1
|
Hour TC, Lan Nhi NT, Lai IJ, Chuu CP, Lin PC, Chang HW, Su YF, Chen CH, Chen YK. Kaempferol-Enhanced Migration and Differentiation of C2C12 Myoblasts via ITG1B/FAK/Paxillin and IGF1R/AKT/mTOR Signaling Pathways. Mol Nutr Food Res 2024; 68:e2300685. [PMID: 38860356 DOI: 10.1002/mnfr.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/30/2024] [Indexed: 06/12/2024]
Abstract
SCOPE Kaempferol (KMP), a bioactive flavonoid compound found in fruits and vegetables, contributes to human health in many ways but little is known about its relationship with muscle mass. The effect of KMP on C2C12 myoblast differentiation and the mechanisms that might underlie that effect are studied. METHODS AND RESULTS This study finds that KMP (1, 10 µM) increases the migration and differentiation of C2C12 myoblasts in vitro. Studying the possible mechanism underlying its effect on migration, the study finds that KMP activates Integrin Subunit Beta 1 (ITGB1) in C2C12 myoblasts, increasing p-FAK (Tyr398) and its downstream cell division cycle 42 (CDC42), a protein previously associated with cell migration. Regarding differentiation, KMP upregulates the expression of myosin heavy chain (MHC) and activates IGF1/AKT/mTOR/P70S6K. Interestingly, pretreatment with an AKT inhibitor (LY294002) and siRNA knockdown of IGF1R leads to a decrease in cell differentiation, suggesting that IGF1/AKT activation is required for KMP to induce C2C12 myoblast differentiation. CONCLUSION Together, the findings suggest that KMP enhances the migration and differentiation of C2C12 myoblasts through the ITG1B/FAK/paxillin and IGF1R/AKT/mTOR pathways. Thus, KMP supplementation might potentially be used to prevent or delay age-related loss of muscle mass and help maintain muscle health.
Collapse
Affiliation(s)
- Tzyh-Chyuan Hour
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807378, Taiwan
| | - Nguyen Thai Lan Nhi
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - I-Ju Lai
- Department of Nutrition, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 350401, Taiwan
| | - Pei-Chen Lin
- Department of Oral Hygiene, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Hsi-Wen Chang
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Ying-Fang Su
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center and Department of Orthopedics, Kaohsiung Medical University Hospital and Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Yu-Kuei Chen
- Department of Nutrition, I-Shou University, Kaohsiung, 82445, Taiwan
| |
Collapse
|
2
|
Wurmser M, Madani R, Chaverot N, Backer S, Borok M, Dos Santos M, Comai G, Tajbakhsh S, Relaix F, Santolini M, Sambasivan R, Jiang R, Maire P. Overlapping functions of SIX homeoproteins during embryonic myogenesis. PLoS Genet 2023; 19:e1010781. [PMID: 37267426 DOI: 10.1371/journal.pgen.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Rouba Madani
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Nathalie Chaverot
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stéphanie Backer
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Matthew Borok
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | | | - Glenda Comai
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | - Marc Santolini
- Université de Paris Cité, Interaction Data Lab, CRI Paris, INSERM. Paris, France
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
3
|
Kusakabe R, Tanaka M, Kuratani S. Developmental Evolution of Hypaxial Muscles: Insights From Cyclostomes and Chondrichthyans. Front Cell Dev Biol 2021; 9:760366. [PMID: 34650989 PMCID: PMC8505881 DOI: 10.3389/fcell.2021.760366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Jawed vertebrates possess two distinct groups of muscles in the trunk (epaxial and hypaxial muscles) primarily defined by the pattern of motor innervation from the spinal cord. Of these, the hypaxial group includes muscles with highly differentiated morphology and function, such as the muscles associated with paired limbs, shoulder girdles and tongue/infrahyoid (hypobranchial) muscles. Here we summarize the latest findings on the evolutionary mechanisms underlying the morphological variety of hypaxial musculature, with special reference to the molecular insights obtained from several living species that diverged early in vertebrate evolution. Lampreys, extant jawless vertebrates, lack many of derived traits characteristic of the gnathostomes, such as jaws, paired fins and epaxial/hypaxial distinction of the trunk skeletal musculatures. However, these animals possess the primitive form of the hypobranchial muscle. Of the gnathostomes, the elasmobranchs exhibit developmental mode of hypaxial muscles that is not identical to that of other gnathostomes in that the muscle primordia relocate as coherent cell aggregates. Comparison of expression of developmental genes, including Lbx genes, has delineated the temporal order of differentiation of various skeletal muscles, such as the hypobranchial, posterior pharyngeal and cucullaris (trapezius) muscles. We have proposed that the sequential addition of distal muscles, associated with expression of duplicated Lbx genes, promoted the elaboration of skeletal musculature. These analyses have revealed the framework of an evolutionary pathway that gave rise to the morphological complexity and diversity of vertebrate body patterns.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| |
Collapse
|
4
|
Grimaldi A, Tajbakhsh S. Diversity in cranial muscles: Origins and developmental programs. Curr Opin Cell Biol 2021; 73:110-116. [PMID: 34500235 DOI: 10.1016/j.ceb.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023]
Abstract
Cranial muscles have been the focus of many studies over the years because of their unique developmental programs and relative resistance to illnesses. In addition, head muscles possess clonal relationships with heart muscles and have been highly remodeled during vertebrate evolution. Here, we provide an overview of recent findings that have helped to redefine the boundaries and lineages of cranial mesoderm. These studies have important implications regarding the emergence of muscle connective tissues, which can share a common origin with skeletal muscle. We also highlight new regulatory networks of various muscle subgroups, particularly those derived from the most caudal arches, which remain poorly defined. Finally, we suggest future research avenues to characterize the nature of their intrinsic specificities and their emergence during evolution.
Collapse
Affiliation(s)
- Alexandre Grimaldi
- Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France.
| |
Collapse
|
5
|
McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 2020; 75:38-48. [PMID: 33346133 DOI: 10.1016/j.semcancer.2020.12.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process in which cells composing epithelial tissue lose requirements for physical contact with neighboring cells and acquire mesenchymal characteristics consisting of increased migratory and invasive behaviors. EMT is a fundamental process that is required for initial and later events during embryogenesis. Cancer stem cells (CSCs) possess multipotency sufficient for their differentiation into bulk tumor cells and also have the capacity to undergo EMT. When CSCs initiate EMT programs the resulting cancerous mesenchymal cells become invasive and this migratory behavior also poises them for metastatic activity. Long noncoding RNAs (lncRNAs) are functional RNA molecules that do not encode proteins, yet regulate the expression of protein-coding genes through recruitment or sequestration of gene-regulatory proteins and microRNAs. lncRNA exhibit tissue-specific patterns of gene expression during development and specific sets of lncRNAs are also involved in various cancer types. This review considers the interplay between lncRNAs and the biogenesis of CSCs. We also review function of lncRNAs in EMT in CSCs. In addition, we discuss the utility of lncRNAs as biomarkers of cancer progression, and their potential use as therapeutic targets for treatment of cancer.
Collapse
Affiliation(s)
- Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, USA
| | - Theodore P Rasmussen
- Department of Molecular and Cell Biology, University of Connecticut, USA; Department of Pharmaceutical Sciences, University of Connecticut, USA; University of Connecticut Stem Cell Institute, University of Connecticut, USA.
| |
Collapse
|
6
|
Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020; 12:e12357. [PMID: 33210465 PMCID: PMC7721365 DOI: 10.15252/emmm.202012357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Directional cell migration is a critical process underlying morphogenesis and post-natal tissue regeneration. During embryonic myogenesis, migration of skeletal myogenic progenitors is essential to generate the anlagen of limbs, diaphragm and tongue, whereas in post-natal skeletal muscles, migration of muscle satellite (stem) cells towards regions of injury is necessary for repair and regeneration of muscle fibres. Additionally, safe and efficient migration of transplanted cells is critical in cell therapies, both allogeneic and autologous. Although various myogenic cell types have been administered intramuscularly or intravascularly, functional restoration has not been achieved yet in patients with degenerative diseases affecting multiple large muscles. One of the key reasons for this negative outcome is the limited migration of donor cells, which hinders the overall cell engraftment potential. Here, we review mechanisms of myogenic stem/progenitor cell migration during skeletal muscle development and post-natal regeneration. Furthermore, strategies utilised to improve migratory capacity of myogenic cells are examined in order to identify potential treatments that may be applied to future transplantation protocols.
Collapse
Affiliation(s)
- SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
7
|
Buchholtz EA, Yozgyur ZM, Feldman A, Weaver AA, Gaudin TJ. The therian sternum at the lateral somitic frontier: Evolution of a composite structure. J Zool (1987) 2020. [DOI: 10.1111/jzo.12809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. A. Buchholtz
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - Z. M. Yozgyur
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - A. Feldman
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - A. A. Weaver
- Department of Biomedical Engineering Wake Forest School of Medicine Winston‐Salem NC USA
| | - T. J. Gaudin
- Department of Biology, Geology, and Environmental Science University of Tennessee Chattanooga Chattanooga TN USA
| |
Collapse
|
8
|
Pang Y, Zhang Z, Wang Z, Wang Y, Yan Y, Li S, Tong H. Platelet endothelial aggregation receptor-1 regulates bovine muscle satellite cell migration and differentiation via integrin beta-1 and focal adhesion kinase. Cell Adh Migr 2020; 13:192-202. [PMID: 31096840 PMCID: PMC6550786 DOI: 10.1080/19336918.2019.1619434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
PEAR1 is highly expressed at bovine MDSC differentiation. However, its biological function remains unclear. Western blotting results showed that PEAR1 increased between day 0 and day 2 of cell differentiation and decreased from day 3. Moreover, scratch test showed that wound healing rate increased after PEAR1 overexpression and decreased upon its suppression. Meanwhile, we found that, upon PEAR1 induction, both the expression of the focal adhesion-associated and MyoG, and the myotube fusion rate increased. However, when PEAR1 was suppressed, opposite results were obtained. Immunoprecipitation revealed an association between PEAR1 and ITGB1. Notably, inhibition of FAK and ITGB1 repressed cell differentiation. In conclusion, our study indicated that PEAR1 is involved in the regulation of bovine MDSC migration and differentiation.
Collapse
Affiliation(s)
- Yusheng Pang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Ziheng Zhang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Zhao Wang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Yuxin Wang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Yunqin Yan
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Shufeng Li
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Huili Tong
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| |
Collapse
|
9
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
10
|
Sagarin KA, Redgrave AC, Mosimann C, Burke AC, Devoto SH. Anterior trunk muscle shows mix of axial and appendicular developmental patterns. Dev Dyn 2019; 248:961-968. [PMID: 31386244 DOI: 10.1002/dvdy.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Skeletal muscle in the trunk derives from the somites, paired segments of paraxial mesoderm. Whereas axial musculature develops within the somite, appendicular muscle develops following migration of muscle precursors into lateral plate mesoderm. The development of muscles bridging axial and appendicular systems appears mixed. RESULTS We examine development of three migratory muscle precursor-derived muscles in zebrafish: the sternohyoideus (SH), pectoral fin (PF), and posterior hypaxial (PHM) muscles. We show there is an anterior to posterior gradient to the developmental gene expression and maturation of these three muscles. SH muscle precursors exhibit a long delay between migration and differentiation, PF muscle precursors exhibit a moderate delay in differentiation, and PHM muscle precursors show virtually no delay between migration and differentiation. Using lineage tracing, we show that lateral plate contribution to the PHM muscle is minor, unlike its known extensive contribution to the PF muscle and absence in the ventral extension of axial musculature. CONCLUSIONS We propose that PHM development is intermediate between a migratory muscle mode and an axial muscle mode of development, wherein the PHM differentiates after a very short migration of its precursors and becomes more anterior primarily by elongation of differentiated muscle fibers.
Collapse
Affiliation(s)
| | - Anna C Redgrave
- Department of Biology, Wesleyan University, Middletown, Connecticut.,Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Ann C Burke
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, Connecticut
| |
Collapse
|
11
|
Okamoto E, Moriyama Y, Kuraku S, Kai KI, Tanaka M. Involvement of HGF/MET signaling in appendicular muscle development in cartilaginous fish. Dev Growth Differ 2019; 61:97-103. [DOI: 10.1111/dgd.12591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Eri Okamoto
- School of Life Science and Technology; Tokyo Institute of Technology; Yokohama Japan
| | - Yuuta Moriyama
- School of Life Science and Technology; Tokyo Institute of Technology; Yokohama Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics; RIKEN Center for Biosystems Dynamics Research (BDR); Kobe Hyogo Japan
| | - Kei-ichi Kai
- School of Life Science and Technology; Tokyo Institute of Technology; Yokohama Japan
| | - Mikiko Tanaka
- School of Life Science and Technology; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
12
|
|
13
|
Tani-Matsuhana S, Kusakabe R, Inoue K. Developmental mechanisms of migratory muscle precursors in medaka pectoral fin formation. Dev Genes Evol 2018; 228:189-196. [PMID: 30008036 DOI: 10.1007/s00427-018-0616-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/04/2018] [Indexed: 01/27/2023]
Abstract
Limb muscles are formed from migratory muscle precursor cells (MMPs) that delaminate from the ventral region of dermomyotomes and migrate into the limb bud. MMPs remain undifferentiated during migration, commencing differentiation into skeletal muscle after arrival in the limb. However, it is still unclear whether the developmental mechanisms of MMPs are conserved in teleost fishes. Here, we investigate the development of pectoral fin muscles in the teleost medaka Oryzias latipes. Expression of the MMP marker lbx1 is first observed in several somites prior to the appearance of fin buds. lbx1-positive cells subsequently move anteriorly and localize in the prospective fin bud region to differentiate into skeletal muscle cells. To address the developmental mechanisms underlying fin muscle formation, we knocked down tbx5, a gene that is required for fin bud formation. tbx5 morphants showed loss of fin buds, whereas lbx1 expression initiated normally in anterior somites. Unlike in normal embryos, expression of lbx1 was not maintained in migrating fin MMPs or within the fin buds. We suggest that fin MMPs appear to undergo two phases in their development, with an initial specification of MMPs occurring independent of fin buds and a second fin bud-dependent phase of MMP migration and proliferation. Our results showed that medaka fin muscle is composed of MMPs. It is suggested that the developmental mechanism of fin muscle formation is conserved in teleost fishes including medaka. Through this study, we also propose new insights into the developmental mechanisms of MMPs in fin bud formation.
Collapse
Affiliation(s)
- Saori Tani-Matsuhana
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| | - Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minami, Chuo-Ku, Kobe, 650-0047, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
14
|
The tyrosine kinase inhibitor crizotinib does not have clinically meaningful activity in heavily pre-treated patients with advanced alveolar rhabdomyosarcoma with FOXO rearrangement: European Organisation for Research and Treatment of Cancer phase 2 trial 90101 'CREATE'. Eur J Cancer 2018; 94:156-167. [PMID: 29567632 DOI: 10.1016/j.ejca.2018.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alveolar rhabdomyosarcomas (ARMSs) can harbour MET and anaplastic lymphoma kinase (ALK) alterations. We prospectively assessed crizotinib in patients with advanced/metastatic ARMS. METHODS Eligible patients with a central diagnosis of ARMS received oral crizotinib 250 mg twice daily. Patients were attributed to MET/ALK+ or MET/ALK- subcohorts by assessing the presence or absence of the forkhead box O1 (FOXO1; a marker of MET upregulation) and/or ALK gene rearrangement. The primary end-point was the objective response rate (ORR). Secondary end-points included duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), progression-free rate (PFR), overall survival (OS) and safety. FINDINGS Nineteen of 20 consenting patients had centrally confirmed ARMS. Molecular assessment revealed rearrangement of FOXO1 in 17 tumours and ALK in none. Thirteen eligible patients were treated, but only eight were evaluable for the primary end-point because of the observed aggressiveness of the disease. Among seven evaluable MET+/ALK- patients, only one achieved a confirmed partial response (ORR: 14.3%; 95% confidence interval [CI]: 0.3-57.8) with a DOR of 52 d. Further MET+/ALK- efficacy end-points were DCR: 14.3% (95% CI: 0.3-57.8), median PFS: 1.3 months (95% CI: 0.5-1.5) and median OS: 5.6 months (95% CI: 0.7-7.0). The remaining MET+/ALK- and MET-/ALK- patients had early progression as best response. Common treatment-related adverse events were fatigue (5/13 [38.5%]), nausea (4/13 [30.8%]), anorexia (4/13 [30.8%]), vomiting (2/13 [15.4%]) and constipation (2/13 [15.4%]). All 13 treated patients died early because of progressive disease. INTERPRETATION Crizotinib is well tolerated but lacks clinically meaningful activity as a single agent in patients with advanced metastatic ARMS. Assessing single agents in aggressive, chemotherapy-refractory ARMS is challenging, and future trials should explore established chemotherapy ± investigational compounds in earlier lines of treatment. CLINICAL TRIAL NUMBER EORTC 90101, ClinicalTrials.gov NCT01524926.
Collapse
|
15
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
16
|
Masselink W, Masaki M, Sieiro D, Marcelle C, Currie PD. Phosphorylation of Lbx1 controls lateral myoblast migration into the limb. Dev Biol 2017; 430:302-309. [PMID: 28843494 DOI: 10.1016/j.ydbio.2017.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud.
Collapse
Affiliation(s)
- Wouter Masselink
- Australian Regenerative Medicine Institute, Level 1, Building 75, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Megumi Masaki
- Australian Regenerative Medicine Institute, Level 1, Building 75, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Daniel Sieiro
- Australian Regenerative Medicine Institute, Level 1, Building 75, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Institut Neuromyogène, Université Claude Bernard Lyon1, 7 Rue Guillaume Paradin, 69008 Lyon, France
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Level 1, Building 75, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Institut Neuromyogène, Université Claude Bernard Lyon1, 7 Rue Guillaume Paradin, 69008 Lyon, France
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, Building 75, Monash University, Wellington Road, Clayton, VIC 3800, Australia; EMBL Australia Melbourne Node, Level 1, Building 75, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Buchholtz EA, Gee JK. Finding sacral: Developmental evolution of the axial skeleton of odontocetes (Cetacea). Evol Dev 2017; 19:190-204. [PMID: 28726248 DOI: 10.1111/ede.12227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emily A. Buchholtz
- Department of Biological Sciences; Wellesley College; Wellesley Massachusetts
| | - Jessica K. Gee
- Department of Biological Sciences; Wellesley College; Wellesley Massachusetts
| |
Collapse
|
18
|
Velleman S, Harding R. Regulation of turkey myogenic satellite cell migration by MicroRNAs miR-128 and miR-24. Poult Sci 2017; 96:1910-1917. [DOI: 10.3382/ps/pew434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
|
19
|
Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017; 125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal and cardiac muscles are the only striated muscles in the body. Although sharing many structural and functional similarities, skeletal and cardiac muscles have intrinsic differences in terms of physiology and regenerative potential. While skeletal muscle possesses a robust regenerative response, the mammalian heart has limited repair capacity after birth. In this review, we provide an updated view regarding chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) function in vertebrate myogenesis, with particular emphasis on the skeletal and cardiac muscles. We also highlight the new insights of COUP-TFII hyperactivity underlying striated muscle dysfunction. Lastly, we discuss the challenges and strategies in translating COUP-TFII action for clinical intervention.
Collapse
Affiliation(s)
- Xin Xie
- Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Ming-Jer Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Sophia Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
20
|
Segregation of Naturally Occurring Mitochondrial DNA Variants in a Mini-Pig Model. Genetics 2016; 202:931-44. [PMID: 26819245 DOI: 10.1534/genetics.115.181321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/17/2016] [Indexed: 11/18/2022] Open
Abstract
The maternally inherited mitochondrial genome (mtDNA) is present in multimeric form within cells and harbors sequence variants (heteroplasmy). While a single mtDNA variant at high load can cause disease, naturally occurring variants likely persist at low levels across generations of healthy populations. To determine how naturally occurring variants are segregated and transmitted, we generated a mini-pig model, which originates from the same maternal ancestor. Following next-generation sequencing, we identified a series of low-level mtDNA variants in blood samples from the female founder and her daughters. Four variants, ranging from 3% to 20%, were selected for validation by high-resolution melting analysis in 12 tissues from 31 animals across three generations. All four variants were maintained in the offspring, but variant load fluctuated significantly across the generations in several tissues, with sex-specific differences in heart and liver. Moreover, variant load was persistently reduced in high-respiratory organs (heart, brain, diaphragm, and muscle), which correlated significantly with higher mtDNA copy number. However, oocytes showed increased heterogeneity in variant load, which correlated with increased mtDNA copy number during in vitro maturation. Altogether, these outcomes show that naturally occurring mtDNA variants segregate and are maintained in a tissue-specific manner across generations. This segregation likely involves the maintenance of selective mtDNA variants during organogenesis, which can be differentially regulated in oocytes and preimplantation embryos during maturation.
Collapse
|
21
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
22
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
23
|
Hepatocyte growth factor (HGF) promotes cardiac stem cell differentiation after myocardial infarction by increasing mTOR activation in p27kip haploinsufficient mice. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0320-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Masyuk M, Brand-Saberi B. Recruitment of skeletal muscle progenitors to secondary sites: a role for CXCR4/SDF-1 signalling in skeletal muscle development. Results Probl Cell Differ 2015; 56:1-23. [PMID: 25344664 DOI: 10.1007/978-3-662-44608-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During embryonic development, myogenesis occurs in different functional muscle groups at different time points depending on the availability of their final destinations. Primary trunk muscle consists of the intrinsic dorsal (M. erector spinae) and ventral (cervical, thoracic, abdominal) muscles. In contrast, secondary trunk muscles are established from progenitor cells that have migrated initially from the somites into the limb buds and thereafter returned to the trunk. Furthermore, craniofacial muscle constitutes a group that originates from four different sources and employs a different set of regulatory molecules. Development of muscle groups at a distance from their origins involves the maintenance of a pool of progenitor cells capable of proliferation and directed cell migration. We review here the data concerning somite-derived progenitor cell migration to the limbs and subsequent retrograde migration in the establishment of secondary trunk muscle in chicken and mouse. We review the function of SDF-1 and CXCR4 in the control of this process referring to our previous work in shoulder muscle and cloacal/perineal muscle development. Some human anatomical variations and malformations of secondary trunk muscles are discussed.
Collapse
Affiliation(s)
- Maryna Masyuk
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum, Universitätsstraße 150, MA 5/161, 44801, Bochum, Germany,
| | | |
Collapse
|
25
|
Buchholtz EA, Wayrynen KL, Lin IW. Breaking constraint: axial patterning in Trichechus (Mammalia: Sirenia). Evol Dev 2014; 16:382-93. [PMID: 25339599 DOI: 10.1111/ede.12103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meristic variation is often limited in serially homologous systems with high internal differentiation and high developmental modularity. The mammalian neck, an extreme example, has a fixed (at seven) count of diversely specialized segments. Imposition of the mammalian cervical constraint has been tentatively linked to the origin of the diaphragm, which is muscularized by cells that migrate from cervical somites during development. With six cervical vertebrae, the genus Trichechus (manatee) has apparently broken this constraint, although the mechanism of constraint escape is unknown. Hypotheses for the developmental origin of Trichechus cervical morphology include cervical rib 7 repatterning, a primaxial/abaxial patterning shift, and local homeosis at the cervical/thoracic boundary. We tested predictions of these hypotheses by documenting vertebral morphology, axial ossification patterns, regionalization of the postcranial skeleton, and the relationship of thoracic ribs to sternal subunits in a large data set of fetal and adult Trichechus and Dugong specimens. These observations forced rejection of all three hypotheses. We propose alternatively that a global slowing of the rate of somitogenesis reduced somite count and disrupted alignment of Hox-generated anatomical markers relative to somite (and vertebral) boundaries throughout the Trichechus column. This hypothesis is consistent with observations of the full range of traditional cervical morphologies in the six cervical vertebrae, conserved postcranial proportions, and column-wide reduction in count relative to its sister taxon, Dugong. It also suggests that the origin of the mammalian cervical constraint lies in patterning, not in count, and that Trichechus and the tree sloths have broken the constraint using different developmental mechanisms.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | | | | |
Collapse
|
26
|
Zalc A, Hayashi S, Auradé F, Bröhl D, Chang T, Mademtzoglou D, Mourikis P, Yao Z, Cao Y, Birchmeier C, Relaix F. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest. Development 2014; 141:2780-90. [PMID: 25005473 DOI: 10.1242/dev.110155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21(cip1) and p57(kip2)), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, specification and differentiation of muscle progenitor cells. We first show that cell cycle exit and myogenic differentiation can be uncoupled. In addition, we establish that skeletal muscle progenitor cells require Notch signaling to maintain their cycling status. Using several mouse models combined with ex vivo studies, we demonstrate that Notch signaling is required to repress p21(cip1) and p57(kip2) expression in muscle progenitor cells. Finally, we identify a muscle-specific regulatory element of p57(kip2) directly activated by MRFs in myoblasts but repressed by the Notch targets Hes1/Hey1 in progenitor cells. We propose a molecular mechanism whereby information provided by Hes/Hey downstream of Notch as well as MRF activities are integrated at the level of the p57(kip2) enhancer to regulate the decision between progenitor cell maintenance and muscle differentiation.
Collapse
Affiliation(s)
- Antoine Zalc
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Shinichiro Hayashi
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Frédéric Auradé
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Dominique Bröhl
- Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Ted Chang
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Despoina Mademtzoglou
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Philippos Mourikis
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Zizhen Yao
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yi Cao
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Frédéric Relaix
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| |
Collapse
|
27
|
Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 2014; 28:225-38. [PMID: 24525185 DOI: 10.1016/j.devcel.2013.12.020] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022]
Abstract
We discuss the upstream regulators of myogenesis that lead to the activation of myogenic determination genes and subsequent differentiation, focusing on the mouse model. Key upstream genes, such as Pax3 and Pax7, Six1 and Six4, or Pitx2, participate in gene regulatory networks at different sites of skeletal muscle formation. MicroRNAs also intervene, with emerging evidence for the role of other noncoding RNAs. Myogenic determination and subsequent differentiation depend on members of the MyoD family. We discuss new insights into mechanisms underlying the transcriptional activity of these factors.
Collapse
|
28
|
Buchholtz EA. Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. ZOOLOGY 2013; 117:64-9. [PMID: 24290362 DOI: 10.1016/j.zool.2013.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/28/2013] [Indexed: 11/17/2022]
Abstract
Serially homologous systems with high internal differentiation frequently exhibit meristic constraints, although the developmental basis for constraint is unknown. Constraints in the counts of the cervical and lumbosacral vertebral series are unique to mammals, and appeared in the Triassic, early in their history. Concurrent adaptive modifications of the mammalian respiratory and locomotor systems involved a novel source of cells for muscularization of the diaphragm from cervical somites, and the loss of ribs from lumbar vertebrae. Each of these innovations increased the modularity of the somitic mesoderm, and altered somitic and lateral plate mesodermal interactions across the lateral somitic frontier. These developmental innovations are hypothesized here to constrain the anteroposterior transposition of the limbs along the column, and thus also cervical and thoracolumbar count. Meristic constraints are therefore regarded here as the nonadaptive, secondary consequences of adaptive respiratory and locomotor traits.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| |
Collapse
|
29
|
Silencing Pax3 by shRNA inhibits the proliferation and differentiation of duck (Anas platyrhynchos) myoblasts. Mol Cell Biochem 2013; 386:211-22. [PMID: 24126784 DOI: 10.1007/s11010-013-1859-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
The Pax3 gene has been proven to play a crucial role in determining myogenic progenitor cell fate during embryonic myogenesis; however, the molecular role of Pax3 in myoblast development during later stages of myogenesis is unknown. We hypothesized that Pax3 would function in myoblast proliferation and differentiation; therefore, we employed three short hairpin RNAs (shRNAs) (shRNA1, shRNA2, and shRNA3) that target Pax3 to characterize the function of Pax3 in duck myoblast development. The mRNA and protein expression levels of Pax3 in duck myoblasts were detected using real-time PCR and Western blotting. Cell proliferation was assessed using the MTT and BrdU assays, while cell differentiation was assayed using immunofluorescence labeling with a MyoG antibody. Additionally, folic acid (FA), which is a rescue tool, was added into the medium of duck myoblasts to indirectly examine the function of Pax3 on duck myoblast proliferation and differentiation. The results revealed that one of the shRNA vectors, shRNA1, could significantly and stably reduce the expression of Pax3 (P < 0.05). Silencing Pax3 by shRNA1 significantly reduced the proliferation and differentiation of duck myoblasts (P < 0.05) due to downregulated expression of myogenic regulator factors. These trends could be rescued by adding FA; and Pax7, a paralog gene of Pax3, was involved in those processes. Overall, Pax3 had a positive function in duck myoblast proliferation and differentiation by modulating the expression of myogenic regulation factors, and shRNA targeting of Pax3 might be a new approach for understanding the function of Pax3 in the development of diverse tissues.
Collapse
|
30
|
Abstract
Mammalian skeletal muscles are derived from mesoderm segments flanking the embryonic midline. Upon receiving inductive cues from the adjacent neural tube, lateral plate mesoderm, and surface ectoderm, muscle precursors start to delaminate, migrate to their final destinations and proliferate. Muscle precursor cells become committed to the myogenic fate, become differentiated muscle cells, and fuse to form myofibers. Myofibers then fuse together to form the muscle groups. Muscle precursor cells have the ability to proliferate, and differentiate during development, while a subset remains capable of regeneration and repair of local injuries in adulthood. When the process of muscle development is perturbed such as in muscular dystrophies and injuries, ways to intervene and allow for proper muscle development or repair are the focus of regenerative medicine. Thus, understanding the developmental program of muscle at the genetic, cellular, and molecular levels has become a major focus of skeletal muscle regeneration research in the last few years.
Collapse
|
31
|
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuoku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
32
|
Origin of the Turtle Body Plan: The Folding Theory to Illustrate Turtle-Specific Developmental Repatterning. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
33
|
Borycki AG. The myotomal basement membrane: insight into laminin-111 function and its control by Sonic hedgehog signaling. Cell Adh Migr 2013; 7:72-81. [PMID: 23287393 DOI: 10.4161/cam.23411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The importance of laminin-containing basement membranes (BM) for adult muscle function is well established, in particular due to the severe phenotype of congenital muscular dystrophies in patients with mutations disrupting the BM-muscle cell interaction. Developing muscles in the embryo are also dependent on an intact BM. However, the processes controlled by BM-muscle cell interactions in the embryo are only beginning to be elucidated. In this review, we focus on the myotomal BM to illustrate the critical role of laminin-111 in BM assembly and function at the surface of embryonic muscle cells. The myotomal BM provides also an interesting paradigm to study the complex interplay between laminins-containing BM and growth factor-mediated signaling and activity.
Collapse
|
34
|
Buchholtz EA, Bailin HG, Laves SA, Yang JT, Chan MY, Drozd LE. Fixed cervical count and the origin of the mammalian diaphragm. Evol Dev 2012; 14:399-411. [PMID: 22947313 DOI: 10.1111/j.1525-142x.2012.00560.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Why is mammalian cervical count fixed across the historically long and ecologically broad mammalian radiation? Multiple lines of evidence, considered together, suggest a link between fixed cervical count and the muscularization of the diaphragm, a key innovation in mammalian history. We test this hypothesis by documenting the anteroposterior (AP) movement of the diaphragm, a lateral plate derivative, relative to that of the somitic thoracolumbar transition in unusually patterned mammals, by comparing the temporal occurrence of an osteological proxy for the diaphragm and fixed cervical counts in the fossil record, and by quantifying morphological differentiation within the mammalian cervical series. We then integrate these anatomical observations with details of diaphragm function and development to propose a sequence of innovations in mammalian evolution that could have led to fixed cervical count. We argue that the novel commitment of migratory muscle precursor cells (MMPs) of mid-cervical somites to a fate in the abaxial diaphragm defined these somites as a new and uniquely mammalian modular subunit. We further argue that the coordination of primaxial abaxial patterning constrained subsequent AP migration of the forelimb, thereby secondarily fixing cervical count.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Hu JKH, McGlinn E, Harfe BD, Kardon G, Tabin CJ. Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation. Genes Dev 2012; 26:2088-102. [PMID: 22987639 DOI: 10.1101/gad.187385.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Muscle progenitor cells migrate from the lateral somites into the developing vertebrate limb, where they undergo patterning and differentiation in response to local signals. Sonic hedgehog (Shh) is a secreted molecule made in the posterior limb bud that affects patterning and development of multiple tissues, including skeletal muscles. However, the cell-autonomous and non-cell-autonomous functions of Shh during limb muscle formation have remained unclear. We found that Shh affects the pattern of limb musculature non-cell-autonomously, acting through adjacent nonmuscle mesenchyme. However, Shh plays a cell-autonomous role in maintaining cell survival in the dermomyotome and initiating early activation of the myogenic program in the ventral limb. At later stages, Shh promotes slow muscle differentiation cell-autonomously. In addition, Shh signaling is required cell-autonomously to regulate directional muscle cell migration in the distal limb. We identify neuroepithelial cell transforming gene 1 (Net1) as a downstream target and effector of Shh signaling in that context.
Collapse
Affiliation(s)
- Jimmy Kuang-Hsien Hu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
36
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
37
|
Sheveleva ON, Payushina OV, Starostin VI. Cellular and molecular basis of skeletal muscle hystogenesis. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012060118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Yusuf F, Brand-Saberi B. Myogenesis and muscle regeneration. Histochem Cell Biol 2012; 138:187-99. [DOI: 10.1007/s00418-012-0972-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
|
39
|
Abstract
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.
Collapse
Affiliation(s)
- Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
40
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Makarenkova HP, Meech R. Barx homeobox family in muscle development and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:117-73. [PMID: 22608559 DOI: 10.1016/b978-0-12-394308-8.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeobox transcription factors are key intrinsic regulators of myogenesis. In studies spanning several years, we have characterized the homeobox factor Barx2 as a novel marker for muscle progenitor cells and an important regulator of muscle growth and repair. In this review, we place the expression and function of Barx2 and its paralogue Barx1 in context with other muscle-expressed homeobox factors in both embryonic and adult myogenesis. We also describe the structure and regulation of Barx genes and possible gene/disease associations. The functional domains of Barx proteins, their molecular interactions, and cellular functions are presented with particular emphasis on control of genes and processes involved in myogenic differentiation. Finally, we describe the patterns of Barx gene expression in vivo and the phenotypes of various Barx gene perturbation models including null mice. We focus on the Barx2 null mouse model, which has demonstrated the critical roles of Barx2 in postnatal myogenesis including muscle maintenance during aging, and regeneration of acute and chronic muscle injury.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
42
|
Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S. Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int 2011; 87:1-13. [DOI: 10.1007/s12565-011-0121-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
43
|
Wu W, Xu D, Ren Z, Lei M, Zuo B, Li F, Xiong Y. Isolation, sequence characterization, expression pattern analysis of porcine Pitx2c gene. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011; 138:2401-15. [DOI: 10.1242/dev.040972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| |
Collapse
|
45
|
Kossler N, Stricker S, Rödelsperger C, Robinson PN, Kim J, Dietrich C, Osswald M, Kühnisch J, Stevenson DA, Braun T, Mundlos S, Kolanczyk M. Neurofibromin (Nf1) is required for skeletal muscle development. Hum Mol Genet 2011; 20:2697-709. [PMID: 21478499 DOI: 10.1093/hmg/ddr149] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a multi-system disease caused by mutations in the NF1 gene encoding a Ras-GAP protein, neurofibromin, which negatively regulates Ras signaling. Besides neuroectodermal malformations and tumors, the skeletal system is often affected (e.g. scoliosis and long bone dysplasia) demonstrating the importance of neurofibromin for development and maintenance of the musculoskeletal system. Here, we focus on the role of neurofibromin in skeletal muscle development. Nf1 gene inactivation in the early limb bud mesenchyme using Prx1-cre (Nf1(Prx1)) resulted in muscle dystrophy characterized by fibrosis, reduced number of muscle fibers and reduced muscle force. This was caused by an early defect in myogenesis affecting the terminal differentiation of myoblasts between E12.5 and E14.5. In parallel, the muscle connective tissue cells exhibited increased proliferation at E14.5 and an increase in the amount of connective tissue as early as E16.5. These changes were accompanied by excessive mitogen-activated protein kinase pathway activation. Satellite cells isolated from Nf1(Prx1) mice showed normal self-renewal, but their differentiation was impaired as indicated by diminished myotube formation. Our results demonstrate a requirement of neurofibromin for muscle formation and maintenance. This previously unrecognized function of neurofibromin may contribute to the musculoskeletal problems in NF1 patients.
Collapse
Affiliation(s)
- Nadine Kossler
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kuratani S, Kuraku S, Nagashima H. Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 2011; 13:1-14. [DOI: 10.1111/j.1525-142x.2010.00451.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
48
|
Lagha M, Sato T, Regnault B, Cumano A, Zuniga A, Licht J, Relaix F, Buckingham M. Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo. BMC Genomics 2010; 11:696. [PMID: 21143873 PMCID: PMC3018477 DOI: 10.1186/1471-2164-11-696] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 12/08/2010] [Indexed: 01/21/2023] Open
Abstract
Background Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of Pax3 is therefore an important endeavour in elucidating the myogenic gene regulatory network. Results We have undertaken a screen in the mouse embryo which employs a Pax3GFP allele that permits isolation of Pax3 expressing cells by flow cytometry and a Pax3PAX3-FKHR allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the Pax3 mutant phenotype. Microarray comparisons were carried out between Pax3GFP/+ and Pax3GFP/PAX3-FKHR preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function Pax3 mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount in situ hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation. Conclusions Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as Myf5 are controlled positively, whereas the effect of Pax3 on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, Pax7 and also Hdac5 which is a potential repressor of Foxc2, are subject to positive control by Pax3.
Collapse
Affiliation(s)
- Mounia Lagha
- CNRS URA 2578, Département de Biologie du Développement, Institut Pasteur, 25 Rue du Dr Roux, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rehimi R, Khalida N, Yusuf F, Morosan-Puopolo G, Brand-Saberi B. A novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursors. Dev Dyn 2010; 239:1622-31. [PMID: 20503359 DOI: 10.1002/dvdy.22288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cloaca acts as a common chamber into which gastrointestinal and urogenital tracts converge in lower vertebrates. The distal end of the cloaca is guarded by a ring of cloacal muscles or sphincters, the equivalent of perineal muscles in mammals. It has recently been shown that the development of the cloacal musculature depends on hindlimb muscle formation. The signaling molecules responsible for the outward migration of hindlimb myogenic precursors are not known. Based on the expression studies for CXCR4 and SDF-1, we hypothesized a role of this signaling pair during cloacal muscle precursor migration. The aim of our study was to investigate the role of SDF-1/CXCR4 during cloacal muscle precursor migration in the chicken embryos. We show that SDF-1 is expressed in the cloacal region, and by experimentally manipulating the SDF-1/CXCR4 signaling, we can show that SDF-1 guides the migration of CXCR4-expressing cloacal muscle precursors.
Collapse
Affiliation(s)
- Rizwan Rehimi
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Biressi S, Rando TA. Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol 2010; 21:845-54. [PMID: 20849971 DOI: 10.1016/j.semcdb.2010.09.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 02/07/2023]
Abstract
Satellite cells, the adult stem cells responsible for skeletal muscle regeneration, are defined by their location between the basal lamina and the fiber sarcolemma. Increasing evidence suggests that satellite cells represent a heterogeneous population of cells with distinct embryological origin and multiple levels of biochemical and functional diversity. This review focuses on the rich diversity of the satellite cell population based on studies across species. Ultimately, a more complete characterization of the heterogeneity of satellite cells will be essential to understand the functional significance in terms of muscle growth, homeostasis, tissue repair, and aging.
Collapse
Affiliation(s)
- Stefano Biressi
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305-5235, USA
| | | |
Collapse
|