1
|
Skinner J, Delgado AG, Hyman M, Chu MYJ. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171667. [PMID: 38485017 DOI: 10.1016/j.scitotenv.2024.171667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In situ aerobic cometabolism of groundwater contaminants has been demonstrated to be a valuable bioremediation technology to treat many legacy and emerging contaminants in dilute plumes. Several well-designed and documented field studies have shown that this technology can concurrently treat multiple contaminants and reach very low cleanup goals. Fundamentally different from metabolism-based biodegradation of contaminants, microorganisms that cometabolically degrade contaminants do not obtain sufficient carbon and energy from the degradation process to support their growth and require an exogenous growth supporting primary substrate. Successful applications of aerobic cometabolic treatment therefore require special considerations beyond conventional in situ bioremediation, such as competitive inhibition between growth-supporting primary substrate(s) and contaminant non-growth substrates, toxic effects resulting from contaminant degradation, and differences in microbial population dynamics exhibited by biostimulated indigenous consortia versus bioaugmentation cultures. This article first provides a general review of microbiological factors that are likely to affect the rate of aerobic cometabolic biodegradation. We subsequently review fourteen well documented field-scale aerobic cometabolic bioremediation studies and summarize the underlying microbiological factors that may affect the performance observed in these field studies. The combination of microbiological and engineering principles gained from field testing leads to insights and recommendations on planning, design, and operation of an in situ aerobic cometabolic treatment system. With a vision of more aerobic cometabolic treatments being considered to tackle large, dilute plumes, we present several novel topics and future research directions that can potentially enhance technology development and foster success in implementing this technology for environmental restoration.
Collapse
Affiliation(s)
- Justin Skinner
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA; Andrews Engineering, Inc., 3300 Ginger Creek Drive, Springfield, IL 62711, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Thomas Hall 4545, 112 Derieux Place, Raleigh, NC 27607, USA
| | - Min-Ying Jacob Chu
- Haley & Aldrich Inc., 400 E Van Buren St, Ste 545, Phoenix, AZ 85004, USA.
| |
Collapse
|
2
|
Zhou Y, Xia C, Zhang J, Shen Z, Li Z, Zhang M, Sun L, Liu D, Hong Q. Co-inducible Catabolism of 2-Naphthol Initiated by Hydroxylase CehC1C2 in Rhizobium sp. X9 Removed Its Ecotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:626-634. [PMID: 36583641 DOI: 10.1021/acs.jafc.2c06619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2-Naphthol, which originates from various industrial activities, is widely disseminated through the discharge of industrial wastewater and is, thus, harmful to the water ecosystem, agricultural production, and human health. In this study, the carbaryl degrading strain Rhizobium sp. X9 was proven to be able to degrade 2-naphthol and reduce its toxicity to rice (Oryza sativa) and Chlorella ellipsoidea. Two-component hydroxylase CehC1C2 is responsible for the initial step of degradation and generates 1,2-dihydroxynaphthalene, which is further degraded by the ceh cluster. The transcription of gene cluster cehC1C2 could be induced when both 2-naphthol and glucose were added. A bioinformatic analysis revealed that two transcriptional regulators, the inhibitor CehR2 and the activator CehR3, could be involved in this process. Our study elucidated the molecular mechanism of microbial degradation of 2-naphthol and provided an effective strategy for the in situ remediation of 2-naphthol contamination in the environment.
Collapse
Affiliation(s)
- Yidong Zhou
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chunli Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Jiazhuo Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Zhenyang Shen
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Zhaojing Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
3
|
Ortega Ramírez CA, Ching T, Yoza B, Li QX. Glycerol-assisted degradation of dibenzothiophene by Paraburkholderia sp. C3 is associated with polyhydroxyalkanoate granulation. CHEMOSPHERE 2022; 291:133054. [PMID: 34838841 DOI: 10.1016/j.chemosphere.2021.133054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 05/28/2023]
Abstract
Glycerol is a biodiesel byproduct. In the present study, glycerol was used as a co-substrate during biodegradation of dibenzothiophene (DBT) by Paraburkholderia sp. C3. Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent, ubiquitous and carcinogenic chemicals found in the environment. DBT is a major sulfur-containing PAH. The chemical properties of DBT make it an ideal model pollutant for examining the bioremediation of higher molecular weight PAHs. Bioremediation uses microbial catalysis for removal of environmental pollutants. Environmental microorganisms that encounter aromatic substrates such as heterocyclic PAHs develop unique characteristics that allow the uptake and assimilation of these cytotoxic substrates. Microbial adaptations include changes in membrane lipid composition, secretion of surface-active compounds and accumulation of lipid granules to withstand chemical toxicity. Biostimulation using more readily metabolized substrates can increase the biodegradation rate of PAHs, but the molecular mechanisms are not well understood. We analyzed the DBT biodegradation kinetics in C3, proteome changes and TEM micrographs in different culturing conditions. We utilized 2-bromoalkanoic lipid metabolic inhibitors to establish a correlation between polyhydroxyalkanoate (PHA) granule formation and the enhancement of DBT biodegradation induced by glycerol. This is the first description linking PHA biosynthesis, DBT biodegradation and 2-bromoalkanoic acids in a Paraburkholderia species.
Collapse
Affiliation(s)
- Camila A Ortega Ramírez
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Travers Ching
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brandon Yoza
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
4
|
Zhang Q, Liu Y, Zhang C, Zhou D. Easily biodegradable substrates are crucial for enhancing antibiotic risk reduction: Low-carbon discharging policies need to be more specified. WATER RESEARCH 2022; 210:117972. [PMID: 34952454 DOI: 10.1016/j.watres.2021.117972] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Governments have formulated stricter wastewater treatment plant (WWTP) discharge standards to address water pollution; however, with the cost of aggravating the refractory of the discharges. These policies are not in line with the classic co-metabolism theory; thus, we evaluated the effects of an easily biodegradable substrate on the removal efficiency of antibiotics and antibiotic resistance genes (ARGs) in the receiving water. In this study, reactor with 8 d of hydraulic retention time (HRT) was constructed to simulate a receiving river, and several antibiotics (0.30 mg/L each) were continuously discharged to the reactor (tetracycline, ciprofloxacin, amoxicillin, chloramphenicol, and sulfamethoxazole). Sodium acetate (NaAc) was used as a representative easily biodegradable substrate, and treatment protocols with and without a co-substrate were compared. The attenuation of the antibiotics in the simulated river and the production and dissemination of ARGs were analyzed. The results showed that 50 mg/L NaAc activated non-specific enzymes (a log2-fold change of 3.1-8.8 compared with 0 mg/L NaAc). The removal rate of the antibiotics was increased by 4-32%, and the toxicity of the downstream water was reduced by 35%. The upregulation of antioxidant enzymes caused the intracellular reactive oxygen species (ROSs) decreased by up to 47%, inhibiting horizontal gene transfer and reducing mobile genetic element-mediated ARGs (mARGs) by 18-56%. Furthermore, NaAc also increased the alpha diversity of the microbial community by 5-15% (Shannon-Wiener Index) and reduced the abundance of human bacterial pathogens by 22-36%. In summary, easily biodegradable substrates in the receiving water are crucial for reducing antibiotic risk.
Collapse
Affiliation(s)
- Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yang Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
5
|
Cupples AM, Thelusmond JR. Predicting the occurrence of monooxygenases and their associated phylotypes in soil microcosms. METHODS IN MICROBIOLOGY 2021; 193:106401. [PMID: 34973287 DOI: 10.1016/j.mimet.2021.106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Cometabolic oxidation involves the oxidation of chemicals often by monooxygenases or dioxygenases and can be a removal process for environmental contaminants such as trichloroethene (TCE) or 1,4-dioxane. Information on the occurrence of these genes and their associated microorganisms in environmental samples has the potential to enhance our understanding of contaminant removal. The overall aims were to 1) ascertain which genes encoding for monooxygenases (from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers) and other key enzymes are present in soil microcosms and 2) determine which phylotypes are associated with those genes. The approach involved a predictive tool called PICRUSt2 and 16S rRNA gene amplicon datasets from two previous soil microcosm studies. The following targets from the KEGG database were examined: pmo/amo, mmo, dmp/pox/tomA, tmo/tbu/tou, bssABC (and downstream genes), tod, xylM, xylA, gst, dhaA, catE, dbfA1, dbfA2 and phenol 2-monooxygenase. A large number of phylotypes were associated with pmo/amo, while mmo was linked to only five. Several phylotypes were associated with both pmo/amo and mmo. The most dominant microorganism predicted for mmoX was Mycobacterium (also predicted for pmo/amo). A large number of phylotypes were associated with all six genes from the dmp/pox/tomA KEGG group. The taxonomic associations predicted for the tmo/tbu/tou KEGG group were more limited. In both datasets, Geobacter was a key phylotype for benzylsuccinate synthase. The dioxygenase-mediated toluene degradation pathway encoded by todC1C2BA was largely absent, as were the genes (xylM, xylA) encoding for xylene monooxygenase. All other genes investigated were predicted to be present and were associated with a number of microorganisms. Overall, the analysis predicted the genes encoding for sMMO (mmo), T3MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC) are present for a limited number of phylotypes compared to those encoding for pMMO/AMO (pmo/amo) and phenol monooxygenase/T2MO (dmp/poxA/tomA). These findings suggest in soils contaminant removal via pMMO/AMO or phenol monooxygenase/T2MO may be common because of the occurrence of these enzymes with a large number of phylotypes.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Dike CC, Shahsavari E, Surapaneni A, Shah K, Ball AS. Can biochar be an effective and reliable biostimulating agent for the remediation of hydrocarbon-contaminated soils? ENVIRONMENT INTERNATIONAL 2021; 154:106553. [PMID: 33872955 DOI: 10.1016/j.envint.2021.106553] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Petroleum hydrocarbons represent one of the most common soil contaminants, whose presence poses a significant risk to soil biota and human health; for example, in Europe, hydrocarbon contamination accounts for more than 30% of contaminated sites. The use of biochar as a proposed alternative to the conventional remediation of soil contaminated with petroleum hydrocarbons has gained credence in recent times because of its cost-effectiveness and environmentally friendly nature. Biochar is a carbonaceous material produced by heating biomass in an oxygen-limited environment at high temperature. This review provides an overview of the application of biochar to remediate petroleum hydrocarbon-contaminated soils, with emphasis on the possibility of biochar functioning as a biostimulation agent. The properties of biochar were also examined. Furthermore, the mechanism, ecotoxicological impact and possible factors affecting biochar-based remediation are discussed. The review concludes by examining the drawbacks of biochar use in the remediation of hydrocarbon-contaminated soils and how to mitigate them. Biochar impacts soil microbes, which may result in the promotion of the degradation of petroleum hydrocarbons in the soil. Linear regression between bacterial population and degradation efficiency showed that R2 was higher (0.50) and significant in treatment amended with biochar or both biochar and nutrient/fertiliser (p < 0.01), compared to treatment with nutrient/fertiliser only or no amendment (R2 = 0.11). This suggest that one of the key impacts of biochar is enhancing microbial biomass and thus the biodegradation of petroleum hydrocarbons. Biochar represents a promising biostimulation agent for the remediation of hydrocarbon-contaminated soil. However, there remains key questions to be answered.
Collapse
Affiliation(s)
- Charles Chinyere Dike
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Esmaeil Shahsavari
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Aravind Surapaneni
- South East Water, 101 Wells Street, Frankston, Victoria 3199, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
7
|
O'Malley MA, Walsh DA. Rethinking microbial infallibility in the metagenomics era. FEMS Microbiol Ecol 2021; 97:6308366. [PMID: 34160589 DOI: 10.1093/femsec/fiab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
The 'principle of microbial infallibility' was a mainstay of microbial physiology and environmental microbiology in earlier decades. This principle asserts that wherever there is an energetic gain to be made from environmental resources, microorganisms will find a way to take advantage of the situation. Although previously disputed, this claim was revived with the discovery of anammox bacteria and other major contributors to biogeochemistry. Here, we discuss the historical background to microbial infallibility, and focus on its contemporary relevance to metagenomics. Our analysis distinguishes exploration-driven metagenomics from hypothesis-driven metagenomics. In particular, we show how hypothesis-driven metagenomics can use background assumptions of microbial infallibility to enable the formulation of hypotheses to be tested by enrichment cultures. Discoveries of comammox and the anaerobic oxidation of methane are major instances of such strategies, and we supplement them with outlines of additional examples. This overview highlights one way in which metagenomics is making the transition from an exploratory data-analysis programme of research to a hypothesis-testing one. We conclude with a discussion of how microbial infallibility is a heuristic with far-reaching implications for the investigation of life.
Collapse
Affiliation(s)
- Maureen A O'Malley
- School of History and Philosophy of Science, Carslaw Building, University of Sydney, Sydney, NSW 2006, Australia
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
8
|
Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol 2021; 42:46-72. [PMID: 33980092 DOI: 10.1080/07388551.2021.1921691] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The application of microbial co-cultures is now recognized in the fields of biotechnology, ecology, and medicine. Understanding the biological interactions that govern the association of microorganisms would shape the way in which artificial/synthetic co-cultures or consortia are developed. The ability to accurately predict and control cell-to-cell interactions fully would be a significant enabler in synthetic biology. Co-culturing method development holds the key to strategically engineer environments in which the co-cultured microorganism can be monitored. Various approaches have been employed which aim to emulate the natural environment and gain access to the untapped natural resources emerging from cross-talk between partners. Amongst these methods are the use of a communal liquid medium for growth, use of a solid-liquid interface, membrane separation, spatial separation, and use of microfluidics systems. Maximizing the information content of interactions monitored is one of the major challenges that needs to be addressed by these designs. This review critically evaluates the significance and drawbacks of the co-culturing approaches used to this day in biotechnological applications, relevant to biomanufacturing. It is recommended that experimental results for a co-cultured species should be validated with different co-culture approaches due to variations in interactions that could exist as a result of the culturing method selected.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Gloria Padmaperuma
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Supattra Maneein
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Pharmaceutical, Chemical & Environmental Sciences, The University of Greenwich, Kent, UK
| | | |
Collapse
|
9
|
Coinducible Catabolism of 1-Naphthol via Synergistic Regulation of the Initial Hydroxylase Genes in Sphingobium sp. Strain B2. Appl Environ Microbiol 2021; 87:AEM.00170-21. [PMID: 33771783 DOI: 10.1128/aem.00170-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
1-Naphthol, a widely used raw material for organic synthesis, is also a well-known organic pollutant. Due to its high toxicity, 1-naphthol is rarely used by microorganisms as the sole carbon source for growth. In this study, catabolism of 1-naphthol by Sphingobium sp. strain B2 was found to be greatly enhanced by additional supplementation with primary carbon sources (e.g., glucose, maltose, and sucrose), and 1-naphthol was even used as the carbon source for growth when strain B2 cells had been preinduced by both 1-naphthol and glucose. A distinct two-component flavin-dependent monooxygenase, NdcA1A2, was found to be responsible for the initial hydroxylation of 1-naphthol to 1,2-dihydroxynaphthalene, a more toxic compound. Transcriptional levels of ndcA1A2 genes were significantly upregulated when strain B2 cells were cultured with both 1-naphthol and glucose compared to cells cultured with only 1-naphthol or glucose. Two transcriptional regulators, the activator NdcS and the inhibitor NdcR, were found to play key roles in the synergistic regulation of the transcription of the 1-naphthol initial catabolism genes ndcA1A2 IMPORTANCE Cometabolism is a widely observed phenomenon, especially in the field of microbial catabolism of highly toxic xenobiotics. However, the mechanisms of cometabolism are ambiguous, and the roles of the obligately coexisting growth substrates remain largely unknown. In this study, we revealed that the roles of the coexisting primary carbon sources (e.g., glucose) in the enhanced catabolism of the toxic compound 1-naphthol in Sphingobium sp. strain B2 were not solely because they were used as growth substrates to support cell growth but, more importantly, because they acted as coinducers to interact with two transcriptional regulators, the activator NdcS and the inhibitor NdcR, to synergistically regulate the transcription of the 1-naphthol initial catabolism genes ndcA1A2 Our findings provide new insights into the cometabolic mechanism of highly toxic compounds in microorganisms.
Collapse
|
10
|
García Rea VS, Muñoz Sierra JD, Fonseca Aponte LM, Cerqueda-Garcia D, Quchani KM, Spanjers H, van Lier JB. Enhancing Phenol Conversion Rates in Saline Anaerobic Membrane Bioreactor Using Acetate and Butyrate as Additional Carbon and Energy Sources. Front Microbiol 2020; 11:604173. [PMID: 33329495 PMCID: PMC7733923 DOI: 10.3389/fmicb.2020.604173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023] Open
Abstract
Phenolic industrial wastewater, such as those from coal gasification, are considered a challenge for conventional anaerobic wastewater treatment systems because of its extreme characteristics such as presence of recalcitrant compounds, high toxicity, and salinity. However, anaerobic membrane bioreactors (AnMBRs) are considered of potential interest since they retain all micro-organism that are required for conversion of the complex organics. In this study, the degradation of phenol as main carbon and energy source (CES) in AnMBRs at high salinity (8.0 g Na+⋅L–1) was evaluated, as well as the effect of acetate and an acetate-butyrate mixture as additional CES on the specific phenol conversion rate and microbial community structure. Three different experiments in two lab-scale (6.5 L) AnMBRs (35°C) were conducted. The first reactor (R1) was fed with phenol as the main CES, the second reactor was fed with phenol and either acetate [2 g COD⋅L–1], or a 2:1 acetate-butyrate [2 g COD⋅L–1] mixture as additional CES. Results showed that phenol conversion could not be sustained when phenol was the sole CES. In contrast, when the reactor was fed with acetate or an acetate-butyrate mixture, specific phenol conversion rates of 115 and 210 mgPh⋅gVSS–1 d–1, were found, respectively. The syntrophic phenol degrader Syntrophorhabdus sp. and the acetoclastic methanogen Methanosaeta sp. were the dominant bacteria and archaea, respectively, with corresponding relative abundances of up to 63 and 26%. The findings showed that dosage of additional CES allowed the development of a highly active phenol-degrading biomass, potentially improving the treatment of industrial and chemical wastewaters.
Collapse
Affiliation(s)
- Víctor S García Rea
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Julian D Muñoz Sierra
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands.,KWR Water Research Institute, Nieuwegein, Netherlands
| | - Laura M Fonseca Aponte
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | | | - Kiyan M Quchani
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Henri Spanjers
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
11
|
González-Cabaleiro R, Curtis TP, Ofiţeru ID. Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield. WATER RESEARCH 2019; 154:238-245. [PMID: 30798178 DOI: 10.1016/j.watres.2019.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The currently accepted biochemistry and bioenergetics of ammonia-oxidizing bacteria (AOB) show an inefficient metabolism: only 53.8% of the energy released when a mole of ammonia is oxidised and less than two of the electrons liberated can be directed to the autotrophic anabolism. However, paradoxically, AOB seem to thrive in challenging conditions: growing readily in virtually most aerobic environment, yet limited AOB exist in pure culture. In this study, a comprehensive model of the biochemistry of the metabolism of AOB is presented. Using bioenergetics calculations and selecting the minimum estimation for the energy dissipated in each of the metabolic steps, the model predicts the highest possible true yield of 0.16 gBio/gN and a yield of 0.13 gBio/gN when cellular maintenance is considered. Observed yields should always be lower than these values but the range of experimental values in literature vary between 0.04 and 0.45 gBio/gN. In this work, we discuss if this variance of observed values for AOB growth yield could be understood if other non-considered alternative energy sources are present in the biochemistry of AOB. We analyse how the predicted maximum growth yield of AOB changes considering co-metabolism, the use of hydroxylamine as a substrate, the abiotic oxidation of NO, energy harvesting in the monooxygenase enzyme or the use of organic carbon sources.
Collapse
Affiliation(s)
- Rebeca González-Cabaleiro
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK; School of Engineering, Department of Infrastructure and Environment, University of Glasgow, Rankine Building, Glasgow, 12 8LT, UK.
| | - Thomas Peter Curtis
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
| | - Irina Dana Ofiţeru
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Lan RS, Smith CA, Hyman MR. Oxidation of Cyclic Ethers by Alkane-Grown Mycobacterium vaccae
JOB5. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/rem.21364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Domingues PM, Louvado A, Oliveira V, Coelho FJCR, Almeida A, Gomes NCM, Cunha A. SELECTIVE CULTURES FOR THE ISOLATION OF BIOSURFACTANT PRODUCING BACTERIA: COMPARISON OF DIFFERENT COMBINATIONS OF ENVIRONMENTAL INOCULA AND HYDROPHOBIC CARBON SOURCES. Prep Biochem Biotechnol 2013; 43:237-55. [DOI: 10.1080/10826068.2012.719848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Khan MZ, Mondal PK, Sabir S. Aerobic granulation for wastewater bioremediation: A review. CAN J CHEM ENG 2012. [DOI: 10.1002/cjce.21729] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Dimitrov S, Pavlov T, Dimitrova N, Georgieva D, Nedelcheva D, Kesova A, Vasilev R, Mekenyan O. Simulation of chemical metabolism for fate and hazard assessment. II CATALOGIC simulation of abiotic and microbial degradation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:719-755. [PMID: 21999837 DOI: 10.1080/1062936x.2011.623322] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The unprecedented pollution of the environment by xenobiotic compounds has provoked the need to understand the biodegradation potential of chemicals. Mechanistic understanding of microbial degradation is a premise for adequate modelling of the environmental fate of chemicals. The aim of the present paper is to describe abiotic and biotic models implemented in CATALOGIC software. A brief overview of the specificities of abiotic and microbial degradation is provided followed by detailed descriptions of models built in our laboratory during the last decade. These are principally new models based on unique mathematical formalism already described in the first paper of this series, which accounts more adequately than currently available approaches the multipathway metabolic logic in prokaryotes. Based on simulated pathways of degradation, the models are able to predict quantities of transformation products, biological oxygen demand (BOD), carbon dioxide (CO(2)) production, and primary and ultimate half-lives. Interpretation of the applicability domain of models is also discussed.
Collapse
Affiliation(s)
- S Dimitrov
- Laboratory of Mathematical Chemistry, Bourgas, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mondal PK, Ahmad R, Usmani SQ. Anaerobic biodegradation of triphenylmethane dyes in a hybrid UASFB reactor for wastewater remediation. Biodegradation 2010; 21:1041-7. [PMID: 20449763 DOI: 10.1007/s10532-010-9364-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 04/22/2010] [Indexed: 11/30/2022]
Abstract
Anaerobic digestions have been proved more successful than aerobic systems for the degradation and destruction of dye-containing wastewaters. The performance of a hybrid up flow anaerobic sludge-filter bed (UASFB) reactor was tested with a synthetic wastewater containing Crystal violet (CV) as a carbon source and sodium acetate as a co-substrate. Continuous feeding of the reactor started with an initial OLR of 0.9 g COD/l-d and then it was increased step wise to 4 g COD l(-1) d(-1), while maintaining constant HRT (24 h). The optimum pH value and temperature for decolorization of crystal violet by this mixed culture species under anaerobic conditions were found to be 8-9 and 30-35°C respectively. N,N-dimethylaminophenol and N,N-bis (dimethylamino) benzophenone (Michler's Ketone) were detected as the degradative metabolites of Crystal Violet. Subsequently, N,N-dimethylaminophenol was further degraded to aniline in the reactor whereas Michler's ketone was not degraded under anaerobic conditions. The UASFB bioreactor was able to remove the CV completely up to a loading rate of 100 mg CV l(-1)d(-1).
Collapse
|
17
|
Nitrification and degradation of halogenated hydrocarbons--a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 2010; 86:435-44. [PMID: 20146060 DOI: 10.1007/s00253-010-2454-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
The process of nitrification has the potential for the in situ bioremediation of halogenated compounds provided a number of challenges can be overcome. In nitrification, the microbial process where ammonia is oxidized to nitrate, ammonia-oxidizing bacteria (AOB) are key players and are capable of carrying out the biodegradation of recalcitrant halogenated compounds. Through industrial uses, halogenated compounds often find their way into wastewater, contaminating the environment and bodies of water that supply drinking water. In the reclamation of wastewater, halogenated compounds can be degraded by AOB but can also be detrimental to the process of nitrification. This minireview considers the ability of AOB to carry out cometabolism of halogenated compounds and the consequent inhibition of nitrification. Possible cometabolism monitoring methods that were derived from current information about AOB genomes are also discussed. AOB expression microarrays have detected mRNA of genes that are expressed at higher levels during stress and are deemed "sentinel" genes. Promoters of selected "sentinel" genes have been cloned and used to drive the expression of gene-reporter constructs. The latter are being tested as early warning biosensors of cometabolism-induced damage in Nitrosomonas europaea with promising results. These and other biosensors may help to preserve the tenuous balance that exists when nitrification occurs in waste streams containing alternative AOB substrates such as halogenated hydrocarbons.
Collapse
|
18
|
Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Abstract
Recent field and laboratory studies have evaluated the potential for aerobic co-metabolism of chlorinated solvents. Different co-metabolic substrates and different methods of application have been tried, including growing indigenous microbes in situ, and injecting into the soil subsurface strains grown in subsurface reactors for their co-metabolic potential. There is much potential for using co-metabolism for treating a broad range of chlorinated aliphatic hydrocarbons. Recirculation wells have potential for adding soluble co-metabolic substrates (i.e. phenol and toluene) into contaminated aquifers, while direct addition of gaseous substrates (i.e. methane and propane) into aquifers also holds promise. Aromatic substrates (phenol and toluene) are best used for treatment of chlorinated ethenes, whereas gaseous co-metabolic substrate (methane and propane) are better suited for the treatment of chlorinated methanes and ethanes. Many factors can enhance co-metabolic transformations, such as nutrients and available energy sources.
Collapse
Affiliation(s)
- L Semprini
- Department of Civil, Construction, and Environmental Engineering, Oregon State University, Corvallis 97331-2302, USA.
| |
Collapse
|
20
|
Hur H, Newman LM, Wackett LP, Sadowsky MJ. Toluene 2-Monooxygenase-Dependent Growth of Burkholderia cepacia G4/PR1 on Diethyl Ether. Appl Environ Microbiol 1997; 63:1606-9. [PMID: 16535583 PMCID: PMC1389561 DOI: 10.1128/aem.63.4.1606-1609.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic bacterial growth on aromatic hydrocarbons typically requires oxygenase enzymes, which are known to fortuitously oxidize nongrowth substrates. In this study, we found that oxidation of diethyl ether by toluene 2-monooxygenase supported more rapid growth of Burkholderia cepacia G4/PR1 than did the aromatic substrates n-propylbenzene and o-xylene. The wild-type Burkholderia cepacia G4 failed to grow on diethyl ether. Purified toluene 2-monooxygenase protein components oxidized diethyl ether stoichiometrically to ethanol and acetaldehyde. Butyl methyl ether, diethyl sulfide, and 2-chloroethyl ethyl ether were oxidized by B. cepacia G4/PR1.
Collapse
|