1
|
Dai Z, Wang Q, He B, Shi F, Chen W, Jiang Q, Zhou D, Xue Z, Yang B. Causal association of plasma n-3 PUFA with peptic ulcer disease: a two-sample Mendelian randomisation study. Br J Nutr 2024; 132:1014-1021. [PMID: 39523850 DOI: 10.1017/s0007114524001752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dietary n-3 PUFA may have potential benefits in preventing peptic ulcer disease (PUD). However, data from observational epidemiological studies are limited. Thus, we conducted a Mendelian randomisation analysis to reveal the causal impact of n-3 PUFA on PUD. Genetic variants strongly associated with plasma levels of total or individual n-3 PUFA including plant-derived α-linolenic acid and marine-derived EPA, DPA and DHA were enrolled as instrumental variables. Effect size estimates of the n-3 PUFA-associated genetic variants with PUD were evaluated using data from the UK biobank. Per one sd increase in the level of total n-3 PUFA in plasma was significantly associated with a lower risk of PUD (OR = 0·91; 95 % CI 0·85, 0·99; P = 0·020). The OR were 0·81 (95 % CI 0·67, 0·97) for EPA, 0·72 (95 % CI 0·58, 0·91) for DPA and 0·87 (95 % CI 0·80, 0·94) for DHA. Genetically predicted α-linolenic acid levels in plasma had no significant association with the risk of PUD (OR = 5·41; 95 % CI 0·70, 41·7). Genetically predicted plasma levels of n-3 PUFA were inversely associated with the risk of PUD, especially marine-based n-3 PUFA. Such findings may have offered an effective and feasible strategy for the primary prevention of PUD.
Collapse
Affiliation(s)
- Zebin Dai
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qinjian Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bingbing He
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fang Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wei Chen
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qingxi Jiang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhanxiong Xue
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bo Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
2
|
Dietary PUFA Increase Apoptosis in Stomach of Patients with Dyspeptic Symptoms and Infected with H. pylori. Lipids 2017; 52:549-558. [PMID: 28493185 DOI: 10.1007/s11745-017-4257-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Drug-resistant strains of Helicobacter pylori and poor treatment response are the main reasons for the failure in eradicating it in patients. Polyunsaturated fatty acids (PUFA) have an inhibitory effect on bacterial growth. The aim of this study was to investigate the effect of PUFA in combination with standard triple therapy on apoptosis in H. pylori infected subjects with dyspeptic symptoms. This study was a double-blind clinical trial in which 34 H. pylori infected subjects with dyspeptic symptoms were randomly divided into two groups of 17 patients. The control group received standard triple therapy (amoxicillin, clarithromycin and omeprazole) and the experimental group received the standard therapy and PUFA for two weeks. Gene expression levels of caspase-3, BCL-2 and Bad proteins were studied with real-time PCR, while protein levels were quantified in frozen sections and using immunohistochemistry. Compared with the control group, a significant increase (p < 0.01) was observed in the expression of caspase-3 and Bad genes and a significant reduction (p < 0.05) in the expression of Bcl-2 gene. The protein level of active caspase-3 and Bad protein was significantly increased and the level of Bcl-2 protein was significantly decreased (p < 0.05). The results of this study show that oral administration of PUFA in combination with the standard triple therapy increased apoptosis in H. pylori-infected patients with dyspeptic symptoms. This increase in apoptosis may partly reduce drug resistance in these patients. Our results suggest inclusion of a dietary PUFA containing fatty acid supplement may improve treatment of patients that are refractory to the standard triple therapy.
Collapse
|
3
|
Fahey JW, Stephenson KK, Wallace AJ. Dietary amelioration of Helicobacter infection. Nutr Res 2015; 35:461-73. [PMID: 25799054 PMCID: PMC4465045 DOI: 10.1016/j.nutres.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability, and cultural acceptability. This review, therefore, highlights specific foods, food components, and food products, grouped as follows: bee products (eg, honey and propolis); probiotics; dairy products; vegetables; fruits; oils; essential oils; and herbs, spices, and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and preclinical evidence must now be followed up with rationally designed, unambiguous human trials.
Collapse
Affiliation(s)
- Jed W Fahey
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology & Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Katherine K Stephenson
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology & Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alison J Wallace
- New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| |
Collapse
|
4
|
Yu HN, Zhu J, Pan WS, Shen SR, Shan WG, Das UN. Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch Med Res 2014; 45:195-202. [PMID: 24681186 DOI: 10.1016/j.arcmed.2014.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/29/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Many studies show that fish oil with high content of n-3 polyunsaturated fatty acids (PUFAs) plays an important role in human health and disease. But the effects of fish oil with high content of PUFAs on gut microbiota, which are also known play a significant role in several human diseases, is not clear. In the present study we evaluated the effects of fish oil with high content of n-3 PUFAs on gut microbiota. METHODS Changes in gut microbiota in ICR mice after supplementation of fish oil (containing eicosapentaenoic acid and docosahexaenoic acid: ∼40 and 27% respectively) for 15 days was characterized using the hypervariable V3 region of the 16 rRNA gene-based polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) profiling, DNA sequencing, and phylogenetic analysis techniques. RESULTS Fish oil treatment resulted in a decrease in Helicobacter, Uncultured bacterium clone WD2_aaf07d12 (GenBank: EU511712.1), Clostridiales bacterium, Sphingomonadales bacterium and Pseudomonas species Firmicutes, and several uncultured bacteria. CONCLUSIONS Fish oil with a high content of n-3 PUFAs are capable of producing significant changes in the gut microbiota that may, at least in part, explain the health benefits or injury induced by fish oil use.
Collapse
Affiliation(s)
- Hai-Ning Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jing Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Wen-sheng Pan
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng-Rong Shen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wei-Guang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | | |
Collapse
|
5
|
Das UN. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev 2012; 30:311-24. [PMID: 22005953 DOI: 10.1007/s10555-011-9316-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer's disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca(2+), phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.
Collapse
Affiliation(s)
- Undurti N Das
- School of Biotechnology, Jawaharlal Nehru Technological University, Kakinada 533 003, India.
| |
Collapse
|
6
|
Das UN. Radiation resistance, invasiveness and metastasis are inflammatory events that could be suppressed by lipoxin A4. Prostaglandins Leukot Essent Fatty Acids 2012; 86:3-11. [PMID: 22014542 DOI: 10.1016/j.plefa.2011.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 12/28/2022]
Abstract
Radiation induces overexpression and activity of the MET oncogene that, in turn, enhances the production of prostaglandin E(2), a pro-inflammatory molecule. Prostaglandin E(2) promotes tumor cell invasion, prevents apoptosis, enhances their metastasis and causes radioresistance. It is proposed that lipoxin A(4), a potent endogenous anti-inflammatory molecule, opposes the actions of prostaglandin E(2) and thus, could promote radiosensitivity, suppress tumor cell proliferation, invasiveness and suppress metastasis. Thus, methods designed to enhance endogenous lipoxin A(4) formation or its synthetic analogs may be useful in the management of cancer.
Collapse
|
7
|
Morré SA, Stooker W, Lagrand WK, van den Brule AJ, Niessen HW. Microorganisms in the aetiology of atherosclerosis. J Clin Pathol 2000; 53:647-54. [PMID: 11041053 PMCID: PMC1731245 DOI: 10.1136/jcp.53.9.647] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent publications have suggested that infective pathogens might play an important role in the pathogenesis of atherosclerosis. This review focuses on these microorganisms in the process of atherosclerosis. The results of in vitro studies, animal studies, tissue studies, and serological studies will be summarised, followed by an overall conclusion concerning the strength of the association of the microorganism with the pathogenesis of atherosclerosis. The role of the bacteria Chlamydia pneumoniae and Helicobacter pylori, and the viruses human immunodeficiency virus, coxsackie B virus, cytomegalovirus, Epstein-Barr virus, herpes simplex virus, and measles virus will be discussed.
Collapse
Affiliation(s)
- S A Morré
- Department of Pathology, University Hospital Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|