1
|
Liao J, Zhang Y, Ma C, Wu G, Zhang W. Microbiome-metabolome reveals that the Suxiao Jiuxin pill attenuates acute myocardial infarction associated with fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116529. [PMID: 37086873 DOI: 10.1016/j.jep.2023.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Suxiao Jiuxin pill (SJP) is a Chinese medical patent drug on the national essential drug list of China, with well-established cardiovascular protective effects in the clinic. However, the mechanisms underlying the protective effects of SJP on cardiovascular disease have not yet been elucidated clearly, especially its relationship with the gut microbiota. AIM OF THE STUDY This study aimed to investigate the cardioprotective effect of SJP against isoproterenol-induced acute myocardial infarction (AMI) by integrating the gut microbiome and metabolome. METHODS A rat model of AMI was generated using isoproterenol. Firstly, the effect of antibiotic (ABX) treatment on the blood absorption and excretion of the main components of SJP were studied. Secondly, 16S rRNA sequencing and untargeted metabolomics were used to discover the improvement of SJP treatment on gut microbiota and host metabolism in AMI rats. Finally, targeted metabolomics was used to verify the effects of SJP treatment on host metabolism in AMI rats. RESULT The results showed that ABX treatment could affect the blood absorption and fecal excretion of the main active components of SJP. At the same time, SJP can restore the richness and diversity of gut microbiota, and multiple gut microbiota (including Jeotgalicoccus, Lachnospiraceae, and Blautia) are significantly associated with fatty acids. Untargeted metabolomics also found that SJP could restore the levels of various fatty acid metabolites in serum and cecal contents (p < 0.01, FC > 1.5 and VIP >1). Targeted metabolomics further confirmed that 41, 21, and 39 fatty acids were significantly altered in serum, cecal contents, and heart samples, respectively. Interestingly, these fatty acids belong to the class of eicosanoids, and SJP can significantly downregulate these eicosanoids in AMI rats. CONCLUSION The results of this study suggest that SJP may exert its cardioprotective effects by remodeling the gut microbiota and host fatty acid metabolism.
Collapse
Affiliation(s)
- Jingyu Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuhao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chi Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Liao J, Zhang Y, Zhang W, Zeng Y, Zhao J, Zhang J, Yao T, Li H, Shen X, Wu G, Zhang W. Different software processing affects the peak picking and metabolic pathway recognition of metabolomics data. J Chromatogr A 2023; 1687:463700. [PMID: 36508769 DOI: 10.1016/j.chroma.2022.463700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
In untargeted liquid chromatography‒mass spectrometry (LC‒MS) metabolomics studies, data preprocessing and metabolic pathway recognition are crucial for screening important pathways that are disturbed by diseases or restored by drugs. Here, we collected high-resolution mass spectrometry data of serum samples from 221 coronary heart disease (CHD) patients under two different chromatographic columns (BEH amide and C18 column) and evaluated the three commonly used software programs (XCMS, Progenesis QI, MarkerView) from four aspects (including signal drift, peak number, metabolite annotation and metabolic pathway enrichment). The results showed that the data preprocessed by the three software programs have different degrees of signal drift, but the StatTarget could improve the data quality to meet the data analysis requirement after correction. In addition, XCMS surpassed other software in detection of real chromatographic peaks and Progenesis QI was the best performer in terms of the number of metabolite annotation. XCMS and Progenesis QI showed different performance in pathway enrichment. However, metabolic pathways based on the combination of XCMS and Progenesis QI had a high coincidence with Progenesis QI. In addition, we also reported that C18 and amide columns were highly complementary and have great potential for cooperation in the context of metabolic pathways. In this study, the effects of different chromatographic columns and software pretreatments on metabolomics data were evaluated based on clinical large cohort samples, which will provide a reference for the metabolomics of clinical samples and guide subsequent mechanistic research.
Collapse
Affiliation(s)
- Jingyu Liao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Yuhao Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wendan Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zeng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jing Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingfang Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tingting Yao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoxu Shen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Wu G, Zhao J, Zhao J, Song N, Zheng N, Zeng Y, Yao T, Zhang J, Weng J, Yuan M, Zhou H, Shen X, Li H, Zhang W. Exploring biological basis of Syndrome differentiation in coronary heart disease patients with two distinct Syndromes by integrated multi-omics and network pharmacology strategy. Chin Med 2021; 16:109. [PMID: 34702323 PMCID: PMC8549214 DOI: 10.1186/s13020-021-00521-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Traditional Chinese Medicine (TCM) is distinguished by Syndrome differentiation, which prescribes various formulae for different Syndromes of same disease. This study aims to investigate the underlying mechanism. Methods Using a strategy which integrated proteomics, metabolomics study for clinic samples and network pharmacology for six classic TCM formulae, we systemically explored the biological basis of TCM Syndrome differentiation for two typical Syndromes of CHD: Cold Congealing and Qi Stagnation (CCQS), and Qi Stagnation and Blood Stasis (QSBS). Results Our study revealed that CHD patients with CCQS Syndrome were characterized with alteration in pantothenate and CoA biosynthesis, while more extensively altered pathways including D-glutamine and D-glutamate metabolism; alanine, aspartate and glutamate metabolism, and glyoxylate and dicarboxylate metabolism, were present in QSBS patients. Furthermore, our results suggested that the down-expressed PON1 and ADIPOQ might be potential biomarkers for CCQS Syndrome, while the down-expressed APOE and APOA1 for QSBS Syndrome in CHD patients. In addition, network pharmacology and integrated analysis indicated possible comorbidity differences between the two Syndromes, that is, CCQS or QSBS Syndrome was strongly linked to diabetes or ischemic stroke, respectively, which is consistent with the complication disparity between the enrolled patients with two different Syndromes. These results confirmed our assumption that the molecules and biological processes regulated by the Syndrome-specific formulae could be associated with dysfunctional objects caused by the Syndrome of the disease. Conclusion This study provided evidence-based strategy for exploring the biological basis of Syndrome differentiation in TCM, which sheds light on the translation of TCM theory in the practice of precision medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00521-3. 1. Our work was based on clinical samples rather than pure data analysis or animal models. 2. We conducted multiple omics studies. Especially, as for metabolomics study, we performed both untargeted and targeted metabolomics experiments. 3. We performed network pharmacological study to cross-validated the results of multi-omics study. Although the data sources of network pharmacology were completely unrelated with our omics data, they came to the same conclusion about the difference of the two Syndromes. 4. In the network pharmacological study, we made efforts to collect and screen high-quality data. We collected data from multiple TCM databases and conducted drug likeness screening. Especially, we added quality markers of each herb, whose pharmacological relevance had been validated. To enhance the reliability of targets, for each Syndrome, we only studied common targets of 3 different TCM formulae prescribed for this Syndrome.
Collapse
Affiliation(s)
- Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200 Cai Lun Road, Pudong New District, Shanghai, 201203, China
| | - Jing Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200 Cai Lun Road, Pudong New District, Shanghai, 201203, China
| | - Jing Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Nixue Song
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ningning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200 Cai Lun Road, Pudong New District, Shanghai, 201203, China
| | - Yuanyuan Zeng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Tingting Yao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Jingfang Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Jieqiong Weng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Mengfei Yuan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxu Shen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200 Cai Lun Road, Pudong New District, Shanghai, 201203, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200 Cai Lun Road, Pudong New District, Shanghai, 201203, China. .,Department of Phytochemistry, School of Pharmacy, Second Military Medical University, No. 325 Guo He Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
5
|
Fontaine-Bisson B, Wolever TMS, Chiasson JL, Rabasa-Lhoret R, Maheux P, Josse RG, Leiter LA, Rodger NW, Ryan EA, Connelly PW, Corey PN, El-Sohemy A. Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and fasting HDL-cholesterol and apo A-I concentrations. Am J Clin Nutr 2007; 86:768-74. [PMID: 17823444 DOI: 10.1093/ajcn/86.3.768] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Heterogeneity in circulating lipid concentrations in response to dietary polyunsaturated fatty acids (PUFAs) may be due, in part, to genetic variations. Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine that can induce hyperlipidemia and is known to be modulated by dietary PUFAs. OBJECTIVE The objective was to determine whether TNF-alpha genotypes modify the association between dietary PUFA intake and serum lipid concentrations. DESIGN The study involved 53 men and 56 women aged 42-75 y with type 2 diabetes. Dietary intakes were assessed with the use of a 3-d food record, and blood samples were collected to determine fasting serum lipids. DNA was isolated from blood for genotyping by polymerase chain reaction-restriction fragment length polymorphism for the TNF-alpha -238G-->A and -308G-->A polymorphisms. RESULTS PUFA intake was positively associated with serum HDL cholesterol in carriers of the -238A allele (beta = 0.06 +/- 0.03 mmol/L per 1% of energy from PUFAs; P = 0.03), but negatively associated in those with the -238GG genotype (beta = -0.03 +/- 0.01, P = 0.03) (P = 0.004 for interaction). PUFA intake was inversely associated with HDL cholesterol in carriers of the -308A allele (beta = -0.07 +/- 0.02, P = 0.002), but not in those with the -308GG genotype (beta = 0.02 +/- 0.02, P = 0.13) (P = 0.001 for interaction). A stronger gene x diet interaction was observed when the polymorphisms at the 2 positions (-238/-308) were combined (P = 0.0003). Similar effects were observed for apolipoprotein A-I, but not with other dietary fatty acids and serum lipids. CONCLUSION TNF-alpha genotypes modify the relation between dietary PUFA intake and HDL-cholesterol concentrations. These findings suggest that genetic variations affecting inflammation may explain some of the inconsistencies between previous studies relating PUFA intake and circulating HDL.
Collapse
|
6
|
Theobald HE, Chowienczyk PJ, Whittall R, Humphries SE, Sanders TAB. LDL cholesterol-raising effect of low-dose docosahexaenoic acid in middle-aged men and women. Am J Clin Nutr 2004; 79:558-63. [PMID: 15051597 DOI: 10.1093/ajcn/79.4.558] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Long-chain n-3 polyunsaturated fatty acids have variable effects on LDL cholesterol, and the effects of docosahexaenoic acid (DHA) are uncertain. OBJECTIVE The objective of the study was to determine the effect on blood lipids of a daily intake of 0.7 g DHA as triacylglycerol in middle-aged men and women. DESIGN Men and women aged 40-65 y (n = 38) underwent a double-blind, randomized, placebo-controlled, crossover trial of treatment with 0.7 g DHA/d for 3 mo. RESULTS DHA supplementation increased the DHA concentration in plasma by 76% (P < 0.0001) and the proportion in erythrocyte lipids by 58% (P < 0.0001). Values for serum total cholesterol, LDL cholesterol, and plasma apolipoprotein B concentrations were 4.2% (0.22 mmol/L; P = 0.04), 7.1% (0.23 mmol/L; P = 0.004), and 3.4% (P = 0.03) higher, respectively, with DHA treatment than with placebo. In addition, the LDL cholesterol:apolipoprotein B ratio was 3.1% higher with DHA treatment than with placebo (P = 0.04), which suggested an increase in LDL size. Plasma lathosterol and plant sterol concentrations were unaffected by treatment. CONCLUSION A daily intake of approximately 0.7 g DHA increases LDL cholesterol by 7% in middle-aged men and women. It is suggested that DHA down-regulates the expression of the LDL receptor.
Collapse
Affiliation(s)
- Hannah E Theobald
- Nutrition Food and Health Research Centre, King's College London, London, United Kingdom
| | | | | | | | | |
Collapse
|