1
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
2
|
Zhao H, Shan A, Liang Y, Wu H, He Y, Chen H, Zeng J, Gu J, Song JP, Qiu H, Zhang J. Boron-Assisted Selective Citrulline Modification under Mild Conditions. Org Lett 2022; 24:6351-6355. [PMID: 35997298 DOI: 10.1021/acs.orglett.2c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein citrullination is one type of protein post-translational modification. Previous methods entail the use of a strongly acidic condition (pH <1), which impedes its exploration under physiological and pathological conditions. Here, we developed a biocompatible method based on o-boron-assisted citrulline modification. We demonstrated that this method enables selective and mainly irreversible modification of citrulline residues under neutral conditions. We expect that it will provide a valuable tool for the study of protein citrullination.
Collapse
Affiliation(s)
- Hailong Zhao
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aidong Shan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunshi Liang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haiting Wu
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yiting He
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huihong Chen
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaxin Zeng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Jiangyong Gu
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jian-Ping Song
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hong Qiu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Zhang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
3
|
Pyser J, Chakrabarty S, Romero EO, Narayan ARH. State-of-the-Art Biocatalysis. ACS CENTRAL SCIENCE 2021; 7:1105-1116. [PMID: 34345663 PMCID: PMC8323117 DOI: 10.1021/acscentsci.1c00273] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 05/03/2023]
Abstract
The use of enzyme-mediated reactions has transcended ancient food production to the laboratory synthesis of complex molecules. This evolution has been accelerated by developments in sequencing and DNA synthesis technology, bioinformatic and protein engineering tools, and the increasingly interdisciplinary nature of scientific research. Biocatalysis has become an indispensable tool applied in academic and industrial spheres, enabling synthetic strategies that leverage the exquisite selectivity of enzymes to access target molecules. In this Outlook, we outline the technological advances that have led to the field's current state. Integration of biocatalysis into mainstream synthetic chemistry hinges on increased access to well-characterized enzymes and the permeation of biocatalysis into retrosynthetic logic. Ultimately, we anticipate that biocatalysis is poised to enable the synthesis of increasingly complex molecules at new levels of efficiency and throughput.
Collapse
Affiliation(s)
- Joshua
B. Pyser
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Suman Chakrabarty
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Evan O. Romero
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Alison R. H. Narayan
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Ramström O. Dynamic Covalent Kinetic Resolution. CATALYSIS REVIEWS, SCIENCE AND ENGINEERING 2019; 62:66-95. [PMID: 33716355 PMCID: PMC7953846 DOI: 10.1080/01614940.2019.1664031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Implemented with the highly efficient concept of Dynamic Kinetic Resolution (DKR), dynamic covalent chemistry can be a useful strategy for the synthesis of enantioenriched compounds. This gives rise to dynamic covalent kinetic resolution (DCKR), a subset of DKR that over the last decades has emerged as increasingly fruitful, with many applications in asymmetric synthesis and catalysis. All DKR protocols are composed of two important parts: substrate racemization and asymmetric transformation, which can lead to yields of >50% with good enantiomeric excesses (ee) of the products. In DCKR systems, by utilizing reversible covalent reactions as the racemization strategy, the substrate enantiomers can be easily interconverted without the presence of any racemase or transition metal catalyst. Enzymes or other chiral catalysts can then be adopted for the resolution step, leading to products with high enantiopurities. This tutorial review focuses on the development of DCKR systems, based on different reversible reactions, and their applications in asymmetric synthesis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., MA, 01854 Lowell, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
5
|
de Miranda AS, Miranda LS, de Souza RO. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv 2015; 33:372-93. [DOI: 10.1016/j.biotechadv.2015.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
|
6
|
Gottfried K, Klar U, Platzek J, Zorn L. Biocatalysis at Work: Applications in the Development of Sagopilone. ChemMedChem 2015; 10:1240-8. [DOI: 10.1002/cmdc.201500138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 01/24/2023]
|
7
|
|
8
|
Kitayama T, Awata M, Kawai Y, Tsuji A, Yoshida Y. Asymmetric synthesis of versatile monoepoxyzerumbone and monoepoxyzerumbol. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
|
10
|
Yamada S, Yamashita K. Dynamic kinetic resolution of hemiaminals using a novel DMAP catalyst. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2007.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Wan J, Wu B, Pan Y. Novel one-step synthesis of 2-carbonyl/thiocarbonyl isoindolinones and mechanistic disclosure on the rearrangement reaction of o-phthalaldehyde with amide/thioamide analogs. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Wilson L, Fernández-Lorente G, Fernández-Lafuente R, Illanes A, Guisán JM, Palomo JM. CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.12.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Wilson L, Palomo JM, Fernández-Lorente G, Illanes A, Guisán JM, Fernández-Lafuente R. Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Wilson L, Palomo JM, Fernández-Lorente G, Illanes A, Guisán JM, Fernández-Lafuente R. Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.08.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Fogassy E, Nógrádi M, Kozma D, Egri G, Pálovics E, Kiss V. Optical resolution methods. Org Biomol Chem 2006; 4:3011-30. [PMID: 16886066 DOI: 10.1039/b603058k] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the large number of elaborate enantioselective syntheses for the preparation of a single enantiomer to achieve industrial and scientific goals, the separation and purification of enantiomers (components of racemic compounds) is also necessary. Hence, we present the most often used thought-provoking modern methods based on momentous recognitions (e.g. spontaneous resolution, induced crystallization, resolution by formation of diastereomers, resolution by formation of non-covalent diastereomers, resolution by diastereomeric salt formation, resolution by diastereomeric complex formation, "half equivalent" methods of resolution, separation by crystallization, separation by distillation, separation by supercritical fluid extraction, resolution with mixtures of resolving agents, resolution with a derivative of the target compound, enantioselective chromatography, resolution by formation of covalent diastereomers, resolution by substrate selective reaction, kinetic resolution without enzymes, kinetic resolution by enzyme catalysis, hydrolytic and redox enzymes, kinetic and thermodynamic control, resolutions combined with 2nd order asymmetric transformations, enrichment of partially resolved mixtures, role of the solvent and methods of optimization in the separation of diastereoisomers, non-linear effects and selected examples of resolution on an industrial scale).
Collapse
Affiliation(s)
- Elemér Fogassy
- Institute of Organic Chemical Technology, University of Technology and Economics, Budapest, POB 91, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Lee SH, Choi JI, Han MJ, Choi JH, Lee SY. Display of lipase on the cell surface ofEscherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnol Bioeng 2005; 90:223-30. [PMID: 15739170 DOI: 10.1002/bit.20399] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have developed a new cell surface display system using a major outer membrane protein of Pseudomonas aeruginosa OprF as an anchoring motif. Pseudomonas fluorescens SIK W1 lipase gene was fused to the truncated oprF gene by C-terminal deletion fusion strategy. The truncated OprF-lipase fusion protein was successfully displayed on the surface of Escherichia coli. Localization of the truncated OprF-lipase fusion protein was confirmed by western blot analysis, immunofluorescence microscopy, and whole-cell lipase activity. To examine the enzymatic characteristics of the cell surface displayed lipase, the whole-cell enzyme activity and stability were determined under various conditions. Cell surface displayed lipase showed the highest activity at 37 degrees C and pH 8.0. It retained over 80% of initial activity after incubation for a week in both aqueous solution and organic solvent. When the E. coli cells displaying lipases were used for enantioselective resolution of racemic 1-phenylethanol in hexane, (R)-phenyl ethyl acetate was successfully obtained with the enantiomeric excess of greater than 96% in 36 h of reaction. These results suggest that E. coli cells displaying lipases using OprF as an anchoring motif can be employed for various biotechnological applications both in aqueous and nonaqueous phases.
Collapse
Affiliation(s)
- Seung Hwan Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon , Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Abstract
New catalysts and reaction conditions have been developed for the dynamic kinetic resolution or deracemisation of racemic mixtures of chiral compounds. Specific functional groups that lend themselves particularly well to this approach include chiral secondary alcohols, alpha-amino acids, amines and carboxylic acids. A general theme of these processes is the combination of an enantioselective enzyme with a chemical reagent, the latter being used either to racemise the unreactive enantiomer or alternatively recycle an intermediate in the deracemisation process. In some examples of dynamic kinetic resolution, a second enzyme (racemase) is used to interconvert the enantiomers of the starting material.
Collapse
|