1
|
Seif G, Phipps AM, Donnelly JM, Dellenbach BHS, Thompson AK. Neurophysiological effects of latent trigger point dry needling on spinal reflexes. J Neurophysiol 2025; 133:288-298. [PMID: 39704676 PMCID: PMC11918306 DOI: 10.1152/jn.00366.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Deep dry needling (DDN) is a method to treat muscle trigger points (TrPs) often found in persons with neuromuscular pain and spasticity. Currently, its neurophysiological actions are not well established. Thus, to understand how DDN affects spinal cord physiology, we investigated the effects of TrP DDN on spinal reflexes. In 17 adults with latent TrPs in the medial gastrocnemius (MG) without known neurological or orthopedic injuries, the H reflex, M wave, and reciprocal inhibition in the soleus, MG, and lateral gastrocnemius (LG) and passive ankle range of motion (ROM) were measured before and immediately, 90 min, and 72 h after a single bout of DDN at the MG TrPs. The MG maximum M wave (Mmax) amplitude was decreased immediately and 90 min post DDN (by -14% and -18%) and returned to pre-DDN level at 72 h post. LG and soleus Mmax did not change. The maximum H reflex (Hmax) amplitude did not change in any of the triceps surae. Soleus inhibition was increased significantly immediately (+30%) and 72 h (+36%) post DDN. ROM was increased by ≈4° immediately and ≈3° at 72 h post DDN. Temporary reduction of MG (but not soleus or LG) Mmax amplitude after DDN and its recovery at 72 h post indicate temporary and specific effects of DDN in the treated muscle. The immediate and 72 h post increases in the ROM and soleus inhibition with no changes in Hmax suggest complex effects of DDN at the spinal level.NEW & NOTEWORTHY In this study, we examined the effects of deep dry needling (DDN) on spinal reflexes in the triceps surae. We found that the H reflex (an excitatory reflex) did not change after DDN but soleus inhibition was increased immediately and 72 h after DDN, corresponding to increases in ankle range of motion. Differential effects of DDN on excitatory and inhibitory reflexes over the first 72 h may reflect its complex neurophysiological effects at the spinal level.
Collapse
Affiliation(s)
- Gretchen Seif
- Department of Health Professions, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Alan M Phipps
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Joseph M Donnelly
- Department of Physical Therapy, University of St. Augustine for Health Sciences, Miami, Florida, United States
| | - Blair H S Dellenbach
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
2
|
Rahmati SM, Klishko AN, Martin RS, Bunderson NE, Meslie JA, Nichols TR, Rybak IA, Frigon A, Burkholder TJ, Prilutsky BI. Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat. J Physiol 2025; 603:447-487. [PMID: 39705066 PMCID: PMC11737544 DOI: 10.1113/jp287448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA) and fascicle length. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in seven and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibres (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii length afferents matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion. KEY POINTS: Little is known about the role of forelimb muscle morphology in producing motor outputs and generating somatosensory signals. This information is needed to understand the contributions of forelimbs in locomotor control. We measured morphological characteristics of 46 muscles from cat forelimbs, recorded cat walking mechanics and electromyographic activity, and computed patterns of moment arms, length, velocity, activation, and force of forelimb muscles, as well as length- and force-dependent afferent activity during walking. We demonstrated that moment arms, physiological cross-sectional area and fascicle length of forelimb muscles contribute substantially to muscle force production and proprioceptive activity, to the regulation of locomotor cycle phase transitions and to control of lateral stability. The obtained information can guide the development of biologically accurate neuromechanical models of quadrupedal locomotion for exploring and testing novel methods of treatments of central nervous system pathologies by modulating activities in neural pathways controlling forelimbs/arms.
Collapse
Affiliation(s)
| | | | | | | | - Jeswin A. Meslie
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - T. Richard Nichols
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ilya A. Rybak
- Department of Neurobiology and AnatomyDrexel UniversityPhiladelphiaPAUSA
| | - Alain Frigon
- Department of Pharmacology‐PhysiologyUniversité de SherbrookeSherbrookeQuebecCanada
| | | | - Boris I. Prilutsky
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
3
|
Goltash S, Stevens SJ, Topcu E, Bui TV. Changes in synaptic inputs to dI3 INs and MNs after complete transection in adult mice. Front Neural Circuits 2023; 17:1176310. [PMID: 37476398 PMCID: PMC10354275 DOI: 10.3389/fncir.2023.1176310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is a debilitating condition that disrupts the communication between the brain and the spinal cord. Several studies have sought to determine how to revive dormant spinal circuits caudal to the lesion to restore movements in paralyzed patients. So far, recovery levels in human patients have been modest at best. In contrast, animal models of SCI exhibit more recovery of lost function. Previous work from our lab has identified dI3 interneurons as a spinal neuron population central to the recovery of locomotor function in spinalized mice. We seek to determine the changes in the circuitry of dI3 interneurons and motoneurons following SCI in adult mice. Methods After a complete transection of the spinal cord at T9-T11 level in transgenic Isl1:YFP mice and subsequent treadmill training at various time points of recovery following surgery, we examined changes in three key circuits involving dI3 interneurons and motoneurons: (1) Sensory inputs from proprioceptive and cutaneous afferents, (2) Presynaptic inhibition of sensory inputs, and (3) Central excitatory glutamatergic synapses from spinal neurons onto dI3 INs and motoneurons. Furthermore, we examined the possible role of treadmill training on changes in synaptic connectivity to dI3 interneurons and motoneurons. Results Our data suggests that VGLUT1+ inputs to dI3 interneurons decrease transiently or only at later stages after injury, whereas levels of VGLUT1+ remain the same for motoneurons after injury. Levels of VGLUT2+ inputs to dI3 INs and MNs may show transient increases but fall below levels seen in sham-operated mice after a period of time. Levels of presynaptic inhibition to VGLUT1+ inputs to dI3 INs and MNs can rise shortly after SCI, but those increases do not persist. However, levels of presynaptic inhibition to VGLUT1+ inputs never fell below levels observed in sham-operated mice. For some synaptic inputs studied, levels were higher in spinal cord-injured animals that received treadmill training, but these increases were observed only at some time points. Discussion These results suggest remodeling of spinal circuits involving spinal interneurons that have previously been implicated in the recovery of locomotor function after spinal cord injury in mice.
Collapse
|
4
|
Hari K, Lucas-Osma AM, Metz K, Lin S, Pardell N, Roszko DA, Black S, Minarik A, Singla R, Stephens MJ, Pearce RA, Fouad K, Jones KE, Gorassini MA, Fenrich KK, Li Y, Bennett DJ. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Nat Neurosci 2022; 25:1288-1299. [PMID: 36163283 PMCID: PMC10042549 DOI: 10.1038/s41593-022-01162-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Movement and posture depend on sensory feedback that is regulated by specialized GABAergic neurons (GAD2+) that form axo-axonic contacts onto myelinated proprioceptive sensory axons and are thought to be inhibitory. However, we report here that activating GAD2+ neurons directly with optogenetics or indirectly by cutaneous stimulation actually facilitates sensory feedback to motor neurons in rodents and humans. GABAA receptors located at or near nodes of Ranvier of sensory axons cause this facilitation by preventing spike propagation failure at the many axon branch points, which is otherwise common without GABA. In contrast, GABAA receptors are generally lacking from axon terminals and so cannot inhibit transmitter release onto motor neurons, unlike GABAB receptors that cause presynaptic inhibition. GABAergic innervation near nodes and branch points allows individual branches to function autonomously, with GAD2+ neurons regulating which branches conduct, adding a computational layer to the neuronal networks generating movement and likely generalizing to other central nervous system axons.
Collapse
Affiliation(s)
- Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Krista Metz
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Noah Pardell
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David A Roszko
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anna Minarik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Marilee J Stephens
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kelvin E Jones
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Monica A Gorassini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Modulation of spinal cord excitability following remote limb ischemic preconditioning in healthy young men. Exp Brain Res 2020; 238:1265-1276. [PMID: 32303809 DOI: 10.1007/s00221-020-05807-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 12/20/2022]
Abstract
Remote limb ischemic preconditioning (RIPC) has shown to improve dynamic postural control in humans. However, studies on the underlying adaptations of spinal cord networks have never been performed. The present work addresses this issue by investigating parameters from the soleus H-reflex recruitment curve (RC), presynaptic mechanisms of reflex modulation (presynaptic inhibition-PSI, and post activation depression-PAD), and the excursion of the center of pressure (CP) recorded during 1 min in upright stance over a compliant surface. A sham ischemic protocol (partial obstruction of blood flow) was applied to the contralateral thigh along four consecutive days. The same procedure was repeated with full obstruction (RIPC) three days after ending the sham protocol. Data were collected before and after both sham and RIPC protocols. The follow-up data were collected five days after the last ischemic intervention. Significant reduction was detected for both the fast oscillations of the CP (higher frequency components) and the parameter estimated from the RC corresponding to the high amplitude H-reflexes (p < 0.05). Even though the magnitude of effects was similar, it was washed out within three days after sham, but persisted for at least five days after RIPC. No significant differences were found for PSI and PAD levels across conditions. These findings indicate that RIPC leads to enduring changes in spinal cord excitability for the latest reflexively recruited motoneurons, along with improvement in balance control. However, these adaptations were not mediated by the presynaptic mechanisms currently assessed.
Collapse
|
6
|
Reorganization of the Primate Dorsal Horn in Response to a Deafferentation Lesion Affecting Hand Function. J Neurosci 2020; 40:1625-1639. [PMID: 31959698 DOI: 10.1523/jneurosci.2330-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 11/21/2022] Open
Abstract
The loss of sensory input following a spinal deafferentation injury can be debilitating, and this is especially true in primates when the hand is involved. Although significant recovery of function occurs, little is currently understood about the reorganization of the neuronal circuitry, particularly within the dorsal horn. This region receives primary afferent input from the periphery, and cortical input via the somatosensory subcomponent of the corticospinal tract (S1 CST), and is critically important in modulating sensory transmission, both in normal and lesioned states. To determine how dorsal horn circuitry alters to facilitate recovery post-injury, we used an established deafferentation lesion model (dorsal root/dorsal column) in male monkeys to remove sensory input from just the opposing digits (digits 1-3) of one hand. This results in a deficit in fine dexterity that recovers over several months. Electrophysiological mapping, tract tracing, and immunolabeling techniques were combined to delineate specific changes to dorsal horn input circuitry. Our main findings show that (1) there is complementary sprouting of the primary afferent and S1 CST populations into an overlapping region of the reorganizing dorsal horn; (2) S1 CST and primary afferent inputs connect in different ways within this region to facilitate sensory integration; and (3) there is a loss of larger S1 CST terminal boutons in the affected dorsal horn, but no change in the size profile of the spared/sprouted primary afferent terminal boutons post-lesion. Understanding such changes helps to inform new and targeted therapies that best promote recovery.SIGNIFICANCE STATEMENT Spinal injuries that remove sensation from the hand, can be debilitating, though functional recovery does occur. We examined changes to the neuronal circuitry of the dorsal horn in monkeys following a lesion that deafferented three digits of one hand. Little is understood about dorsal horn circuitry, despite the fact that this region loses most of its normal input after such an injury, and is clearly a major focus of reorganization. We found that both the spared primary afferents and somatosensory corticospinal efferents sprouted in an overlapping region of the dorsal horn after injury, and that larger (presumably faster) corticospinal terminals are lost, suggesting a significantly altered cortical modulation of primary afferents. Understanding this changing circuitry is important for designing targeted therapies.
Collapse
|
7
|
Dutt-Mazumder A, Segal RL, Thompson AK. Effect of Ankle Angles on the Soleus H-Reflex Excitability During Standing. Motor Control 2020; 24:189-203. [PMID: 31899887 PMCID: PMC7329593 DOI: 10.1123/mc.2018-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022]
Abstract
This study investigated effects of ankle joint angle on the Hoffman's reflex (H-reflex) excitability during loaded (weight borne with both legs) and unloaded (full body weight borne with the contralateral leg) standing in people without neurological injuries. Soleus H-reflex/M-wave recruitment curves were examined during upright standing on three different slopes that imposed plantar flexion (-15°), dorsiflexion (+15°), and neutral (0°) angles at the ankle, with the test leg loaded and unloaded. With the leg loaded and unloaded, maximum H-reflex/maximum M-wave ratio of -15° was significantly larger than those of 0° and +15° conditions. The maximum H-reflex/maximum M-wave ratios were 51%, 43%, and 41% with loaded and 56%, 46%, and 44% with unloaded for -15°, 0°, and +15° slope conditions, respectively. Thus, limb loading/unloading had limited impact on the extent of influence that ankle angles exert on the H-reflex excitability. This suggests that task-dependent central nervous system control of reflex excitability may regulate the influence of sensory input on the spinal reflex during standing.
Collapse
|
8
|
Zheng Y, Liu P, Bai L, Trimmer JS, Bean BP, Ginty DD. Deep Sequencing of Somatosensory Neurons Reveals Molecular Determinants of Intrinsic Physiological Properties. Neuron 2019; 103:598-616.e7. [PMID: 31248728 DOI: 10.1016/j.neuron.2019.05.039] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Dorsal root ganglion (DRG) sensory neuron subtypes defined by their in vivo properties display distinct intrinsic electrical properties. We used bulk RNA sequencing of genetically labeled neurons and electrophysiological analyses to define ion channel contributions to the intrinsic electrical properties of DRG neuron subtypes. The transcriptome profiles of eight DRG neuron subtypes revealed differentially expressed and functionally relevant genes, including voltage-gated ion channels. Guided by these data, electrophysiological analyses using pharmacological and genetic manipulations as well as computational modeling of DRG neuron subtypes were undertaken to assess the functions of select voltage-gated potassium channels (Kv1, Kv2, Kv3, and Kv4) in shaping action potential (AP) waveforms and firing patterns. Our findings show that the transcriptome profiles have predictive value for defining ion channel contributions to sensory neuron subtype-specific intrinsic physiological properties. The distinct ensembles of voltage-gated ion channels predicted to underlie the unique intrinsic physiological properties of eight DRG neuron subtypes are presented.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Neuroscience Training Program, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pin Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Neuroscience Training Program, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Lucas-Osma AM, Li Y, Lin S, Black S, Singla R, Fouad K, Fenrich KK, Bennett DJ. Extrasynaptic α 5GABA A receptors on proprioceptive afferents produce a tonic depolarization that modulates sodium channel function in the rat spinal cord. J Neurophysiol 2018; 120:2953-2974. [PMID: 30256739 DOI: 10.1152/jn.00499.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of GABAA receptors on sensory axons produces a primary afferent depolarization (PAD) that modulates sensory transmission in the spinal cord. While axoaxonic synaptic contacts of GABAergic interneurons onto afferent terminals have been extensively studied, less is known about the function of extrasynaptic GABA receptors on afferents. Thus, we examined extrasynaptic α5GABAA receptors on low-threshold proprioceptive (group Ia) and cutaneous afferents. Afferents were impaled with intracellular electrodes and filled with neurobiotin in the sacrocaudal spinal cord of rats. Confocal microscopy was used to reconstruct the afferents and locate immunolabelled α5GABAA receptors. In all afferents α5GABAA receptors were found throughout the extensive central axon arbors. They were most densely located at branch points near sodium channel nodes, including in the dorsal horn. Unexpectedly, proprioceptive afferent terminals on motoneurons had a relative lack of α5GABAA receptors. When recording intracellularly from these afferents, blocking α5GABAA receptors (with L655708, gabazine, or bicuculline) hyperpolarized the afferents, as did blocking neuronal activity with tetrodotoxin, indicating a tonic GABA tone and tonic PAD. This tonic PAD was increased by repeatedly stimulating the dorsal root at low rates and remained elevated for many seconds after the stimulation. It is puzzling that tonic PAD arises from α5GABAA receptors located far from the afferent terminal where they can have relatively little effect on terminal presynaptic inhibition. However, consistent with the nodal location of α5GABAA receptors, we find tonic PAD helps produce sodium spikes that propagate antidromically out the dorsal roots, and we suggest that it may well be involved in assisting spike transmission in general. NEW & NOTEWORTHY GABAergic neurons are well known to form synaptic contacts on proprioceptive afferent terminals innervating motoneurons and to cause presynaptic inhibition. However, the particular GABA receptors involved are unknown. Here, we examined the distribution of extrasynaptic α5GABAA receptors on proprioceptive Ia afferents. Unexpectedly, these receptors were found preferentially near nodal sodium channels throughout the afferent and were largely absent from afferent terminals. These receptors produced a tonic afferent depolarization that modulated sodium spikes, consistent with their location.
Collapse
Affiliation(s)
- Ana M Lucas-Osma
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
10
|
Crevecoeur F, Kurtzer I. Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller. J Neurophysiol 2018; 120:2466-2483. [PMID: 30133376 DOI: 10.1152/jn.00205.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Successful performance in many everyday tasks requires compensating unexpected mechanical disturbance to our limbs and body. The long-latency reflex plays an important role in this process because it is the fastest response to integrate sensory information across several effectors, like when linking the elbow and shoulder or the arm and body. Despite the dozens of studies on inter-effector long-latency reflexes, there has not been a comprehensive treatment of how these reveal the basic control organization that sets constraints on any candidate model of neural feedback control such as optimal feedback control. We considered three contrasting ways that controllers can be organized: multiple independent controllers vs. a multiple-input multiple-output (MIMO) controller, a continuous feedback controller vs. an intermittent feedback controller, and a direct MIMO controller vs. a state feedback controller. Following a primer on control theory and review of the relevant evidence, we conclude that continuous state feedback control best describes the organization of inter-effector coordination by the long-latency reflex.
Collapse
Affiliation(s)
- Frederic Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain , Louvain-la-Neuve , Belgium.,Institute of Neuroscience, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Isaac Kurtzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
11
|
Bączyk M, Jankowska E. Long-term effects of direct current are reproduced by intermittent depolarization of myelinated nerve fibers. J Neurophysiol 2018; 120:1173-1185. [PMID: 29924713 DOI: 10.1152/jn.00236.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direct current (DC) potently increases the excitability of myelinated afferent fibers in the dorsal columns, both during DC polarization of these fibers and during a considerable (>1 h) postpolarization period. The aim of the present study was to investigate whether similarly long-lasting changes in the excitability of myelinated nerve fibers in the dorsal columns may be evoked by field potentials following stimulation of peripheral afferents and by subthreshold epidurally applied current pulses. The experiments were performed in deeply anesthetized rats. The effects were monitored by changes in nerve volleys evoked in epidurally stimulated hindlimb afferents and in the synaptic actions of these afferents. Both were found to be facilitated during as well as following stimulation of a skin nerve and during as well as following epidurally applied current pulses of 5- to 10-ms duration. The facilitation occurring ≤2 min after skin nerve stimulation could be linked to both primary afferent depolarization and large dorsal horn field potentials, whereas the subsequent changes (up to 1 h) were attributable to effects of the field potentials. The findings lead to the conclusion that the modulation of spinal activity evoked by DC does not require long-lasting polarization and that relatively short current pulses and intrinsic field potentials may contribute to plasticity in spinal activity. These results suggest the possibility of enhancing the effects of epidural stimulation in human subjects by combining it with polarizing current pulses and peripheral afferent stimulation and not only with continuous DC. NEW & NOTEWORTHY The aim of this study was to define conditions under which a long-term increase is evoked in the excitability of myelinated nerve fibers. The results demonstrate that a potent and long-lasting increase in the excitability of afferent fibers traversing the dorsal columns may be induced by synaptically evoked intrinsic field as well as by epidurally applied intermittent current pulses. They thus provide a new means for the facilitation of the effects of epidural stimulation.
Collapse
Affiliation(s)
- M Bączyk
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden.,Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| | - E Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
12
|
De Havas J, Ghosh A, Gomi H, Haggard P. Voluntary motor commands reveal awareness and control of involuntary movement. Cognition 2016; 155:155-167. [PMID: 27399155 DOI: 10.1016/j.cognition.2016.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
The capacity to inhibit actions is central to voluntary motor control. However, the control mechanisms and subjective experience involved in voluntarily stopping an involuntary movement remain poorly understood. Here we examined, in humans, the voluntary inhibition of the Kohnstamm phenomenon, in which sustained voluntary contraction of shoulder abductors is followed by involuntary arm raising. Participants were instructed to stop the involuntary movement, hold the arm in a constant position, and 'release' the inhibition after ∼2s. Participants achieved this by modulating agonist muscle activity, rather than by antagonist contraction. Specifically, agonist muscle activity plateaued during this voluntary inhibition, and resumed its previous increase thereafter. There was no discernible antagonist activation. Thus, some central signal appeared to temporarily counter the involuntary motor drive, without directly affecting the Kohnstamm generator itself. We hypothesise a form of "negative motor command" to account for this novel finding. We next tested the specificity of the negative motor command, by inducing bilateral Kohnstamm movements, and instructing voluntary inhibition for one arm only. The results suggested negative motor commands responsible for inhibition are initially broad, affecting both arms, and then become focused. Finally, a psychophysical investigation found that the perceived force of the aftercontraction was significantly overestimated, relative to voluntary contractions with similar EMG levels. This finding is consistent with the hypothesis that the Kohnstamm generator does not provide an efference copy signal. Our results shed new light on this interesting class of involuntary movement, and provide new information about voluntary inhibition of action.
Collapse
Affiliation(s)
- Jack De Havas
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom.
| | - Arko Ghosh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich CH-8057, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich CH-8057, Switzerland
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Wakamiya 3-1, Morinosato, Atsugi, Kanagawa-pref. 243-0198, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| |
Collapse
|
13
|
Moreno-López Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G. Sensorimotor Integration by Corticospinal System. Front Neuroanat 2016; 10:24. [PMID: 27013985 PMCID: PMC4783411 DOI: 10.3389/fnana.2016.00024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior.
Collapse
Affiliation(s)
- Yunuen Moreno-López
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| | - Rafael Olivares-Moreno
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| | - Matilde Cordero-Erausquin
- Unité Propre de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS Strasbourg, France
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| |
Collapse
|
14
|
Bardoni R. Role of presynaptic glutamate receptors in pain transmission at the spinal cord level. Curr Neuropharmacol 2014; 11:477-83. [PMID: 24403871 PMCID: PMC3763755 DOI: 10.2174/1570159x11311050002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/21/2013] [Accepted: 03/16/2013] [Indexed: 12/27/2022] Open
Abstract
Nociceptive primary afferents release glutamate, activating postsynaptic glutamate receptors on spinal cord dorsal horn neurons. Glutamate receptors, both ionotropic and metabotropic, are also expressed on presynaptic terminals, where they regulate neurotransmitter release. During the last two decades, a wide number of studies have characterized the properties of presynaptic glutamatergic receptors, particularly those expressed on primary afferent fibers. This review describes the subunit composition, distribution and function of presynaptic glutamate ionotropic (AMPA, NMDA, kainate) and metabotropic receptors expressed in rodent spinal cord dorsal horn. The role of presynaptic receptors in modulating nociceptive information in experimental models of acute and chronic pain will be also discussed.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, metabolic and neural sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
15
|
Abstract
Vertebrates can sense and avoid noxious heat that evokes pain. Many thermoTRP channels are associated with temperature sensation. TRPV1 is a representative ion channel that is activated by noxious heat. Anoctamin 1 (ANO1) is a Cl- channel activated by calcium that is highly expressed in small sensory neurons, colocalized with markers for nociceptors, and most surprisingly, activated by noxious heat over 44oC. Although ANO1 is a Cl- channel, opening of this channel leads to depolarization of sensory neurons, suggesting a role in nociception. Indeed, the functional deletion of ANO1 in sensory neurons triggers the reduction in thermal pain sensation. Thus, it seems clear that ANO1 is a heat sensor in a nociceptive pathway. Since ANO1 modulators are developed for the purpose of treating chronic diseases such as cystic fibrosis, this finding is likely to predict unwanted effects and provide a guide for better developmental strategy
Collapse
Affiliation(s)
- Hawon Cho
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University
| | - Uhtaek Oh
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University, ; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
16
|
Ekblom MMN, Thorstensson A. Effects of prolonged vibration on H-reflexes, muscle activation, and dynamic strength. Med Sci Sports Exerc 2012; 43:1933-9. [PMID: 21407131 DOI: 10.1249/mss.0b013e318217d720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Neural activation is generally lower during maximal voluntary lengthening compared with shortening and isometric muscle actions, but the mechanisms underlying these differences are unclear. In maximal voluntary isometric actions, reduced Ia-afferent input induced by prolonged tendon vibration has been shown to impair neural activation and strength. PURPOSE This study aimed to investigate whether reducing Ia-afferent input influences neural activation in maximal voluntary dynamic muscle actions and, if so, whether it affects shortening and lengthening muscle actions differently. METHODS Eight women participated in three familiarization sessions and two randomly ordered experiments. In one experiment, 30-min vibration at 100 Hz was applied to the Achilles tendon to decrease Ia-afferent input as measured by the H-reflex. In the control experiment, rest substituted the vibration. Root mean square EMG from plantar and dorsiflexor muscles and plantar flexor strength were measured during maximal voluntary plantar flexor shortening and lengthening actions (20°·s(-1)) before and after vibration and rest, respectively. Soleus H-reflexes and M-waves were elicited before each set of strength tests. RESULTS The vibration caused a decrease in H-reflex amplitude by, on the average, 33%, but root mean square EMG and plantar flexor strength remained largely unaffected in both action types. CONCLUSIONS The findings suggest that Ia-afferent input may not substantially contribute to maximal voluntary dynamic muscle strength of the plantar flexor muscles, as tested here, and thus, the results do not support the notion that Ia-afferent excitation would contribute differently to neural activation in maximal voluntary lengthening and shortening muscle actions.
Collapse
Affiliation(s)
- Maria M Nordlund Ekblom
- Biomechanics and Motor Control Laboratory, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden.
| | | |
Collapse
|
17
|
Iguchi M, Shields RK. Cortical and segmental excitability during fatiguing contractions of the soleus muscle in humans. Clin Neurophysiol 2011; 123:335-43. [PMID: 21802985 DOI: 10.1016/j.clinph.2011.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/21/2011] [Accepted: 06/30/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The aim of this study was to examine the cortical and segmental excitability changes during fatigue of the soleus muscle. METHODS Ten healthy young subjects performed 45 plantar flexion maximal voluntary contractions (MVCs) (7-s on/3-s off) in 9 epochs of five contractions. Motor evoked potentials (MEPs) using transcranial magnetic stimulation and H-reflexes were assessed during the task. RESULTS The torque and the soleus EMG activity both showed the greatest decline during the 1st epoch, followed by a gradual, but significant decrease by the end of the task (∼70% pre-fatigue). The H-reflex sampled at rest after each epoch decreased to 66.6±18.3% pre-fatigue after the first epoch, and then showed no further change. The MEP on 10% pre-fatigue MVC after each epoch increased progressively (252.9±124.2% pre-fatigue). There was no change in the MEPs on the 3rd MVC in each epoch. The silent period on the MVC increased (109.0±9.2% pre-fatigue) early with no further changes during the task. CONCLUSIONS These findings support that the motor cortex increases excitability during fatigue, but with a concomitant inhibition. SIGNIFICANCE These findings are in contrast to upper extremity muscles and may reflect a distinct response specific to postural, fatigue-resistant muscle.
Collapse
Affiliation(s)
- Masaki Iguchi
- Physical Therapy and Rehabilitation Science, The University of Iowa, 1-252 Medical Education Bldg., Iowa City, IA 52242-1190, USA
| | | |
Collapse
|
18
|
Munts AG, Mugge W, Meurs TS, Schouten AC, Marinus J, Moseley GL, van der Helm FCT, van Hilten JJ. Fixed dystonia in complex regional pain syndrome: a descriptive and computational modeling approach. BMC Neurol 2011; 11:53. [PMID: 21609429 PMCID: PMC3118105 DOI: 10.1186/1471-2377-11-53] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/24/2011] [Indexed: 12/04/2022] Open
Abstract
Background Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. Involvement of dysfunctional GABAergic interneurons has been suggested, however the mechanisms that underpin fixed dystonia are still unknown. We hypothesized that dystonia could be the result of aberrant proprioceptive reflex strengths of position, velocity or force feedback. Methods We systematically characterized the pattern of dystonia in 85 CRPS-patients with dystonia according to the posture held at each joint of the affected limb. We compared the patterns with a neuromuscular computer model simulating aberrations of proprioceptive reflexes. The computer model consists of an antagonistic muscle pair with explicit contributions of the musculotendinous system and reflex pathways originating from muscle spindles and Golgi tendon organs, with time delays reflective of neural latencies. Three scenarios were simulated with the model: (i) increased reflex sensitivity (increased sensitivity of the agonistic and antagonistic reflex loops); (ii) imbalanced reflex sensitivity (increased sensitivity of the agonistic reflex loop); (iii) imbalanced reflex offset (an offset to the reflex output of the agonistic proprioceptors). Results For the arm, fixed postures were present in 123 arms of 77 patients. The dominant pattern involved flexion of the fingers (116/123), the wrists (41/123) and elbows (38/123). For the leg, fixed postures were present in 114 legs of 77 patients. The dominant pattern was plantar flexion of the toes (55/114 legs), plantar flexion and inversion of the ankle (73/114) and flexion of the knee (55/114). Only the computer simulations of imbalanced reflex sensitivity to muscle force from Golgi tendon organs caused patterns that closely resembled the observed patient characteristics. In parallel experiments using robot manipulators we have shown that patients with dystonia were less able to adapt their force feedback strength. Conclusions Findings derived from a neuromuscular model suggest that aberrant force feedback regulation from Golgi tendon organs involving an inhibitory interneuron may underpin the typical fixed flexion postures in CRPS patients with dystonia.
Collapse
Affiliation(s)
- Alexander G Munts
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bianco J, Gueye Y, Marqueste T, Alluin O, Risso JJ, Garcia S, Lavault MN, Khrestchatisky M, Feron F, Decherchi P. Vitamin D₃ improves respiratory adjustment to fatigue and H-reflex responses in paraplegic adult rats. Neuroscience 2011; 188:182-92. [PMID: 21571043 DOI: 10.1016/j.neuroscience.2011.04.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/11/2011] [Accepted: 04/29/2011] [Indexed: 11/29/2022]
Abstract
We previously demonstrated that vitamin D₂ (ergocalciferol) triggers axon regeneration in a rat model of peripheral nerve transection. In order to confirm the regenerative potential of this neuroactive steroid, we performed a study in which vitamin D₃ (cholecalciferol) was delivered at various doses to paralytic rats. After spinal cord compression at the T10 level, rats were given orally either vehicle or vitamin D₃ at the dose of 50 IU/kg/day or 200 IU/kg/day. Three months later, M and H-waves were recorded from rat Tibialis anterior muscle in order to quantify the maximal H-reflex (H(max)) amplitude. We also monitored the ventilatory frequency during an electrically induced muscle fatigue known to elicit the muscle metaboreflex and an increase in respiratory rate. Spinal cords were then collected, fixed and immunostained with an anti-neurofilament antibody. We show here that vitamin D-treated animals display an increased number of axons within the lesion site. In addition, rats supplemented with vitamin D₃ at the dose of 200 IU/kg/day exhibit (i) an improved breathing when hindlimb was electrically stimulated; (ii) an H-reflex depression similar to control animals and (iii) an increased number of axons within the lesion and in the distal area. Our data confirm that vitamin D is a potent molecule that can be used for improving neuromuscular adaptive mechanisms and H-reflex responses.
Collapse
Affiliation(s)
- J Bianco
- Institut des Sciences du Mouvement, Etienne-Jules MAREY, UMR CNRS 6233, Université de la Méditerranée (Aix-Marseille II,Aix-Marseille Université), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Namjoshi DR, McErlane SA, Taepavarapruk N, Soja PJ. Network actions of pentobarbital in the rat mesopontine tegmentum on sensory inflow through the spinothalamic tract. J Neurophysiol 2009; 102:700-13. [PMID: 19458144 DOI: 10.1152/jn.90933.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recent discovery of a barbiturate-sensitive "general anesthesia switch" mechanism localized in the rat brain stem mesopontine tegmental anesthesia area (MPTA) has challenged the current view of the nonspecific actions of general anesthetic agents in the CNS. In this study we provide electrophysiological evidence that the antinociception, which accompanies the behavioral state resembling general anesthesia following pentobarbital (PB) microinjections into the MPTA of awake rats, could be accompanied by the attenuation of sensory transmission through the spinothalamic tract (STT). Following bilateral microinjections of PB into the MPTA spontaneous firing rate (SFR), antidromic firing index (FI), and sciatic (Sc) as well as sural (Su) nerve-evoked responses (ER) of identified lumbar STT neurons in the isoflurane-anesthetized rat were quantified using extracellular recording techniques. Microinjections of PB into the MPTA significantly suppressed the SFR (47%), magnitudes of Sc- (26%) and Su-ER (36%), and FI (41%) of STT neurons. Microinjections of PB-free vehicle control did not alter any of the above-cited electrophysiological parameters. The results from this study suggest that antinociception, which occurs during the anesthesia-like state following PB microinjections into the MPTA, may be due, in part, to (in)direct inhibition of STT neurons via switching mechanism(s) located in the MPTA. This study provides a provenance for investigating electrophysiologically the actions on STT neurons of other current agents used clinically to maintain the state of general anesthesia.
Collapse
Affiliation(s)
- Dhananjay R Namjoshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
21
|
Lidierth M. Local and diffuse mechanisms of primary afferent depolarization and presynaptic inhibition in the rat spinal cord. J Physiol 2006; 576:309-27. [PMID: 16873417 PMCID: PMC1995647 DOI: 10.1113/jphysiol.2006.110577] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 07/20/2006] [Indexed: 11/08/2022] Open
Abstract
Two types of dorsal root potential (DRP) were found in the spinal cord of urethane-anaesthetized rats. Local DRPs with short latency-to-onset were evoked on roots close to the point of entry of an afferent volley. Diffuse DRPs with a longer latency-to-onset were seen on more distant roots up to 17 segments from the volley entry zone. The switch to long latency-to-onset occurred abruptly as a function of distance along the cord and could not be explained by conduction delays within the dorsal columns. Long-latency DRPs were also present and superimposed on the short-latency DRPs on nearby roots. Both local and diffuse DRPs were evoked by light mechanical stimuli: von Frey hair thresholds were
Collapse
Affiliation(s)
- Malcolm Lidierth
- King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
22
|
Russo RE, Delgado-Lezama R, Hounsgaard J. Heterosynaptic modulation of the dorsal root potential in the turtle spinal cord in vitro. Exp Brain Res 2006; 177:275-84. [PMID: 16983451 DOI: 10.1007/s00221-006-0668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
In the somatosensory system, the flow of sensory information is regulated at early stages by presynaptic inhibition. Recent findings have shown that the mechanisms generating the primary afferent depolarization (PAD) associated with presynaptic inhibition are complex, with some components mediated by a non-spiking mechanism. How sensory inputs carried by neighbouring afferent fibres interact to regulate the generation of PAD, and thus presynaptic inhibition, is poorly known. Here, we investigated the interaction between neighbouring primary afferents for the generation of PAD in an in vitro preparation of the turtle spinal cord. To monitor PAD we recorded the dorsal root potential (DRP), while the simultaneous cord dorsum potential (CDP) was recorded to assess the population postsynaptic response. We found that the DRP and the CDP evoked by a primary afferent test stimulus was greatly reduced by a conditioning activation of neighbouring primary afferents. This depression had early and late components, mediated in part by GABAA and GABAB receptors, since they were reduced by bicuculline and SCH 50911 respectively. However, with the selective stimulation of C and Adelta fibres in the presence of TTX, the early and late depression of the DRP was replaced by facilitation of the GABAergic and glutamatergic components of the TTX-resistant DRP. Our findings suggest a subtle lateral excitatory interaction between primary afferents for the generation of PAD mediated by a non-spiking mechanism that may contribute to shaping of information transmitted by C and Adelta fibres in a spatially confined scale in analogy with the retina and olfactory bulb.
Collapse
Affiliation(s)
- Raúl E Russo
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay.
| | | | | |
Collapse
|
23
|
Zhan X, Pongstaporn T, Ryugo DK. Projections of the second cervical dorsal root ganglion to the cochlear nucleus in rats. J Comp Neurol 2006; 496:335-48. [PMID: 16566003 PMCID: PMC2736115 DOI: 10.1002/cne.20917] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physiological, anatomical, and clinical data have demonstrated interactions between somatosensory and auditory brainstem structures. Spinal nerve projections influence auditory responses, although the nature of the pathway(s) is not known. To address this issue, we injected biotinylated dextran amine into the cochlear nucleus or dorsal root ganglion (DRG) at the second cervical segment (C2). Cochlear nucleus injections retrogradely labeled small ganglion cells in C2 DRG. C2 DRG injections produced anterograde labeling in the external cuneate nucleus, cuneate nucleus, nucleus X, central cervical nucleus, dorsal horn of upper cervical spinal segments, and cochlear nucleus. The terminal field in the cochlear nucleus was concentrated in the subpeduncular corner and lamina of the granule cell domain, where endings of various size and shapes appeared. Examination under an electron microscope revealed that the C2 DRG terminals contained numerous round synaptic vesicles and formed asymmetric synapses, implying depolarizing influences on the target cell. Labeled endings synapsed with the stalk of the primary dendrite of unipolar brush cells, distal dendrites of presumptive granule cells, and endings containing pleomorphic synaptic vesicles. These primary somatosensory projections contribute to circuits that are hypothesized to mediate integrative functions of hearing.
Collapse
Affiliation(s)
- Xiping Zhan
- Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tan Pongstaporn
- Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - David K. Ryugo
- Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
24
|
Lee JK, Emch GS, Johnson CS, Wrathall JR. Effect of spinal cord injury severity on alterations of the H-reflex. Exp Neurol 2005; 196:430-40. [PMID: 16185689 DOI: 10.1016/j.expneurol.2005.08.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 02/03/2023]
Abstract
The monosynaptic motoneuron response to stimulation of Ia afferents is known to be altered by spinal cord injury (SCI). Although the Hoffman (H)-reflex is a tool that is often used to measure this reflex in patients, there has not been a systematic study investigating the effect of SCI severity and time on the H-reflex. We used a clinically relevant model of spinal cord contusion (Mild and Moderate) as well as complete surgical transection to measure the H-reflex at 1, 4 and 8 weeks after injury. The H-reflex was recorded from rat hindpaw plantar muscles in order to measure the baseline reflex amplitude and its response to increased stimulus frequency, i.e. rate depression. We correlated the reflex amplitude at each frequency to spared white matter at the injury epicenter, hindlimb function and serotonin immunoreactivity associated with retrogradely labeled plantar muscle motoneurons. The three injury groups displayed different behavioral deficits and amount of spared white matter at all three times tested. H-reflex rate depression was abnormal in all three injury groups at all three time points. At 8 weeks, transected animals displayed more H-reflex rate depression than those with a mild contusion. Baseline H-reflex amplitude was increased in both contusion groups at 4 weeks and showed a positive linear correlation with serotonin immunoreactivity. This baseline amplitude was not increased after transection. Furthermore, in the contusion group, there was a U-shaped relationship between behavioral scores and H-reflex rate depression, suggesting that an intermediate sensitivity of the motoneuronal pool to afferent input is associated with better recovery of hindlimb function.
Collapse
Affiliation(s)
- Jae K Lee
- Department of Neuroscience, Georgetown University Medical Center, New Research Bldg. EG-20, 3970 Reservoir Rd., NW, Washington DC 20007, USA
| | | | | | | |
Collapse
|
25
|
Edwards DJ, Thickbroom GW, Byrnes ML, Ghosh S, Mastaglia FL. Temporal aspects of passive movement-related corticomotor inhibition. Hum Mov Sci 2004; 23:379-87. [PMID: 15541524 DOI: 10.1016/j.humov.2004.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that during rhythmic passive movement of the index finger, the amplitude of the motor evoke potential (MEP) of the first dorsal interosseous muscle (FDI) as the index finger moved through mid-range adduction, is significantly reduced compared to rest [Edwards, D. J., Thickbroom, G. W., Byrnes, M. L., Ghosh, S., & Mastaglia, F. L. (2002). Reduced corticomotor excitability with passive movement: A study using Transcranial Magnetic Stimulation. Human Movement Science 21, 533-540]. In the present study we have investigated the time-course of this phenomenon. We found that MEP amplitude was significantly reduced at the mid-range position in the first cycle of movement (50+/-6% of resting baseline values), and did not vary across subsequent cycles (10 cycles in 50 s), but that MEP amplitude returned to baseline values within 1s of cessation of movement. The results suggest that the pattern of afferent discharge set up by the kinematics of the movement acting at spinal or supraspinal levels underlies the inhibition observed, rather than an effect of central origin or a cumulative effect of ongoing cyclic movement.
Collapse
Affiliation(s)
- Dylan J Edwards
- Centre for Neuromuscular and Neurological Disorders, Australian Neuromuscular Research Institute, The University of Western Australia, 4th Floor, A block, Nedlands, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
26
|
Taepavarapruk N, McErlane SA, Chan A, Chow S, Fabian L, Soja PJ. State-Dependent GABAergic Inhibition of Sciatic Nerve-Evoked Responses of Dorsal Spinocerebellar Tract Neurons. J Neurophysiol 2004; 92:1479-90. [PMID: 15102903 DOI: 10.1152/jn.01108.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve-evoked potentials recorded in the cerebellum 35 yr ago inferred that sensory transmission via the dorsal spinocerebellar tract (DSCT) is reduced occasionally and only during eye movements of active sleep compared with wakefulness or quiet sleep. A reduction or withdrawal of primary afferent input and/or ongoing inhibition of individual lumbar DSCT neurons may underlie this occurrence. This study distinguished between these possibilities by examining whether peripheral nerve-evoked responses recorded from individual DSCT neurons are suppressed specifically during active sleep, and if so, whether GABA mediates this phenomenon. Synaptic responses to threshold stimuli applied to the sciatic nerve were characterized by a single spike response at short latency and/or a longer latency burst of action potentials. During the state of quiet wakefulness, response magnitude did not differ from that observed during quiet sleep. During active sleep, short and long latency responses were suppressed by 26 and 14%, respectively, and returned to pre-active sleep levels following awakening from active sleep. Sciatic nerve-evoked early and late responses were further analyzed in a paired fashion around computer-tagged eye movement events that hallmark the state of active sleep. Response magnitude was suppressed by 14.4 and 11.5%, respectively, during eye movement events of active sleep. The GABAA antagonist bicuculline, applied juxtacellularly by microiontophoresis, abolished response suppression during non–eye movement periods and eye movement events of active sleep. In conclusion, synaptic transmission via DSCT neurons is inhibited by GABA tonically during non–eye movement periods and phasically during eye movement events of active sleep.
Collapse
Affiliation(s)
- Niwat Taepavarapruk
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Nordlund MM, Thorstensson A, Cresswell AG. Conditioning Ia-afferent stimulation reduces the soleus Hoffman reflex in humans when muscle spindles are assumed to be inactive. Neurosci Lett 2004; 366:250-3. [PMID: 15288428 DOI: 10.1016/j.neulet.2004.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/21/2004] [Accepted: 05/19/2004] [Indexed: 11/30/2022]
Abstract
Despite higher neural activation during active as compared to passive muscle shortening, Hoffman reflexes (H-reflexes) are similar. This may be explained by homosynaptic post-activation depression (HPAD) of Ia-afferents being present during active shortening. Accordingly, it was investigated whether conditioning electrical stimulation of the tibial nerve reduced the H-reflex less during active than passive shortening. The effects of two conditioning modes (0.2 and 1 Hz) were compared to a control mode without conditioning. H-reflexes and M-waves were elicited as the ankle passed 90 degrees with the soleus muscle undergoing passive or active (20% MVC) lengthening or shortening. Conditioning had no effect during active shortening. In contrast, during passive shortening, the H:M of the 1 Hz mode was significantly less than that of the 0.2 Hz and control modes. In lengthening, H:M was unaffected by conditioning. These findings support that HPAD reduces the synaptic efficacy of Ia-afferents during active shortening, active and passive lengthening, but not passive shortening.
Collapse
Affiliation(s)
- M M Nordlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
28
|
Bosco G, Poppele RE. Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J Neurophysiol 2004; 90:3372-83. [PMID: 14615435 DOI: 10.1152/jn.00204.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dorsal spinocerebellar tract (DSCT) neurons receive converging sensory inputs from muscle, skin, and joint receptors and their cerebellar projection is a product of the spinal sensory processing of movement-related information. We concluded earlier that DSCT activity relates to global rather than to local parameters of hindlimb postures and movement, specifically to a kinematic representation of the limb endpoint. The waveforms of principal components (PCs) derived from an ensemble of DSCT movement responses were found to correlate with either the waveform of the limb axis length or orientation trajectories. It was not clear, however, whether these global representations resulted from neural processing or from biomechanical factors. In this study, we perturbed the limb biomechanical factors by decoupling limb geometry from endpoint position during passively applied limb trajectories patterned after a step cycle. We used two types of perturbations: mechanical constraints that limited joint rotations and electrical stimulation of hindlimb muscles. We found that about half of the 89 cells studied showed statistically different response patterns during the perturbations. We compared the PCs of the altered responses with the PCs of the control responses, and found two basic results. With the joint constraints, >85% of the total variance in both control and changed responses was accounted for by the same five PCs that were also observed in the earlier study. The differences between altered and control responses could be fully accounted for by changes in the PC weighting, suggesting a modulation of global response components rather than an explicit representation of local parameters. With the muscle stimulation, only the first and third PCs were the same for the control and altered responses. The second PC was modified, and additional PCs were also required to account for the altered responses. This suggests that the stimulus parameters were specifically represented in the responses. The changes induced by both types of perturbation affected primarily the weighting or waveform of the second PC, which relates to the limb axis length trajectory. The results are consistent with the suggestion that information about limb orientation and length may be separately modulated.
Collapse
Affiliation(s)
- G Bosco
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
29
|
Nordlund MM, Thorstensson A, Cresswell AG. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. J Appl Physiol (1985) 2004; 96:218-25. [PMID: 12972439 DOI: 10.1152/japplphysiol.00650.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.
Collapse
Affiliation(s)
- Maria M Nordlund
- Department of Neuroscience, Karolinska Institutet, 114 86 Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M. Neurotrophins in spinal cord nociceptive pathways. PROGRESS IN BRAIN RESEARCH 2004; 146:291-321. [PMID: 14699971 DOI: 10.1016/s0079-6123(03)46019-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotrophins are a well-known family of growth factors for the central and peripheral nervous systems. In the course of the last years, several lines of evidence converged to indicate that some members of the family, particularly NGF and BDNF, also participate in structural and functional plasticity of nociceptive pathways within the dorsal root ganglia and spinal cord. A subpopulation of small-sized dorsal root ganglion neurons is sensitive to NGF and responds to peripheral NGF stimulation with upregulation of BDNF synthesis and increased anterograde transport to the dorsal horn. In the latter, release of BDNF appears to modulate or even mediate nociceptive sensory inputs and pain hypersensitivity. We summarize here the status of the art on the role of neurotrophins in nociceptive pathways, with special emphasis on short-term synaptic and intracellular events that are mediated by this novel class of neuromessengers in the dorsal horn. Under this perspective we review the findings obtained through an array of techniques in naïve and transgenic animals that provide insight into the modulatory mechanisms of BDNF at central synapses. We also report on the results obtained after immunocytochemistry, in situ hybridization, and monitoring intracellular calcium levels by confocal microscopy, that led to hypothesize that also NGF might have a direct central effect in pain modulation. Although it is unclear whether or not NGF may be released at dorsal horn endings of certain nociceptors in vivo, we believe that these findings offer a clue for further studies aiming to elucidate the putative central effects of NGF and other neurotrophins in nociceptive pathways.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095 Grugliasco, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Evans CG, Jing J, Proekt A, Rosen SC, Cropper EC. Frequency-Dependent Regulation of Afferent Transmission in the Feeding Circuitry of Aplysia. J Neurophysiol 2003; 90:3967-77. [PMID: 14507990 DOI: 10.1152/jn.00786.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During rhythmic behaviors, sensori-motor transmission is often regulated so that there are phasic changes in afferent input to follower neurons. We study this type of regulation in the feeding circuit of Aplysia. We characterize effects of the B4/5 interneurons on transmission from the mechanoafferent B21 to the radula closer motor neuron B8. In quiescent preparations, B4/5-induced postsynaptic potentials (PSPs) can block spike propagation in the lateral process of B21 and inhibit afferent transmission. B4/5 are, however, active during the retraction phase of motor programs, i.e., when mechanoafferent transmission to B8 presumably occurs. To determine whether mechanoafferent transmission is necessarily inhibited when B4/5 are active, we characterize the B4/5 firing frequency during retraction and show that, for the most part, it is low (below 15 Hz). There is, therefore, a low probability that spike propagation will be inhibited. The relative ineffectiveness of low frequency activity is not simply a consequence of insufficient PSP magnitude, because a single PSP can block spike propagation. Instead, it is related to the fact that PSPs have a short duration. When B4/5 fire at a low frequency, there is therefore a low probability that afferent transmission in the lateral process of B21 can be inhibited. In conclusion, we demonstrate that afferent transmission will not always be affected when a neuron that exerts inhibitory effects is active. Although a cell may be ineffective when it fires at a low frequency, ineffectiveness is not necessarily a consequence of spike frequency per se. Instead it may be due to spike timing.
Collapse
Affiliation(s)
- Colin G Evans
- Department of Physiology and Biophysics, Mt. Sinai School of Medicine, New York, 10029, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Synaptic gating is normally thought to be a mechanism for excluding synaptic input, but three recent studies show how the resting membrane potential interacts with integrative properties to act as a permissive synaptic gate.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Georgia State University, MSC 8L0389, 33 Gilmer St. SE Unit 8, Atlanta, GA 30303-3088, USA.
| |
Collapse
|
33
|
Regulation of spike initiation and propagation in an Aplysia sensory neuron: gating-in via central depolarization. J Neurosci 2003. [PMID: 12684479 DOI: 10.1523/jneurosci.23-07-02920.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Afferent transmission can be regulated (or gated) so that responses to peripheral stimuli are adjusted to make them appropriate for the ongoing phase of a motor program. Here, we characterize a gating mechanism that involves regulation of spike propagation in Aplysia mechanoafferent B21. B21 is striking in that afferent transmission to the motor neuron B8 does not occur when B21 is at resting membrane potential. Our data suggest that this results from the fact that spikes are not actively propagated to the lateral process of B21 (the primary contact with B8). When B21 is peripherally activated at its resting potential, electrotonic potentials in the lateral process are on average 11 mV. In contrast, mechanoafferent activity is transmitted to B8 when B21 is centrally depolarized via current injection. Our data suggest that central depolarization relieves propagation failure. Full-size spikes are recorded in the lateral process when B21 is depolarized and then peripherally activated. Moreover, changes in membrane potential in the lateral process affect spike amplitude, even when the somatic membrane potential is virtually unchanged. During motor programs, both the lateral process and the soma of B21 are phasically depolarized via synaptic input. These depolarizations are sufficient to convert subthreshold potentials to full-size spikes in the lateral process. Thus, our data strongly suggest that afferent transmission from B21 to B8 is, at least in part, regulated via synaptic control of spike initiation in the lateral process. Consequences of this control for compartmentalization in B21 are discussed, as are specific consequences for feeding behavior.
Collapse
|
34
|
Soja PJ, Pang W, Taepavarapruk N, Cairns BE, McErlane SA. On the reduction of spontaneous and glutamate-driven spinocerebellar and spinoreticular tract neuronal activity during active sleep. Neuroscience 2001; 104:199-206. [PMID: 11311542 DOI: 10.1016/s0306-4522(01)00060-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was performed to provide evidence that dynamic neural processes underlie the reduction in dorsal spinocerebellar tract and spinoreticular tract neuron activity that occurs during active sleep. To ascertain the effect of local inhibition on the spontaneous and glutamate-evoked spike discharge of sensory tract neurons, preliminary control tests were performed during the state of quiet wakefulness, where GABA or glycine was co-administered in a sustained fashion during pulsatile release of glutamate to dorsal spinocerebellar tract (n=3) or spinoreticular tract (n=2) neurons. Co-administration of GABA or glycine also resulted in a significant marked suppression of spontaneous spike activity and glutamate-evoked responses of these cells. Extracellular recording experiments combined with juxtacellular application of glutamate were then performed on 20 antidromically identified dorsal spinocerebellar tract and spinoreticular tract neurons in the chronic intact cat as a function of sleep and wakefulness. The glutamate-evoked activity of a group of 10 sensory tract neurons (seven dorsal spinocerebellar tract, three spinoreticular tract), which exhibited a significant decrease in their spontaneous spike activity during active sleep, was examined. Glutamate-evoked activity in these cells was significantly attenuated during active sleep compared with wakefulness. In contrast, the glutamate-evoked activity of a second group of eight sensory tract neurons (four dorsal spinocerebellar tract, four spinoreticular tract), which exhibited a significant increase in their spontaneous spike activity during active sleep, was not significantly altered in a state-dependent manner. These data indicate that, during natural active sleep, a dynamic neural process is engaged onto certain dorsal spinocerebellar tract and spinoreticular tract neurons, which in turn dampens sensory throughput to higher brain centers.
Collapse
Affiliation(s)
- P J Soja
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, B.C., V6T 1Z3, Vancouver, Canada.
| | | | | | | | | |
Collapse
|
35
|
Lamotte d'Incamps B, Meunier C, Zytnicki D, Jami L. Flexible processing of sensory information induced by axo-axonic synapses on afferent fibers. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:369-77. [PMID: 10574125 DOI: 10.1016/s0928-4257(00)80064-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent experiments indicate that afferent information is processed in the intraspinal arborisation of mammalian group I fibres. During muscle contraction, Ib inputs arising from tendon organs are filtered out by presynaptic inhibition after their entry in the spinal cord. This paper reviews the mechanisms by which GABAergic axo-axonic synapses, i.e., the morphological substrate of presynaptic inhibition, exert this filtering effect. Using confocal microscopy, axo-axonic synapses were demonstrated on segmental Ib collaterals. Most synapses were located on short preterminal and terminal branches. Using a simple compartmental model of myelinated axon, the primary afferent depolarisation (PAD), generated by such synapses, was predicted to reduce the amplitude of incoming action potentials by inactivating the sodium current, and this prediction was experimentally verified. A further theoretical work, relying on cable theory, suggests that the electrotonic structure of collaterals and the distribution of axo-axonic synapses allow large PADs (about 10 mV) to develop on some distal branches, which is likely to result in a substantial presynaptic inhibition. In addition, the electrotonic structure of group I collaterals is likely to prevent PAD from spreading to the whole arborisation. Such a non-uniform diffusion of the PAD accounts for differential presynaptic inhibition in intraspinal branches of the same fibre. Altogether, our experimental and theoretical works suggest that axo-axonic synapses can control the selective funnelling of sensory information toward relevant targets specified according to the motor task.
Collapse
|