cell integrated with SAM-modified surfaces demonstrated an ideal platform for high-throughput investigation of wastewater biofilm under controlled environments.
Collapse
Affiliation(s)
- Arslan Siddique
- Biotechnology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Benjaphon Suraraksa
- Excellent Center for Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Mati Horprathum
- Optical Thin-Film Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Sukunya Oaew
- Biochemical Engineering and Pilot Plant Research and Development Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Sarawut Cheunkar
- Biotechnology Division, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
16
|
Fontes CM, Achar RK, Joh DY, Ozer I, Bhattacharjee S, Hucknall A, Chilkoti A. Engineering the Surface Properties of a Zwitterionic Polymer Brush to Enable the Simple Fabrication of Inkjet-Printed Point-of-Care Immunoassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1379-1390. [PMID: 30086642 PMCID: PMC6825806 DOI: 10.1021/acs.langmuir.8b01597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Motivated by the lack of adventitious protein adsorption on zwitterionic polymer brushes that promise low noise and hence high analytical sensitivity for surface-based immunoassays, we explored their use as a substrate for immunoassay fabrication by the inkjet printing of antibodies. We observed that a poly(sulfobetaine)methacrylate brush on glass is far too hydrophilic to enable the noncovalent immobilization of antibodies by inkjet printing. To circumvent this limitation, we developed a series of hybrid zwitterionic-cationic surface coatings with tunable surface wettability that are suitable for the inkjet printing of antibodies but also have low protein adsorption. We show that in a microarray format in which both the capture and detection antibodies are discretely printed as spots on these hybrid brushes, a point-of-care sandwich immunoassay can be carried out with an analytical sensitivity and dynamic range that is similar to or better than those of the same assay fabricated on a PEG-like brush. We also show that the hybrid polymer brushes do not bind anti-PEG antibodies that are ubiquitous in human blood, which can be a problem with immunoassays fabricated on PEG-like coatings.
Collapse
Affiliation(s)
- Cassio M. Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Rohan K. Achar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Daniel Y. Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Imran Ozer
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Somnath Bhattacharjee
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Angus Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| |
Collapse
|
17
|
Fallah MA, Hauser K. Immobilization approaches can affect protein dynamics: a surface-enhanced infrared spectroscopic study on lipid–protein interactions. Biomater Sci 2019; 7:3204-3212. [DOI: 10.1039/c9bm00140a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Near-field detection of SEIRA reveals that surface immobilization alters conformational properties of α-synuclein.
Collapse
Affiliation(s)
| | - Karin Hauser
- Department of Chemistry
- University of Konstanz
- 78457 Konstanz
- Germany
| |
Collapse
|
18
|
Attwood SJ, Kershaw R, Uddin S, Bishop SM, Welland ME. Understanding how charge and hydrophobicity influence globular protein adsorption to alkanethiol and material surfaces. J Mater Chem B 2019; 7:2349-2361. [DOI: 10.1039/c9tb00168a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Globular protein adsorption to surfaces is predictable when charge and hydrophobicity is carefully controlled.
Collapse
Affiliation(s)
| | | | - Shahid Uddin
- Department of Dosage Form Design and Development
- MedImmune Ltd
- Cambridge CB21 6GH
- UK
| | - Steven M. Bishop
- Department of Dosage Form Design and Development
- MedImmune
- Gaithersburg
- USA
| | | |
Collapse
|
19
|
Yitzchaik S, Gutierrez R, Cuniberti G, Yerushalmi R. Diversification of Device Platforms by Molecular Layers: Hybrid Sensing Platforms, Monolayer Doping, and Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14103-14123. [PMID: 30253096 DOI: 10.1021/acs.langmuir.8b02369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inorganic materials such as semiconductors, oxides, and metals are ubiquitous in a wide range of device technologies owing to the outstanding robustness and mature processing technologies available for such materials. However, while the important contribution of inorganic materials to the advancement of device technologies has been well established for decades, organic-inorganic hybrid device systems, which merge molecular functionalities with inorganic platforms, represent a newer domain that is rapidly evolving at an increasing pace. Such devices benefit from the great versatility and flexibility of the organic building blocks merged with the robustness of the inorganic platforms. Given the overwhelming wealth of literature covering various approaches for modifying and using inorganic devices, this feature article selectively highlights some of the advances made in the context of the diversification of devices by surface chemistry. Particular attention is given to oxide-semiconductor systems and metallic surfaces modified with organic monolayers. The inorganic device components, such as semiconductors, metals, and oxides, are modified by organic monolayers, which may serve as either active, static, or sacrificial components. We portray research directions within the broader field of organic-inorganic hybrid device systems that can be viewed as specific examples of the potential of such hybrid device systems given their comprehensive capabilities of design and diversification. Monolayer doping techniques where sacrificial organic monolayers are introduced into semiconducting elements are reviewed as a specific case, together with associated requirements for nanosystems, devices, and sensors for controlling doping levels and doping profiles on the nanometric scale. Another series of examples of the flexibility provided by the marriage of organic functional monolayers and inorganic device components are represented by a new class of biosensors, where the organic layer functionality is exploited in a functioning device for sensing. Considerations for relying on oxide-terminated semiconductors rather than the pristine semiconductor material as a platform both for processing and sensing are discussed. Finally, we cover aspects related to the use of various theoretical and computational approaches to model organic-inorganic systems. The main objectives of the topics covered here are (i) to present the advances made in each respective domain and (ii) to provide a comprehensive view of the potential uses of organic monolayers and self-assembly processes in the rapidly evolving field of molecular-inorganic hybrid device platforms and processing methodologies. The directions highlighted here provide a perspective on a future, not yet fully realized, integrated approach where organic monolayers are combined with inorganic platforms in order to obtain versatile, robust, and flexible systems with enhanced capabilities.
Collapse
Affiliation(s)
- Shlomo Yitzchaik
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Givat Ram Jerusalem , 91904 Israel
| | | | | | - Roie Yerushalmi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Givat Ram Jerusalem , 91904 Israel
| |
Collapse
|
20
|
Adsorption of Fibronectin Fragment on Surfaces Using Fully Atomistic Molecular Dynamics Simulations. Int J Mol Sci 2018; 19:ijms19113321. [PMID: 30366398 PMCID: PMC6275015 DOI: 10.3390/ijms19113321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
The effect of surface chemistry on the adsorption characteristics of a fibronectin fragment (FNIII8⁻10) was investigated using fully atomistic molecular dynamics simulations. Model surfaces were constructed to replicate self-assembled monolayers terminated with methyl, hydroxyl, amine, and carboxyl moieties. It was found that adsorption of FNIII8⁻10 on charged surfaces is rapid, specific, and driven by electrostatic interactions, and that the anchoring residues are either polar uncharged or of opposing charge to that of the targeted surfaces. On charged surfaces the presence of a strongly bound layer of water molecules and ions hinders FNIII8⁻10 adsorption. In contrast, adsorption kinetics on uncharged surfaces are slow and non-specific, as they are driven by van der Waals interactions, and the anchoring residues are polar uncharged. Due to existence of a positively charged area around its cell-binding region, FNIII8⁻10 is available for subsequent cell binding when adsorbed on a positively charged surface, but not when adsorbed on a negatively charged surface. On uncharged surfaces, the availability of the fibronectin fragment's cell-binding region is not clearly distinguished because adsorption is much less specific.
Collapse
|
21
|
|
22
|
Cao Y, McDermott MT. A surface plasmon resonance based inhibition immunoassay for measurement of steroid hormones. Anal Biochem 2018; 557:7-12. [DOI: 10.1016/j.ab.2018.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/26/2023]
|
23
|
Cao HH, Nakatsuka N, Deshayes S, Abendroth JM, Yang H, Weiss PS, Kasko AM, Andrews AM. Small-Molecule Patterning via Prefunctionalized Alkanethiols. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:4017-4030. [PMID: 30828130 PMCID: PMC6393937 DOI: 10.1021/acs.chemmater.8b00377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interactions between small molecules and biomolecules are important physiologically and for biosensing, diagnostic, and therapeutic applications. To investigate these interactions, small molecules can be tethered to substrates through standard coupling chemistries. While convenient, these approaches co-opt one or more of the few small-molecule functional groups needed for biorecognition. Moreover, for multiplexing, individual probes require different surface functionalization chemistries, conditions, and/or protection/deprotection strategies. Thus, when placing multiple small-molecules on surfaces, orthogonal chemistries are needed that preserve all functional groups and are sequentially compatible. Here, we approach high-fidelity small-molecule patterning by coupling small-molecule neurotransmitter precursors, as examples, to monodisperse asymmetric oligo(ethylene glycol)alkanethiols during synthesis and prior to self-assembly on Au substrates. We use chemical lift-off lithography to singly and doubly pattern substrates. Selective antibody recognition of pre-functionalized thiols was comparable to or better than recognition of small molecules functionalized to alkanethiols after surface assembly. These findings demonstrate that synthesis and patterning approaches that circumvent sequential surface conjugation chemistries enable biomolecule recognition and afford gateways to multiplexed small-molecule functionalized substrates.
Collapse
Affiliation(s)
- Huan H. Cao
- Department of Chemistry and Biochemistry, University of
California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California,
Los Angeles, Los Angeles, CA 90095, United States
| | - Nako Nakatsuka
- Department of Chemistry and Biochemistry, University of
California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California,
Los Angeles, Los Angeles, CA 90095, United States
| | - Stephanie Deshayes
- Department of Bioengineering, University of California, Los
Angeles, Los Angeles, CA 90095, United States
| | - John M. Abendroth
- Department of Chemistry and Biochemistry, University of
California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California,
Los Angeles, Los Angeles, CA 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel
Institute for Neuroscience and Human Behavior, and Hatos Center for
Neuropharmacology, David Geffen School of Medicine, University of California, Los
Angeles, Los Angeles, CA 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of
California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California,
Los Angeles, Los Angeles, CA 90095, United States
- Department of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, CA 90095, United States
- Corresponding Authors, , or
| | - Andrea M. Kasko
- California NanoSystems Institute, University of California,
Los Angeles, Los Angeles, CA 90095, United States
- Department of Bioengineering, University of California, Los
Angeles, Los Angeles, CA 90095, United States
- Corresponding Authors, , or
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of
California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California,
Los Angeles, Los Angeles, CA 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel
Institute for Neuroscience and Human Behavior, and Hatos Center for
Neuropharmacology, David Geffen School of Medicine, University of California, Los
Angeles, Los Angeles, CA 90095, United States
- Corresponding Authors, , or
| |
Collapse
|
24
|
Stebunov YV, Yakubovsky DI, Fedyanin DY, Arsenin AV, Volkov VS. Superior Sensitivity of Copper-Based Plasmonic Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4681-4687. [PMID: 29578717 DOI: 10.1021/acs.langmuir.8b00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO2 and Al2O3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO2 (25 nm) and Al2O3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.
Collapse
Affiliation(s)
- Yury V Stebunov
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
- GrapheneTek, 7 Nobel Street , Skolkovo Innovation Center, Moscow 143026 , Russia
| | - Dmitry I Yakubovsky
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
| | - Dmitry Yu Fedyanin
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
| | - Aleksey V Arsenin
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
- GrapheneTek, 7 Nobel Street , Skolkovo Innovation Center, Moscow 143026 , Russia
| | - Valentyn S Volkov
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
- SDU Nano Optics, Mads Clausen Institute , University of Southern Denmark , Campusvej 55 , DK-5230 , Odense , Denmark
| |
Collapse
|
25
|
Adams SJ, Carrod AJ, Rochford LA, Walker M, Pikramenou Z. Surfactant-Enhanced Luminescence Lifetime for Biomolecular Detection on Luminescent Gold Surfaces Decorated with Transition Metal Complexes. ChemistrySelect 2018. [DOI: 10.1002/slct.201800341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Samuel J. Adams
- School of Chemistry; University of Birmingham; Edgbaston B15 2TT UK
| | - Andrew J. Carrod
- School of Chemistry; University of Birmingham; Edgbaston B15 2TT UK
| | - Luke A. Rochford
- School of Chemistry; University of Birmingham; Edgbaston B15 2TT UK
| | - Marc Walker
- Department of Physics; University of Warwick, Gibbet Hill; Coventry CV4 7AL UK
| | - Zoe Pikramenou
- School of Chemistry; University of Birmingham; Edgbaston B15 2TT UK
| |
Collapse
|
26
|
Self-Assembled Monolayers for Dental Implants. Int J Dent 2018; 2018:4395460. [PMID: 29552036 PMCID: PMC5818935 DOI: 10.1155/2018/4395460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.
Collapse
|
27
|
Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides. J Biosci Bioeng 2018; 125:606-612. [PMID: 29352711 DOI: 10.1016/j.jbiosc.2017.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022]
Abstract
Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies.
Collapse
|
28
|
Tian R, Luo M, Li J. Spontaneous protein desorption from self-assembled monolayer (SAM)-coated gold nanoparticles. Phys Chem Chem Phys 2018; 20:68-74. [DOI: 10.1039/c7cp05515c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interfacial water molecules and lateral diffusion of protein reduce the adsorption affinity of protein and promote protein desorption.
Collapse
Affiliation(s)
- Ranran Tian
- Department of Physics
- Zhejiang University
- Hangzhou
- China
| | - Mengbo Luo
- Department of Physics
- Zhejiang University
- Hangzhou
- China
| | - Jingyuan Li
- Department of Physics
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
29
|
Xie Y, Li Z, Zhou J. Hamiltonian replica exchange simulations of glucose oxidase adsorption on charged surfaces. Phys Chem Chem Phys 2018; 20:14587-14596. [PMID: 29766166 DOI: 10.1039/c8cp00530c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hamiltonian replica exchange Monte Carlo simulations efficiently identify the lowest-energy orientations of proteins on charged surfaces at variable ionic strengths.
Collapse
Affiliation(s)
- Yun Xie
- Huizhou University
- Huizhou
- P. R. China
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
30
|
Bhattacharya S, Dineshkumar R, Dhanarajan G, Sen R, Mishra S. Improvement of ε-polylysine production by marine bacterium Bacillus licheniformis using artificial neural network modeling and particle swarm optimization technique. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Adiguzel Z, Sagnic SA, Aroguz AZ. Preparation and characterization of polymers based on PDMS and PEG-DMA as potential scaffold for cell growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:942-948. [DOI: 10.1016/j.msec.2017.04.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/25/2016] [Accepted: 04/14/2017] [Indexed: 01/29/2023]
|
32
|
Toda H, Yamamoto M, Uyama H, Tabata Y. Effect of hydrogel elasticity and ephrinB2-immobilized manner on Runx2 expression of human mesenchymal stem cells. Acta Biomater 2017; 58:312-322. [PMID: 28300720 DOI: 10.1016/j.actbio.2017.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/20/2017] [Accepted: 03/10/2017] [Indexed: 12/22/2022]
Abstract
The objective of this study is to design the manner of ephrinB2 immobilized onto polyacrylamide (PAAm) hydrogels with varied elasticity and evaluate the effect of hydrogels elasticity and the immobilized manner of ephrinB2 on the Runx2 expression of human mesenchymal stem cells (hMSC). The PAAm hydrogels were prepared by the radical polymerization of acrylamide (AAm), and N,N'-methylenebisacrylamide (BIS). By changing the BIS concentration, the elasticity of PAAm hydrogels changed from 1 to 70kPa. For the bio-specific immobilization of ephrinB2, a chimeric protein of ephrinB2 and Fc domain was immobilized onto protein A-conjugated PAAm hydrogels by making use of the bio-specific interaction between the Fc domain and protein A. When hMSC were cultured on the ephrinB2-immobilized PAAm hydrogels with varied elasticity, the morphology of hMSC was of cuboidal shape on the PAAm hydrogels immobilized with ephrinB2 compared with non-conjugated ones, irrespective of the hydrogels elasticity. The bio-specific immobilization of ephrinB2 enhanced the level of Runx2 expression. The expression level was significantly high for the hydrogels of 3.6 and 5.9kPa elasticity with bio-specific immobilization of ephrinB2 compared with other hydrogels with the same elasticity. The hydrogels showed a significantly down-regulated RhoA activity. It is concluded that the Runx2 expression of hMSC is synergistically influenced by the hydrogels elasticity and their immobilized manner of ephrinB2 immobilized. STATEMENT OF SIGNIFICANCE Differentiation fate of mesenchymal stem cells (MSC) is modified by biochemical and biophysical factors, such as elasticity and signal proteins. However, there are few experiments about combinations of them. In this study, to evaluate the synergistic effect of them on cell properties of MSC, we established to design the manner of Eph signal ligand, ephrinB2, immobilized onto polyacrylamide hydrogels with varied elasticity. The gene expression level of an osteogenic maker, Runx2, was enhanced by the immobilized manner, and significantly enhanced for the hydrogels of around 4kPa elasticity with bio-specific immobilization of ephrinB2. This is the novel report describing to demonstrate that the Runx2 expression of MSC is synergistically influenced by the hydrogels elasticity and their manner of ephrinB2 immobilized.
Collapse
|
33
|
Teramura Y, Asif S, Ekdahl KN, Gustafson E, Nilsson B. Cell Adhesion Induced Using Surface Modification with Cell-Penetrating Peptide-Conjugated Poly(ethylene glycol)-Lipid: A New Cell Glue for 3D Cell-Based Structures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:244-254. [PMID: 27976850 DOI: 10.1021/acsami.6b14584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We synthesized a novel material, cell-penetrating peptide-conjugated poly(ethylene glycol)-lipid (CPP-PEG-lipid), that can induce the adhesion of floating cells. Firm cell adhesion with spreading could be induced by cell surface modification with the CPP-PEG-lipids. Cell adhesion was induced by CPPs but not by any other cationic short peptides we tested. Here, we demonstrated adherence using the floating cell line CCRF-CEM as well as primary human T cells, B cells, erythrocytes, and hepatocytes. As compared to cells grown in suspension, adherent cells were more rapidly induced to attach to substrates with the cell-surface modification. The critical factor for attachment was localization of CPPs at the cell membrane by PEG-lipids with PEG > 20 kDa. These cationic CPPs on PEG chains were able to interact with substrate surfaces such as polystyrene (PS) surfaces, glass surfaces, and PS microfibers that are negatively charged, inducing firm cell adhesion and cell spreading. Also, as opposed to normal cationic peptides that interact strongly with cell membranes, CPPs were less interactive with the cell surfaces because of their cell-penetrating property, making them more available for adhering cells to the substrate surface. No effects on cell viability or cell proliferation were observed after the induction of cell adhesion. With this technique, cells could be easily immobilized onto PS microfibers, an important step in fabricating 3D cell-based structures. Cells immobilized onto 3D PS microfibers were alive, and human hepatocytes showed normal production of urea and albumin on the microfibers. This method is novel in inducing firm cell adhesion via a one-step treatment.
Collapse
Affiliation(s)
- Yuji Teramura
- Department of Bioengineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Immunology, Genetics, and Pathology (IGP), Uppsala University , Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Sana Asif
- Department of Immunology, Genetics, and Pathology (IGP), Uppsala University , Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics, and Pathology (IGP), Uppsala University , Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Linnæus Center of Biomaterials Chemistry, Linnæus University , SE-391 82 Kalmar, Sweden
| | - Elisabet Gustafson
- Department of Women's and Children's Health, Uppsala University Hospital , SE-751 85 Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics, and Pathology (IGP), Uppsala University , Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| |
Collapse
|
34
|
Formisano N, Bhalla N, Heeran M, Reyes Martinez J, Sarkar A, Laabei M, Jolly P, Bowen CR, Taylor JT, Flitsch S, Estrela P. Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosens Bioelectron 2016; 85:103-109. [DOI: 10.1016/j.bios.2016.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 01/24/2023]
|
35
|
Almeida B, Shukla A. Degradation of alkanethiol self-assembled monolayers in mesenchymal stem cell culture. J Biomed Mater Res A 2016; 105:464-474. [DOI: 10.1002/jbm.a.35922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Bethany Almeida
- School of Engineering, Center for Biomedical Engineering; Institute for Molecular and Nanoscale Innovation, Brown University; Providence Rhode Island
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering; Institute for Molecular and Nanoscale Innovation, Brown University; Providence Rhode Island
| |
Collapse
|
36
|
Rosati G, Scaramuzza M, Pasqualotto E, De Toni A, Reggiani C, Paccagnella A. Modeling of SAM Impedance Onto Gold and Silver Thin-Film Mass-Produced Electrodes and Their Use for Optimization of Lactic Acid Detection. IEEE Trans Nanobioscience 2016; 15:756-764. [DOI: 10.1109/tnb.2016.2616194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Fallah MA, Stanglmair C, Pacholski C, Hauser K. Devising Self-Assembled-Monolayers for Surface-Enhanced Infrared Spectroscopy of pH-Driven Poly-l-lysine Conformational Changes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7356-64. [PMID: 27389421 DOI: 10.1021/acs.langmuir.6b01742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRA) is applied to study protein conformational changes. In general, the appropriate functionalization of metal surfaces with biomolecules remains a challenge if the conformation and activity of the biomolecule shall be preserved. Here we present a SEIRA study to monitor pH-induced conformational changes of poly-l-lysine (PLL) covalently bound to a thin gold layer via self-assembled monolayers (SAMs). We demonstrate that the composition of the SAM is crucial. A SAM of 11-mercaptoundecanonic acid (MUA) can link PLL to the gold layer, but pH-driven conformational transitions were hindered compared to poly-l-lysine in solution. To address this problem, we devised a variety of SAMs, i.e., mixed SAMs of MUA with either octanethiol (OT) or 11-mercapto-1-undecanol (MUoL) and furthermore SAMs of MT(PEG)4 and NHS-PEG10k-SH. These mixed SAMs modify the surface properties by changing the polarity and the morphology of the surface present to nearby PLL molecules. Our experiments reveal that mixed SAMs of MUA-MUoL and SAMs of NHS-PEG10k-SH-MT(PEG)4 are suitable to monitor pH-driven conformational changes of immobilized PLL. These SAMs might be applicable for chemoselective protein immobilization in general.
Collapse
Affiliation(s)
- Mohammad A Fallah
- Department of Chemistry, University of Konstanz , 78457 Konstanz, Germany
| | - Christoph Stanglmair
- Max Planck Institute for Intelligent Systems , Department of New Materials and Biosystems, 70569 Stuttgart, Germany
| | - Claudia Pacholski
- Max Planck Institute for Intelligent Systems , Department of New Materials and Biosystems, 70569 Stuttgart, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
38
|
Wang PY, Shields CW, Zhao T, Jami H, López GP, Kingshott P. Rapid Self-Assembly of Shaped Microtiles into Large, Close-Packed Crystalline Monolayers on Solid Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1309-1314. [PMID: 26756607 DOI: 10.1002/smll.201503130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Indexed: 06/05/2023]
Abstract
The rapid self-assembly of photolithographic microtiles into large crystalline monolayers is achieved. Crystalline monolayers get trapped at the liquid-liquid interface and re-emerge at the air-liquid interface by mixing a cosolvent, which then deposits on the solid surface in seconds. This method has the potential to assemble different shapes and sizes of microtiles into complex architectures.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| | - C W Shields
- Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Durham, NC, USA
| | - Tianheng Zhao
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| | - Hesamodin Jami
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| | - Gabriel P López
- Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Durham, NC, USA
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
39
|
Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs). COATINGS 2016. [DOI: 10.3390/coatings6010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Forest S, Breault-Turcot J, Chaurand P, Masson JF. Surface Plasmon Resonance Imaging-MALDI-TOF Imaging Mass Spectrometry of Thin Tissue Sections. Anal Chem 2016; 88:2072-9. [DOI: 10.1021/acs.analchem.5b03309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Simon Forest
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Julien Breault-Turcot
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Pierre Chaurand
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
41
|
Cao HH, Nakatsuka N, Serino AC, Liao WS, Cheunkar S, Yang H, Weiss PS, Andrews AM. Controlled DNA Patterning by Chemical Lift-Off Lithography: Matrix Matters. ACS NANO 2015; 9:11439-54. [PMID: 26426585 DOI: 10.1021/acsnano.5b05546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nucleotide arrays require controlled surface densities and minimal nucleotide-substrate interactions to enable highly specific and efficient recognition by corresponding targets. We investigated chemical lift-off lithography with hydroxyl- and oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers as a means to produce substrates optimized for tethered DNA insertion into post-lift-off regions. Residual alkanethiols in the patterned regions after lift-off lithography enabled the formation of patterned DNA monolayers that favored hybridization with target DNA. Nucleotide densities were tunable by altering surface chemistries and alkanethiol ratios prior to lift-off. Lithography-induced conformational changes in oligo(ethylene glycol)-terminated monolayers hindered nucleotide insertion but could be used to advantage via mixed monolayers or double-lift-off lithography. Compared to thiolated DNA self-assembly alone or with alkanethiol backfilling, preparation of functional nucleotide arrays by chemical lift-off lithography enables superior hybridization efficiency and tunability.
Collapse
Affiliation(s)
- Huan H Cao
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Nako Nakatsuka
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Andrew C Serino
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Wei-Ssu Liao
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Sarawut Cheunkar
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Anne M Andrews
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Ge X, Ke PC, Davis TP, Ding F. A Thermodynamics Model for the Emergence of a Stripe-like Binary SAM on a Nanoparticle Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4894-9. [PMID: 26191774 PMCID: PMC4592462 DOI: 10.1002/smll.201501049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/27/2015] [Indexed: 05/25/2023]
Abstract
It has been under debate if a self-assembled monolayer (SAM) with two immiscible ligands of different chain lengths and/or bulkiness can form a stripe-like pattern on a nanoparticle (NP) surface. The entropic gain upon such pattern formation due to difference in chain lengths and/or bulkiness has been proposed as the driving force in literature. Using atomistic discrete molecular dynamics simulations it is shown that stripe-like pattern could indeed emerge, but only for a subset of binary SAM systems. In addition to entropic contributions, the formation of a striped pattern also strongly depends upon interligand interactions governed by the physicochemical properties of the ligand constituents. Due to the interplay between entropy and enthalpy, a binary SAM system can be categorized into three different types depending on whether and under what condition a striped pattern can emerge. The results help clarify the ongoing debate and our proposed principle can aid in the engineering of novel binary SAMs on a NP surface.
Collapse
Affiliation(s)
- Xinwei Ge
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department of Chemistry, Warwick University, Coventry, CV4 7AL, United Kingdom
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
43
|
Preferential adsorption of cell adhesive proteins from complex media on self-assembled monolayers and its effect on subsequent cell adhesion. Acta Biomater 2015; 26:72-81. [PMID: 26306676 DOI: 10.1016/j.actbio.2015.08.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/30/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022]
Abstract
We examined the effect of surface chemistry on adsorption of fibronectin (Fn) and vitronectin (Vn) and subsequent cell adhesion, employing self-assembled monolayers (SAMs) of alkanethiols carrying terminal methyl (CH3), hydroxyl groups (OH), carboxylic acid (COOH), and amine (NH2). More Fn and Vn adsorbed to COOH- and NH2-SAMs than to CH3- and OH-SAMs from a mixture with bovine serum albumin (BSA) and from 2% fetal bovine serum. Adhesion of human umbilical vein endothelial cells (HUVECs) on CH3- and OH-SAMs preadsorbed with Fn and BSA decreased with decreasing adsorbed Fn; however, HUVECs adhered to COOH- and NH2-SAMs even in the presence of BSA at 1000-fold more than Fn in a mixture because of the preferential adsorption of Fn and/or displacement of preadsorbed BSA with Fn and Vn in a serum-containing medium. SAMs coated with a mixture of Vn and BSA exhibited adhesion of HUVECs regardless of surface functional groups. A well-organized focal adhesion complex and actin stress fibers were observed only for COOH- and NH2-SAMs when SAMs were preadsorbed with Vn and BSA. These results suggest that COOH- and NH2-SAMs allow for both cell adhesion and cell spreading because of the high density of cell-binding domains derived from adsorbed Vn. STATEMENT OF SIGNIFICANCE Adsorption of cell adhesive proteins including fibronectin (Fn) and vitronectin (Vn) plays an important role in cell adhesion to artificial materials. However, for the development of biomaterials that contact with biological fluids, it is important to understand adsorption of Fn and Vn in complex media containing many kinds of proteins. Here, we focused on adsorption of Fn and Vn from complex media including mixed solution with albumin and fetal bovine serum, and its role on cell adhesion using self-assembled monolayers (SAMs). Our result demonstrates that SAMs carrying carboxylic acid or amine allow for both cell adhesion and cell spreading because of preferentially adsorbed Vn. The result provides insights into surface design of cell culture substrates and tissue engineering scaffolds.
Collapse
|
44
|
Wang L, Roth JS, Han X, Evans SD. Photosynthetic Proteins in Supported Lipid Bilayers: Towards a Biokleptic Approach for Energy Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3306-3318. [PMID: 25727786 DOI: 10.1002/smll.201403469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
In nature, plants and some bacteria have evolved an ability to convert solar energy into chemical energy usable by the organism. This process involves several proteins and the creation of a chemical gradient across the cell membrane. To transfer this process to a laboratory environment, several conditions have to be met: i) proteins need to be reconstituted into a lipid membrane, ii) the proteins need to be correctly oriented and functional and, finally, iii) the lipid membrane should be capable of maintaining chemical and electrical gradients. Investigating the processes of photosynthesis and energy generation in vivo is a difficult task due to the complexity of the membrane and its associated proteins. Solid, supported lipid bilayers provide a good model system for the systematic investigation of the different components involved in the photosynthetic pathway. In this review, the progress made to date in the development of supported lipid bilayer systems suitable for the investigation of membrane proteins is described; in particular, there is a focus on those used for the reconstitution of proteins involved in light capture.
Collapse
Affiliation(s)
- Lei Wang
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Johannes S Roth
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
45
|
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. SENSORS 2015; 15:15684-716. [PMID: 26147727 PMCID: PMC4541850 DOI: 10.3390/s150715684] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022]
Abstract
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed.
Collapse
|
46
|
In Situ Regeneration of Si-based ARROW-B Surface Plasmon Resonance Biosensors. J Med Biol Eng 2015; 35:305-314. [PMID: 26167141 PMCID: PMC4491115 DOI: 10.1007/s40846-015-0049-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022]
Abstract
Si-based antiresonant reflecting optical waveguide type B (ARROW-B) surface plasmon resonance (SPR) biosensors allow label-free high-sensitivity detection of biomolecular interactions in real time. The ARROW-B waveguide, which has a thick guiding layer, provides efficient coupling with a single-mode fiber. The Si-based ARROW-B SPR biosensors were fabricated by using the standard semiconductor fabrication processes with a single-step lithography. A fluid flow system was designed to transport samples or analytes. The waveguide consists of propagation and SPR sensing regions. The propagation regions in the front and rear of the SPR sensing region have a symmetric cladding structure to isolate them from environmental changes. A high-index O-ring is used to seal the liquid flow channel. The intensity interrogation method was used to characterize the sensors. The sensitivity of the biosensors was 3.0 × 103 µW/RIU (refractive index unit) with a resolution of 6.2 × 10−5 RIU. An in situ regeneration process was designed to make the sensors reusable and eliminate re-alignment of the optical measurement system. The regeneration was realized using ammonia-hydrogen peroxide mixture solutions to remove molecules bound on the sensor surface, such as self-assembled 11-mercapto-1undecanoic acid and bovine serum albumin. SPR was used to monitor the regeneration processes. The experimental results show that the sensing response did not significantly change after the sensor was reused more than 10 times. In situ regenerations of the sensors were achieved.
Collapse
|
47
|
Roy D, Park JW. Spatially nanoscale-controlled functional surfaces toward efficient bioactive platforms. J Mater Chem B 2015; 3:5135-5149. [PMID: 32262587 DOI: 10.1039/c5tb00529a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interest in well-defined surface architectures has shown a steady increase, particularly among those involved in biological applications where the reactivity of functional groups on the surface is desired to be close to that of the solution phase. Recent research has demonstrated that utilizing the self-assembly process is an attractive and viable choice for the fabrication of two-dimensional nanoscale-controlled architectures. This review highlights representative examples for controlling the spatial placement of reactive functional groups in the optimization of bioactive surfaces. While the selection is not comprehensive, it becomes evident that surface architecture is one of the key components in allowing efficient biomolecular interactions with surfaces and that the optimized lateral spacing between the immobilized molecules is crucial and even critical in some cases.
Collapse
Affiliation(s)
- Dhruvajyoti Roy
- Nanogea Inc., 6162 Bristol Parkway, Culver City, CA 90230, USA
| | | |
Collapse
|
48
|
Singh V, Mondal PC, Kumar A, Jeyachandran YL, Awasthi SK, Gupta RD, Zharnikov M. Surface confined heteroleptic copper(II)-polypyridyl complexes for photonuclease activity. Chem Commun (Camb) 2015; 50:11484-7. [PMID: 25131185 DOI: 10.1039/c4cc05063k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroleptic copper(II)-polypyridyl complexes with extended π-conjugated, aromatic terminal units were immobilized on glass/Si substrates to intercalate DNA and cleave it upon photoexposure. Photonuclease activity is shown to be high, well reproducible and non-destructible towards the assembled complexes.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | | | | | | | | | | | | |
Collapse
|
49
|
Lorenzini C, Haider A, Kang IK, Sangermano M, Abbad-Andalloussi S, Mazeran PE, Lalevée J, Renard E, Langlois V, Versace DL. Photoinduced development of antibacterial materials derived from isosorbide moiety. Biomacromolecules 2015; 16:683-94. [PMID: 25633575 DOI: 10.1021/bm501755r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A straightforward method for immobilizing in situ generated silver nanoparticles on the surface of a photoactivable isosorbide-derived monomer is developed with the objective to design a functional material having antibacterial properties. The photoinduced thiol-ene mechanism involved in these syntheses is described by the electron spin resonance/spin trapping technique. The resulting materials with or without silver nanoparticles (Ag NPs) were used as films or as coatings on glass substrate. The surface of the synthesized materials was characterized by X-ray photoelectron spectroscopy and scanning electron microscopy, and their thermal and mechanical properties were evaluated by dynamic-mechanical thermal tests, differential scanning calorimetry, thermogravimetric analyses, along with pencil hardness, nanoindentation, and scratch resistance tests. The photoinduced formation of Ag NPs is also confirmed by UV spectrophotometry. Finally, a primary investigation demonstrates the antibacterial properties of the isosorbide-derived material against Staphylococcus aureus and Escherichia coli, as well as its cytocompatibility toward NIH 3T3 fibroblastic cells.
Collapse
Affiliation(s)
- Cedric Lorenzini
- Institut de Chimie et des Matériaux Paris-Est, Equipe Systèmes Polymères Complexes, UMR 7182, CNRS-Université Paris-Est Créteil (UPEC) 2-8 rue Henri Dunant, 94320 Thiais, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Papagiannopoulos A, Christoulaki A, Spiliopoulos N, Vradis A, Toprakcioglu C, Pispas S. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:685-694. [PMID: 25525817 DOI: 10.1021/la504873h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute , National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | | | | | | | | | | |
Collapse
|