1
|
Souza L, Ferreira FV, Lopes JH, Camilli JA, Martin RA. Cancer Inhibition and In Vivo Osteointegration and Compatibility of Gallium-Doped Bioactive Glasses for Osteosarcoma Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45156-45166. [PMID: 36170227 PMCID: PMC9562271 DOI: 10.1021/acsami.2c12102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Traditional osteosarcoma therapies tend to focus solely on eradicating residual cancer cells and often fail to promote local bone regeneration and even inhibit it due to lack of precise control over target cells, i.e., the treatment affects both normal and cancer cells. Typically, multistep procedures are required for optimal efficacy. Here, we found that a silica-based bioactive material containing 3 mol % gallium oxide selectively kills human osteosarcoma cells and presents excellent in vivo osteointegration, while showing no local or systemic toxicity. Cell culture media conditioned with the proposed material was able to kill 41% of osteosarcoma cells, and no significant deleterious effect on normal human osteoblasts was observed. In addition, rats treated with the gallium-doped material showed excellent material-bone integration with no sign of local toxicity or implant rejection. Systemic biocompatibility investigation did not indicate any sign of toxicity, with no presence of fibrosis or cellular infiltrate in the histological microstructure of the liver and kidneys after 56 days of observation. Taken together, these results show that synergistic bone regeneration and targeted cancer therapy can be combined, paving the way toward new bone cancer treatment approaches.
Collapse
Affiliation(s)
- Lucas Souza
- Engineering
for Heath Research Centre, College of Engineering & Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Filipe V. Ferreira
- Embrapa
Instrumentation, Nanotechnology National Laboratory for Agriculture, XV de Novembro, 1452, Sao Carlos 13560-970, Brazil
| | - Joao H. Lopes
- Department
of Chemistry, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes
50, Vila das Acacias, São José dos Campos, São Paulo 12228-900, Brazil
| | - Jose Angelo Camilli
- Department
of Functional and Structural Biology, State
University of Campinas, Campinas13083-970, Sao Paulo, Brazil
| | - Richard A. Martin
- Engineering
for Heath Research Centre, College of Engineering & Physical Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
2
|
Akar Y, Ahmad N, Khalıd M. The effect of cadmium on the bovine in vitro oocyte maturation and early embryo development. Int J Vet Sci Med 2018; 6:S73-S77. [PMID: 30761325 PMCID: PMC6161866 DOI: 10.1016/j.ijvsm.2018.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 01/27/2023] Open
Abstract
Common pollutants such as heavy metals and cadmium is among those with high environmental concerns. In vivo studies had shown that cadmium (Cd) causes oocyte degeneration and embryo mortality, and lowers pregnancy rates in mammals. However, there is limited information available about direct effects of Cd on oocyte maturation and/or embryo development. This study was aimed to investigate if Cd has any effect on the oocyte maturation and/or embryo development in vitro. Bovine COCs were collected from the slaughter house and cultured for 24 h in serum-free media only (Controls) or supplemented with 0.2, 2.0 and 20.0 μM CdCl2. At 24 h cumulus cell expansion was assessed in all COCs. COCs were either denuded and stained for determination of nuclear maturation or fertilized for assessment of subsequent embryo development. Cd at the lowest concentration (0.2 μM) did not affect any of the parameters studied. However, at higher concentrations (2.0 and 20.0 μM) it significantly (P < 0.05) reduced the percentage of fully-expanded COCs and significantly (P < 0.05) increased the percentage of partially and/or non-expanded COCs compared to controls and 0.2 μM. Cadmium at higher concentrations (2.0 and 20.0 μM) also significantly (P < 0.01) reduced the percentage of oocytes reaching metaphase II stage compared to controls and 0.2 μM. Post-fertilization cleavage rate in presumptive zygotes and blastocyst development significantly (P < 0.05) reduced 0.2, 2.0 and 20.0 μM CdCl2 compared to the controls (0.0 μM). In conclusion, these results suggest that Cd had direct detrimental effects on the bovine oocyte maturation and its developmental competence.
Collapse
Affiliation(s)
- Yaşar Akar
- Deparment of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Erciyes, Talas, Kayseri, Turkey
| | - Naveed Ahmad
- Deparment of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Muhammad Khalıd
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, London, UK
| |
Collapse
|
3
|
da Silva FH, Ribeiro AAL, Deluque AL, Cotrim ACDM, de Marchi PGF, França EL, Honorio-França AC. Effects of barium chloride adsorbed to polyethylene glycol (PEG) microspheres on co-culture of human blood mononuclear cell and breast cancer cell lines (MCF-7). Immunopharmacol Immunotoxicol 2017; 40:18-24. [DOI: 10.1080/08923973.2017.1392563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fabiana Helen da Silva
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | | - Alessandra Lima Deluque
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Aron Carlos de melo Cotrim
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | |
Collapse
|
4
|
Mores L, França EL, Silva NA, Suchara EA, Honorio-França AC. Nanoparticles of barium induce apoptosis in human phagocytes. Int J Nanomedicine 2015; 10:6021-6. [PMID: 26451108 PMCID: PMC4592030 DOI: 10.2147/ijn.s90382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.
Collapse
Affiliation(s)
- Luana Mores
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Eduardo Luzia França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Núbia Andrade Silva
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Eliane Aparecida Suchara
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | |
Collapse
|
5
|
Yilmaz E, Soylak M. Solid phase extraction of Cd, Pb, Ni, Cu, and Zn in environmental samples on multiwalled carbon nanotubes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:5461-5468. [PMID: 24811365 DOI: 10.1007/s10661-014-3795-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
A simple and sensitive solid phase extraction (SPE) method on multiwalled carbon nanotubes (MWCNTs) is presented for the determination of cadmium, lead, nickel, copper, and zinc at trace levels combined with flame atomic absorption spectrometry. The effects of parameters like pH, sample volume, sample and eluent flow rates, eluent concentration, and volume and type of eluent on the recovery of trace elements was examined. The metals retained on the nanotube at pH 6.5 as α-benzoin oxime complexes were eluted by 10 mL 2 M HNO3 in acetone. The influence of matrix ions on the developed method was also evaluated. The preconcentration factor of the method was found to be 50. The detection limits for Cd(II), Pb(II), Ni(II), Cu(II), and Zn(II) were found as 1.7, 5.5, 6.0, 2.3, and 2.4 μg L(-1), respectively. To test the accuracy of the method, the method was applied to TMDA-70 fortified lake water and Spinach 1570A standard reference materials. Addition recovery studies were applied to tap water and cracked wheat samples, and determination of the analyte elements was carried out in some food samples with good results.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
| | | |
Collapse
|
6
|
Bodey B. The significance of immunohistochemistry in the diagnosis and therapy of neoplasms. Expert Opin Biol Ther 2002; 2:371-93. [PMID: 11955276 DOI: 10.1517/14712598.2.4.371] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review article details the diagnostical significance of immunohistochemistry, which has developed during the last quarter of the century. Certainly, the advancement of monoclonal antibody technology has been of great significance in assuring the place of immunohistochemistry in the modern accurate microscopic diagnosis of human neoplasms, as a method of choice in histopathology. The fact still remains that in order to properly assess any immunohistochemical reactivity used for differential diagnostic purposes, the target cells have to be identified as neoplastically transformed cells by routine histopathological techniques. Selected groups of target molecules of great significance in cancer biology are discussed. The discovery of neoplasm-associated antigens has not only made the more accurate diagnosis of human cancer feasible but has also shed light on the extensive immunophenotypical heterogeneity of even the most closely linked human malignancies. The identification of disseminated neoplastically transformed cells by immunohistochemistry has allowed for a clearer picture of cancer invasion and metastasis, as well as the evolution of the tumour cell associated immunophenotype towards increased malignancy. Some possibilities of neoplasm-associated antigen targeted, receptor-directed immunotherapy are discussed and reviewed in this manuscript. Future antineoplastic therapeutical approaches should see the inclusion of a variety of immunotherapies, in the form of an individualised 'cocktail' specific for the particular immunophenotypical pattern associated with each individual patient's neoplastic disease.
Collapse
Affiliation(s)
- Bela Bodey
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|