1
|
Tu M, Ge B, Li J, Pan Y, Zhao B, Han J, Wu J, Zhang K, Liu G, Hou M, Yue M, Han X, Sun T, An Y. Emerging biological functions of Twist1 in cell differentiation. Dev Dyn 2025; 254:8-25. [PMID: 39254141 DOI: 10.1002/dvdy.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Twist1 is required for embryonic development and expresses after birth in mesenchymal stem cells derived from mesoderm, where it governs mesenchymal cell development. As a well-known regulator of epithelial-mesenchymal transition or embryonic organogenesis, Twist1 is important in a variety of developmental systems, including mesoderm formation, neurogenesis, myogenesis, cranial neural crest cell migration, and differentiation. In this review, we first highlight the physiological significance of Twist1 in cell differentiation, including osteogenic, chondrogenic, and myogenic differentiation, and then detail its probable molecular processes and signaling pathways. On this premise, we summarize the significance of Twist1 in distinct developmental disorders and diseases to provide a reference for studies on cell differentiation/development-related diseases.
Collapse
Affiliation(s)
- Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Bingqian Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Johnson AN. Myotube Guidance: Shaping up the Musculoskeletal System. J Dev Biol 2024; 12:25. [PMID: 39311120 PMCID: PMC11417883 DOI: 10.3390/jdb12030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell-cell connections. The process of myotube guidance connects myotubes with the correct tendons, orients myofiber morphology with the overall body plan, and generates a functional musculoskeletal system. Navigational signaling, addition of mass and volume, and identification of target cells are common events in myotube guidance and axon guidance, but surprisingly, the mechanisms regulating these events are not completely overlapping in myotubes and axons. This review summarizes the strategies that have evolved to direct myotube leading edges to predetermined tendon cells and highlights key differences between myotube guidance and axon guidance. The association of myotube guidance pathways with developmental disorders is also discussed.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Rauen KA, Tidyman WE. RASopathies - what they reveal about RAS/MAPK signaling in skeletal muscle development. Dis Model Mech 2024; 17:dmm050609. [PMID: 38847227 PMCID: PMC11179721 DOI: 10.1242/dmm.050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis. We also discuss the complex interactions of this pathway with other intracellular signaling pathways in the regulation of skeletal muscle development and growth, and the opportunities that RASopathy animal models provide for exploring the use of pathway inhibitors, typically used for cancer treatment, to correct the unique skeletal myopathy caused by the dysregulation of this pathway.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA, 95817, USA
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| | - William E Tidyman
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Zhu W, Huang Y, Yu C. The emerging role of circRNAs on skeletal muscle development in economical animals. Anim Biotechnol 2023; 34:2778-2792. [PMID: 36052979 DOI: 10.1080/10495398.2022.2118130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CircRNAs are a novel type of closed circular molecules formed through a covalent bond lacking a 5'cap and 3' end tail, which mainly arise from mRNA precursor. They are widely distributed in plants and animals and are characterized by stable structure, high conservativeness in cells or tissues, and showed the expression specificity at different stages of development in different tissues. CircRNAs have been gradually attracted wide attention with the development of RNA sequencing, which become a new research hotspot in the field of RNA. CircRNAs play an important role in gene expression regulation. Presently, the related circRNAs research in the regulation of animal muscle development is still at the initial stage. In this review, the formation, properties, biological functions of circRNAs were summarized. The recent research progresses of circRNAs in skeletal muscle growth and development from economic animals including livestock, poultry and fishes were introduced. Finally, we proposed a prospective for further studies of circRNAs in muscle development, and we hope our research could provide new ideas, some theoretical supports and helps for new molecular genetic markers exploitation and animal genetic breeding in future.
Collapse
Affiliation(s)
- Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
5
|
Hwang J, Jung HW, Kim KM, Jeong D, Lee JH, Hong JH, Jang WY. Regulation of myogenesis and adipogenesis by the electromagnetic perceptive gene. Sci Rep 2023; 13:21167. [PMID: 38036595 PMCID: PMC10689489 DOI: 10.1038/s41598-023-48360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
Obesity has been increasing in many regions of the world, including Europe, USA, and Korea. To manage obesity, we should consider it as a disease and apply therapeutic methods for its treatment. Molecular and therapeutic approaches for obesity management involve regulating biomolecules such as DNA, RNA, and protein in adipose-derived stem cells to prevent to be fat cells. Multiple factors are believed to play a role in fat differentiation, with one of the most effective factor is Ca2+. We recently reported that the electromagnetic perceptive gene (EPG) regulated intracellular Ca2+ levels under various electromagnetic fields. This study aimed to investigate whether EPG could serve as a therapeutic method against obesity. We confirmed that EPG serves as a modulator of Ca2+ levels in primary adipose cells, thereby regulating several genes such as CasR, PPARγ, GLU4, GAPDH during the adipogenesis. In addition, this study also identified EPG-mediated regulation of myogenesis that myocyte transcription factors (CasR, MyoG, MyoD, Myomaker) were changed in C2C12 cells and satellite cells. In vivo experiments carried out in this study confirmed that total weight/ fat/fat accumulation were decreased and lean mass was increased by EPG with magnetic field depending on age of mice. The EPG could serve as a potent therapeutic agent against obesity.
Collapse
Affiliation(s)
- Jangsun Hwang
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Kyung Min Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Daun Jeong
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jin Hyuck Lee
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Ho Hong
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Institute of Nano, Regeneration, and Reconstruction, College of Medicine, Korea University, 73 Korea-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Kim R, Kim JW, Choi H, Oh JE, Kim TH, Go GY, Lee SJ, Bae GU. Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling. J Ginseng Res 2023; 47:726-734. [PMID: 38107401 PMCID: PMC10721479 DOI: 10.1016/j.jgr.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 12/19/2023] Open
Abstract
Background Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.
Collapse
Affiliation(s)
- Ryuni Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jee Won Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyerim Choi
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ji-Eun Oh
- Department of Biomedical Laboratory Science, Far East University, Chungbuk-do, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ga-Yeon Go
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, Republic of Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhang C, Huang Y, Gao X, Ren H, Gao S, Zhu W. Biological functions of circRNAs and their advance on skeletal muscle development in bovine. 3 Biotech 2023; 13:133. [PMID: 37096117 PMCID: PMC10121973 DOI: 10.1007/s13205-023-03558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/10/2023] [Indexed: 04/26/2023] Open
Abstract
The development of skeletal muscle in animals is a complex biological process, which are strictly and precisely regulated by many genes and non-coding RNAs. Circular RNA (circRNA) was found as a novel class of functional non-coding RNA with ring structure in recent years, which appears in the process of transcription and is formed by covalent binding of single-stranded RNA molecules. With the development of sequencing and bioinformatics analysis technology, the functions and regulation mechanisms of circRNAs have attracted great attention due to its high stability characteristics. The role of circRNAs in skeletal muscle development have been gradually revealed, where circRNAs were involved in various biological processes, such as proliferation, differentiation, and apoptosis of skeletal muscle cells. In this review, we summarized the current studies advance of circRNAs involved in skeletal muscle development in bovine, and hope to gain a deeper understanding of the functional roles of the circRNAs in muscle growth. Our results will provide some theoretical supports and great helps for the genetic breeding of this species, and aiming at improving bovine growth and development and preventing muscle diseases.
Collapse
Affiliation(s)
- Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Xiaochan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471023 China
| |
Collapse
|
8
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
9
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Chang MW, Yang JH, Tsitsipatis D, Yang X, Martindale J, Munk R, Pandey P, Banskota N, Romero B, Batish M, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Wilson G, Gorospe M. Enhanced myogenesis through lncFAM-mediated recruitment of HNRNPL to the MYBPC2 promoter. Nucleic Acids Res 2022; 50:13026-13044. [PMID: 36533518 PMCID: PMC9825165 DOI: 10.1093/nar/gkac1174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.
Collapse
Affiliation(s)
- Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Screening and validation of reference genes for qRT-PCR of bovine skeletal muscle-derived satellite cells. Sci Rep 2022; 12:5653. [PMID: 35383222 PMCID: PMC8983775 DOI: 10.1038/s41598-022-09476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
The accuracy of sixteen commonly used internal reference genes was assessed in skeletal muscle-derived satellite cells of Qinchuan cattle at different stages of proliferation and induction of differentiation to determine the most suitable ones. Quantitative real-time PCR and three commonly used algorithmic programs, GeNorm, NormFinder and BestKeeper, were used to evaluate the stability of expression of the candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K , RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) in skeletal muscle-derived satellite cells at 0, 12, 24, 36 and 48 h of growth and after differentiation for 0, 2, 4, 6 and 8 days. The expression of two satellite cell marker genes, CCNA2 and MYF5, was used for validation analysis. The results of the software analyses showed that GAPDH and RPS15A were the most stable reference gene combinations during in vitro proliferation of bovine skeletal muscle-derived satellite cells, RPS15A and RPS9 were the most stable reference gene combinations during in vitro induction of differentiation of the cells, and PPIA was the least stable reference gene during proliferation and differentiation and was not recommended. This study lays the foundation for the selection of reference genes for qRT-PCR during the proliferation and induction of differentiation of bovine skeletal muscle-derived satellite cells.
Collapse
|
12
|
Tidyman WE, Goodwin AF, Maeda Y, Klein OD, Rauen KA. MEK-inhibitor-mediated rescue of skeletal myopathy caused by activating Hras mutation in a Costello syndrome mouse model. Dis Model Mech 2022; 15:272258. [PMID: 34553752 PMCID: PMC8617311 DOI: 10.1242/dmm.049166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes caused by mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due, in part, to inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction in myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction in p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS. Summary: A Costello syndrome (CS) mouse model carrying a heterozygous Hras p.G12V mutation was utilized to investigate Ras pathway dysregulation, revealing that increased MAPK signaling is the main cause of the muscle phenotype in CS.
Collapse
Affiliation(s)
- William E Tidyman
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Alice F Goodwin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Yoshiko Maeda
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
13
|
Zocchi M, Béchet D, Mazur A, Maier JA, Castiglioni S. Magnesium Influences Membrane Fusion during Myogenesis by Modulating Oxidative Stress in C2C12 Myoblasts. Nutrients 2021; 13:nu13041049. [PMID: 33804939 PMCID: PMC8063816 DOI: 10.3390/nu13041049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/31/2022] Open
Abstract
Magnesium (Mg) is essential to skeletal muscle where it plays a key role in myofiber relaxation. Although the importance of Mg in the mature skeletal muscle is well established, little is known about the role of Mg in myogenesis. We studied the effects of low and high extracellular Mg in C2C12 myogenic differentiation. Non-physiological Mg concentrations induce oxidative stress in myoblasts. The increase of reactive oxygen species, which occurs during the early phase of the differentiation process, inhibits myoblast membrane fusion, thus impairing myogenesis. Therefore, correct Mg homeostasis, also maintained through a correct dietary intake, is essential to assure the regenerative capacity of skeletal muscle fibers.
Collapse
Affiliation(s)
- Monica Zocchi
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.Z.); (J.A.M.)
| | - Daniel Béchet
- INRAE, UNH, Unitéde Nutrition Humaine, Université Clermont Auvergne, 63001 Clermont-Ferrand, France; (D.B.); (A.M.)
| | - André Mazur
- INRAE, UNH, Unitéde Nutrition Humaine, Université Clermont Auvergne, 63001 Clermont-Ferrand, France; (D.B.); (A.M.)
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.Z.); (J.A.M.)
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, 20133 Milan, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.Z.); (J.A.M.)
- Correspondence:
| |
Collapse
|
14
|
Yang Z, He T, Chen Q. The Roles of CircRNAs in Regulating Muscle Development of Livestock Animals. Front Cell Dev Biol 2021; 9:619329. [PMID: 33748107 PMCID: PMC7973088 DOI: 10.3389/fcell.2021.619329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
The muscle growth and development of livestock animals is a complex, multistage process, which is regulated by many factors, especially the genes related to muscle development. In recent years, it has been reported frequently that circular RNAs (circRNAs) are involved widely in cell proliferation, cell differentiation, and body development (including muscle development). However, the research on circRNAs in muscle growth and development of livestock animals is still in its infancy. In this paper, we briefly introduce the discovery, classification, biogenesis, biological function, and degradation of circRNAs and focus on the molecular mechanism and mode of action of circRNAs as competitive endogenous RNAs in the muscle development of livestock and poultry. In addition, we also discuss the regulatory mechanism of circRNAs on muscle development in livestock in terms of transcription, translation, and mRNAs. The purpose of this article is to discuss the multiple regulatory roles of circRNAs in the process of muscle development in livestock, to provide new ideas for the development of a new co-expression regulation network, and to lay a foundation for enriching livestock breeding and improving livestock economic traits.
Collapse
Affiliation(s)
- Zhenguo Yang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tianle He
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingyun Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Dang TTH, Yun JW. BMP10 positively regulates myogenic differentiation in C2C12 myoblasts via the Smad 1/5/8 signaling pathway. Mol Cell Biochem 2021; 476:2085-2097. [PMID: 33517521 DOI: 10.1007/s11010-021-04064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
BMP10 plays an essential role in regulating cardiac growth, chamber maturation, and maintaining normal expressions of several key cardiogenic factors; however, other functional roles of BMP10 in muscle remain unexplored. This study therefore undertook to investigate the roles of BMP10 in muscle physiology, using mouse-derived C2C12 myoblasts. Bmp10 silencing prevented a number of biological processes such as myogenic differentiation, glucose uptake, and lipid catabolism, whereas exogenous induction of BMP10 in C2C12 cells significantly stimulated the expression of proteins and genes involved in these processes, as well as mitochondrial biogenesis and thermogenesis, resulting in reduced lipid accumulation. A mechanistic study revealed that BMP10 stimulates myogenesis mainly via the Smad 1/5/8 signaling pathway. In conclusion, our data unveiled a previously unknown mechanism in the regulation of lipid metabolisms by BMP10 in muscle cells and identified its significant roles in systemic metabolic homeostasis, shedding light on BMP10 as a pharmacotherapeutic target to treat metabolic disorders.
Collapse
Affiliation(s)
- Trang Thi Huyen Dang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
16
|
Yang JH, Chang MW, Pandey PR, Tsitsipatis D, Yang X, Martindale JL, Munk R, De S, Abdelmohsen K, Gorospe M. Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. Nucleic Acids Res 2021; 48:12943-12956. [PMID: 33270893 DOI: 10.1093/nar/gkaa1151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Long noncoding (lnc)RNAs potently regulate gene expression programs in physiology and disease. Here, we describe a key function for lncRNA OIP5-AS1 in myogenesis, the process whereby myoblasts differentiate into myotubes during muscle development and muscle regeneration after injury. In human myoblasts, OIP5-AS1 levels increased robustly early in myogenesis, and its loss attenuated myogenic differentiation and potently reduced the levels of the myogenic transcription factor MEF2C. This effect relied upon the partial complementarity of OIP5-AS1 with MEF2C mRNA and the presence of HuR, an RNA-binding protein (RBP) with affinity for both transcripts. Remarkably, HuR binding to MEF2C mRNA, which stabilized MEF2C mRNA and increased MEF2C abundance, was lost after OIP5-AS1 silencing, suggesting that OIP5-AS1 might serve as a scaffold to enhance HuR binding to MEF2C mRNA, in turn increasing MEF2C production. These results highlight a mechanism whereby a lncRNA promotes myogenesis by enhancing the interaction of an RBP and a myogenic mRNA.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Yun HR, Jo YH, Kim J, Nguyen NNY, Shin Y, Kim SS, Choi TG. Palmitoyl Protein Thioesterase 1 Is Essential for Myogenic Autophagy of C2C12 Skeletal Myoblast. Front Physiol 2020; 11:569221. [PMID: 33178040 PMCID: PMC7593845 DOI: 10.3389/fphys.2020.569221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle differentiation is an essential process for the maintenance of muscle development and homeostasis. Reactive oxygen species (ROS) are critical signaling molecules involved in muscle differentiation. Palmitoyl protein thioesterase 1 (PPT1), a lysosomal enzyme, is involved in removing thioester-linked fatty acid groups from modified cysteine residues in proteins. However, the role of PPT1 in muscle differentiation remains to be elucidated. Here, we found that PPT1 plays a critical role in the differentiation of C2C12 skeletal myoblasts. The expression of PPT1 gradually increased in response to mitochondrial ROS (mtROS) during muscle differentiation, which was attenuated by treatment with antioxidants. Moreover, we revealed that PPT1 transactivation occurs through nuclear factor erythroid 2-regulated factor 2 (Nrf2) binding the antioxidant response element (ARE) in its promoter region. Knockdown of PPT1 with specific small interference RNA (siRNA) disrupted lysosomal function by increasing its pH. Subsequently, it caused excessive accumulation of autophagy flux, thereby impairing muscle fiber formation. In conclusion, we suggest that PPT1 is factor a responsible for myogenic autophagy in differentiating C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jieun Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ngoc Ngo Yen Nguyen
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Sung Soo Kim,
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Tae Gyu Choi,
| |
Collapse
|
18
|
Bishop PJ, Kinoshita Y, Lopes NN, Ward AS, Kohtz DS. Changes in Nup62 content affect contact-induced differentiation of cultured myoblasts. Differentiation 2020; 114:27-35. [PMID: 32554220 DOI: 10.1016/j.diff.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Differentiation of cultured skeletal myoblasts is induced by extrinsic signals that include reduction in ambient mitogen concentration and increased cell density. Using an established murine myoblast cell line (C2C12), we have found that experimental reduction of the nucleoporin p62 (Nup62) content of myoblasts enhances differentiation in high-mitogen medium, while forced expression of Nup62 inhibits density-induced differentiation. In contrast, differentiation of myoblasts induced by low-mitogen medium was unaffected by ectopic Nup62 expression. Further analyses suggested that Nup62 content affects density-induced myoblast differentiation through a mechanism involving activation of p38 MAP kinase. Nuclear pore complex (NPC) composition, in particular changes in NUP62 content, may be altered during viral infection, differentiation, and in neoplastic growth. The results support a functional role for changes in Nup62 composition in NPCs and density-induced myogenic differentiation, and suggest a link between loss of Nup62 content and induction of an intracellular stress signaling pathways.
Collapse
Affiliation(s)
- Patrick J Bishop
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine, One Gustave Levy Place, New York, NY, 10029, USA.
| | - N Natalie Lopes
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Avery S Ward
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - D Stave Kohtz
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| |
Collapse
|
19
|
Go GY, Jo A, Seo DW, Kim WY, Kim YK, So EY, Chen Q, Kang JS, Bae GU, Lee SJ. Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation. J Ginseng Res 2020; 44:435-441. [PMID: 32372865 PMCID: PMC7195574 DOI: 10.1016/j.jgr.2019.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. METHODS C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. RESULTS Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. CONCLUSION Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.
Collapse
Affiliation(s)
- Ga-Yeon Go
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ayoung Jo
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Woo-Young Kim
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yong Kee Kim
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, USA
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, USA
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Pandey PR, Yang JH, Tsitsipatis D, Panda AC, Noh JH, Kim KM, Munk R, Nicholson T, Hanniford D, Argibay D, Yang X, Martindale JL, Chang MW, Jones SW, Hernando E, Sen P, De S, Abdelmohsen K, Gorospe M. circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Res 2020; 48:3789-3805. [PMID: 31980816 PMCID: PMC7144931 DOI: 10.1093/nar/gkaa035] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 02/02/2023] Open
Abstract
By interacting with proteins and nucleic acids, the vast family of mammalian circRNAs is proposed to influence many biological processes. Here, RNA sequencing analysis of circRNAs differentially expressed during myogenesis revealed that circSamd4 expression increased robustly in mouse C2C12 myoblasts differentiating into myotubes. Moreover, silencing circSamd4, which is conserved between human and mouse, delayed myogenesis and lowered the expression of myogenic markers in cultured myoblasts from both species. Affinity pulldown followed by mass spectrometry revealed that circSamd4 associated with PURA and PURB, two repressors of myogenesis that inhibit transcription of the myosin heavy chain (MHC) protein family. Supporting the hypothesis that circSamd4 might complex with PUR proteins and thereby prevent their interaction with DNA, silencing circSamd4 enhanced the association of PUR proteins with the Mhc promoter, while overexpressing circSamd4 interfered with the binding of PUR proteins to the Mhc promoter. These effects were abrogated when using a mutant circSamd4 lacking the PUR binding site. Our results indicate that the association of PUR proteins with circSamd4 enhances myogenesis by contributing to the derepression of MHC transcription.
Collapse
Affiliation(s)
- Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| | - Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Douglas Hanniford
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Diana Argibay
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
21
|
Intramuscular Injection of Combined Calf Blood Compound (CFC) and Homeopathic Drug Tr14 Accelerates Muscle Regeneration In Vivo. Int J Mol Sci 2020; 21:ijms21062112. [PMID: 32204424 PMCID: PMC7139694 DOI: 10.3390/ijms21062112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle injuries in competitive sports cause lengthy absences of athletes from tournaments. This is of tremendous competitive and economic relevance for both the athletes and their respective clubs. Therapy for structural muscle lesions aims to promote regeneration and fast-track return-to-play. A common clinical treatment strategy for muscle injuries is the intramuscular injection of calf blood compound and the homeopathic drug, Tr14. Although the combination of these two agents was reported to reduce recovery time, the regulatory mechanism whereby this occurs remains unknown. In this in vivo study, we selected a rat model of mechanical muscle injury to investigate the effect of this combination therapy on muscle regeneration. Gene expression analysis and histological images revealed that this combined intramuscular injection for muscle lesions can enhance the expression of pro-myogenic genes and proteins and accelerate muscle regeneration. These findings are novel and depict the positive effects of calf blood compound and the homeopathic drug, Tr14, which are utilized in the field of Sports medicine.
Collapse
|
22
|
Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts. Int J Mol Sci 2019; 20:ijms20215273. [PMID: 31652937 PMCID: PMC6862063 DOI: 10.3390/ijms20215273] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts' proliferation but their effect on differentiation is still being researched. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is one of the key signaling pathways identified to be activated by IL-6. The aim of this study was to investigate myoblast fate as well as activation of JAK-STAT pathway at different physiologically relevant IL-6 concentrations (10 pg/mL; 100 pg/mL; 10 ng/mL) in the C2C12 mouse myoblast cell line and primary human myoblasts, isolated from eight young healthy male volunteers. Myoblasts' cell cycle progression, proliferation and differentiation in vitro were assessed. Low IL-6 concentrations facilitated cell cycle transition from the quiescence/Gap1 (G0/G1) to the synthesis (S-) phases. Low and medium IL-6 concentrations decreased the expression of myoblast determination protein 1 (MyoD) and myogenin and increased proliferating cell nuclear antigen (PCNA) expression. In contrast, high IL-6 concentration shifted a larger proportion of cells to the pro-differentiation G0/G1 phase of the cell cycle, substantiated by significant increases of both MyoD and myogenin expression and decreased PCNA expression. Low IL-6 concentration was responsible for prolonged JAK1 activation and increased suppressor of cytokine signaling 1 (SOCS1) protein expression. JAK-STAT inhibition abrogated IL-6-mediated C2C12 cell proliferation. In contrast, high IL-6 initially increased JAK1 activation but resulted in prolonged JAK2 activation and elevated SOCS3 protein expression. High IL-6 concentration decreased interleukin-6 receptor (IL-6R) expression 24 h after treatment whilst low IL-6 concentration increased IL-6 receptor (IL-6R) expression at the same time point. In conclusion, this study demonstrated that IL-6 has concentration- and time-dependent effects on both C2C12 mouse myoblasts and primary human myoblasts. Low IL-6 concentration induces proliferation whilst high IL-6 concentration induces differentiation. These effects are mediated by specific components of the JAK/STAT/SOCS pathway.
Collapse
|
23
|
Exogenous Expression of an Alternative Splicing Variant of Myostatin Prompts Leg Muscle Fiber Hyperplasia in Japanese Quail. Int J Mol Sci 2019; 20:ijms20184617. [PMID: 31540432 PMCID: PMC6770055 DOI: 10.3390/ijms20184617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/03/2022] Open
Abstract
Myostatin (MSTN) negatively regulates muscle growth and development through inhibiting myoblast proliferation and differentiation. Five alternative splicing isoforms of MSTN (MSTN-A to MSTN-E) have been discovered in domestic avian species. MSTN-A has high expression in skeletal muscle and encodes the full-length peptide with anti-myogenic activity. Another isoform, MSTN-B, is also highly expressed in skeletal muscle and encodes a truncated peptide that has pro-myogenic capabilities in vitro, which include promoting the proliferation and differentiation of quail muscle precursor cells. The objective of this study was to investigate overexpression of MSTN-B in vivo by using two independent lines of transgenic Japanese quail with expression directed in the skeletal muscle. Unexpectedly, the chicken skeletal muscle alpha actin 1 (cACTA1) promoter resulted in restricted exogenous MSTN-B protein expression to certain skeletal muscles, such as the gastrocnemius and tibialis anterior, but not the pectoralis major muscle. Gastrocnemius weight as a percentage of body weight in transgenic quail was increased compared to non-transgenic quail at posthatch day 21 (D21) and posthatch D42. An increase in the size of the gastrocnemius in transgenic quail was attributed to an increase in fiber number but not fiber cross-sectional area (CSA). During embryonic development, paired box 7 (PAX7) expression was prolonged in the transgenic embryos, but other myogenic regulatory factors (MRFs) were unchanged after MSTN-B overexpression. Taken together, these data provide novel insights into the regulation of skeletal muscle development by alternative splicing mechanisms in avians.
Collapse
|
24
|
Dephosphorylation of HDAC4 by PP2A-Bδ unravels a new role for the HDAC4/MEF2 axis in myoblast fusion. Cell Death Dis 2019; 10:512. [PMID: 31273193 PMCID: PMC6609635 DOI: 10.1038/s41419-019-1743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 11/14/2022]
Abstract
Muscle formation is controlled by a number of key myogenic transcriptional regulators that govern stage-specific gene expression programs and act as terminal effectors of intracellular signaling pathways. To date, the role of phosphatases in the signaling cascades instructing muscle development remains poorly understood. Here, we show that a specific PP2A-B55δ holoenzyme is necessary for skeletal myogenesis. The primary role of PP2A-B55δ is to dephosphorylate histone deacetylase 4 (HDAC4) following myocyte differentiation and ensure repression of Myocyte enhancer factor 2D (MEF2D)-dependent gene expression programs during myogenic fusion. As a crucial HDAC4/MEF2D target gene that governs myocyte fusion, we identify ArgBP2, an upstream inhibitor of Abl, which itself is a repressor of CrkII signaling. Consequently, cells lacking PP2A-B55δ show upregulation of ArgBP2 and hyperactivation of CrkII downstream effectors, including Rac1 and FAK, precluding cytoskeletal and membrane rearrangements associated with myoblast fusion. Both in vitro and in zebrafish, loss-of-function of PP2A-B55δ severely impairs fusion of myocytes and formation of multinucleated muscle fibers, without affecting myoblast differentiation. Taken together, our results establish PP2A-B55δ as the first protein phosphatase to be involved in myoblast fusion and suggest that reversible phosphorylation of HDAC4 may coordinate differentiation and fusion events during myogenesis.
Collapse
|
25
|
Barnes TL, Beede KA, Merrick EM, Cadaret CN, Cupp AS, Yates DT. Impaired muscle stem cell function in cows with high concentrations of androstenedione in their follicular fluid. Transl Anim Sci 2018; 2:S27-S30. [PMID: 30627703 PMCID: PMC6310365 DOI: 10.1093/tas/txy050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/14/2018] [Indexed: 12/02/2022] Open
Affiliation(s)
- Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, NE
| | - Elena M Merrick
- Department of Animal Science, University of Nebraska-Lincoln, NE
| | | | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, NE
| |
Collapse
|
26
|
Abu-Elmagd M. Use of chick neural tube for optimizing the PSM and epithelial somites electroporation parameters: A detailed protocol. J Biol Methods 2018; 5:e93. [PMID: 31453243 PMCID: PMC6706099 DOI: 10.14440/jbm.2018.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 11/23/2022] Open
Abstract
Somite myogenesis is one of the crucial early embryonic events that lead to the formation of muscular tissue. A complex of dynamic gene regulatory networks masters this event. To understand and analyze these networks, there remains a genuine need for the use of a reproducible and highly efficient gene transfer technique. In vivo electroporation has proven to be amongst the best approaches in achieving a high level of gene transfer. However, unoptimized electroporation conditions can directly cause varying degrees of cellular damage which may induce abnormal embryonic development as well as changes in the endogenous gene expression. Presegmented mesoderm and epithelial somites are not easy to electroporate. Chick neural tube has served in many functional studies as an ideal experimental model organ which is both robust and easily manipulated. In the current detailed protocol, the neural tube was used as a tool to optimize the electroporation conditions which were subsequently applied in the electroporation of the presegmented mesoderm and epithelial somites. The protocol highlights important notes and hints that enable reproducible results and could be applied in the in vivo electroporation of other chick embryo tissues.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Simulated microgravity attenuates myogenic differentiation via epigenetic regulations. NPJ Microgravity 2018; 4:11. [PMID: 29845109 PMCID: PMC5966377 DOI: 10.1038/s41526-018-0045-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanisms involved in myogenic differentiation are relatively well-known. Myogenic differentiation is regulated by the sequential activation of the basic helix-loop-helix myogenic regulatory transcription factors (MRFs), and biomechanical signals play an important role in the regulation of myogenesis. In this study, we sought to determine whether simulated microgravity culture using Gravite® may affect myoblast differentiation and expression of MRF genes. Although rat myoblasts, L6 cells were differentiated to myotubes in an incubation period-dependent manner, myogenesis of L6 cells was significantly attenuated under simulated microgravity (10-3G) conditions. Real-time Reverse transcription polymerase chain reaction (RT-PCR) showed that expressions of Myog, Myf6, Mef2c, Des, and Ckm under 1 G conditions increase in an incubation period-dependent manner, and that Myod1 expression was specifically observed to increase transiently in the early phase. However, expressions of Myod1 and Myog were significantly inhibited under simulated microgravity conditions. To clarify the molecular mechanisms, L6 cells were treated with 5-AzaC, and further incubated with differentiation medium under 1 G or 10-3 G conditions. The results showed differences in expression levels of Myod1, Myog, and, as well as those of myotube thickness between 1 G and 10-3 G conditions, completely disappeared in this experimental condition. Modified HpaII tiny fragment enrichment by ligation-mediated PCR (HELP)-assay showed that kinetic changes of DNA methylation status were attenuated in simulated microgravity conditions. These results indicate that microgravity regulates myogenesis and Myod1 expression by controlling DNA methylation.
Collapse
|
28
|
Wang D, Gao CQ, Chen RQ, Jin CL, Li HC, Yan HC, Wang XQ. Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells. Oncotarget 2017; 7:30845-54. [PMID: 27127174 PMCID: PMC5058722 DOI: 10.18632/oncotarget.9010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
The focal adhesion kinase (FAK) signaling pathway contributes to the cell migration and adhesion that is critical for wound healing and regeneration of damaged muscle, but its function in skeletal muscle satellite cells (SCs) is less clear. We compared the migration and adhesion of SCs derived from two species of pig (Lantang and Landrace) in vitro, and explored how FAK signaling modulates the two processes. The results showed that Lantang SCs had greater ability to migrate and adhere to fibronection (P < 0.05) than Landrace SCs. Compared to Landrace SCs, Lantang SCs expressed many more focal adhesion (FA) sites, which were indicated by the presence of p-paxillin (Tyr118), and exhibited less F-actin reorganization 24 h after seeding onto fibronectin. Levels of p-FAK (Tyr397) and p-paxillin (Tyr118) were greater (P < 0.05) in Lantang SCs than Landrace SCs after migration for 24 h. Similarly, Lantang SCs showed much higher levels of p-FAK (Tyr397), p-paxillin (Tyr118) and p-Akt (Ser473) than Landrace SCs 2 h after adhesion. Treatment with the FAK inhibitor PF-573228 (5 or 10 μmol/L) inhibited Lantang SC migration and adhesion to fibronectin (P < 0.05), decreased levels of p-paxillin (Tyr118) and p-Akt (Ser473) (P < 0.05), and suppressed the formation of FA sites on migrating SCs. Thus FAK appears to play a key role in the regulation of SC migration and adhesion necessary for muscle regeneration.
Collapse
Affiliation(s)
- Dan Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Rong-Qiang Chen
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Cheng-Long Jin
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Hai-Chang Li
- Davis Heart and Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, OH, USA
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Kim J, Park MY, Kim Y, Yoon KS, Clark JM, Park Y, Whang KY. 4,4'-Dichlorodiphenyltrichloroethane (DDT) and 4,4'-dichlorodiphenyldichloroethylene (DDE) inhibit myogenesis in C2C12 myoblasts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5176-5185. [PMID: 28437004 DOI: 10.1002/jsfa.8399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/08/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Most countries have banned the use of 4,4'-dichlorodiphenyltrichloroethane (DDT). However, owing to its extremely high lipophilic characteristics, DDT and its metabolite 4,4'-dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and in many types of food. The positive correlation between exposure to insecticides, including DDT and DDE, and weight gain, resulting in impaired energy metabolism in offspring following perinatal DDT and DDE exposure, was previously reported. Therefore the influence of DDT and DDE on myogenesis using C2C12 myoblasts was investigated in this study. RESULTS DDT and DDE decreased myotube formation dose- and time-dependently. Among myogenic regulatory factors, DDT and DDE mainly decreased MyoD1 and Myf5 expression. DDT and DDE treatment also altered Myostatin expression, phosphorylation of protein kinase B, p70 ribosomal protein S6 kinase, forkhead box O protein 3 and mammalian target of rapamycin, resulting in attenuation of myotube formation. CONCLUSION These results may have significant implications for understanding the effects of developmental exposure of DDT and DDE on myogenesis and development of obesity and type 2 diabetes later in life. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Young Park
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kyong Sup Yoon
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University, Edwardsville, IL, USA
| | - John Marshall Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Li C, Li X, Yao Y, Ma Q, Ni W, Zhang X, Cao Y, Hazi W, Wang D, Quan R, Hou X, Liu Z, Zhan Q, Liu L, Zhang M, Yu S, Hu S. Genome-wide analysis of circular RNAs in prenatal and postnatal muscle of sheep. Oncotarget 2017; 8:97165-97177. [PMID: 29228601 PMCID: PMC5722553 DOI: 10.18632/oncotarget.21835] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/23/2017] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs), a type of non-coding RNA with circular structure, were generated by back splicing and widely expressed in animals and plants. Recent studies have shown that circRNAs extensively participate in cell proliferation, cell differentiation, cell autophagy and other biological processes. However, the role and expression of circRNAs in the development and growth of muscle have not been studied in sheep. In our study, we first used RNA-seq to study the circRNAs in prenatal and postnatal longissimus dorsi muscle of sheep. A total of 6113 circRNAs were detected from the RNA-seq data. Several circRNAs were identified using reverse transcription PCR, DNA sequencing and RNase R digestion experiments. The expression levels of several circRNAs in prenatal and postnatal muscle were confirmed by Real-Time RT-PCR. The gene ontology (GO) and KEGG enrichment analysis of the host gene of the circRNAs showed that these circRNAs were mainly involved in the growth and development of muscle related signaling pathways. These circRNAs might sponge microRNAs (miRNAs) in predicted circRNA-miRNA-mRNA networks. The circRNAs expression profiles in muscle provided an important reference for the study of circRNAs in sheep.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yang Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qiman Ma
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiangyu Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yang Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Wureli Hazi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Dawei Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Renzhe Quan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoxu Hou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhijin Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qianqian Zhan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Shuting Yu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
31
|
Li Y, Zhang H, Chen YP, Ying ZX, Su WP, Zhang LL, Wang T. Effects of dietary l-methionine supplementation on the growth performance, carcass characteristics, meat quality, and muscular antioxidant capacity and myogenic gene expression in low birth weight pigs1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Y. Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - H. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - Y. P. Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - Z. X. Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - W. P. Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - L. L. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - T. Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| |
Collapse
|
32
|
Lee HJ, Kao CY, Lin SC, Xu M, Xie X, Tsai SY, Tsai MJ. Dysregulation of nuclear receptor COUP-TFII impairs skeletal muscle development. Sci Rep 2017; 7:3136. [PMID: 28600496 PMCID: PMC5466650 DOI: 10.1038/s41598-017-03475-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/28/2017] [Indexed: 02/06/2023] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) has been shown to inhibit myogenesis and skeletal muscle metabolism in vitro. However, its precise role and in vivo function in muscle development has yet to be clearly defined. COUP-TFII protein expression level is high in undifferentiated progenitors and gradually declines during differentiation, raising an important question of whether downregulation of COUP-TFII expression is required for proper muscle cell differentiation. In this study, we generated a mouse model ectopically expressing COUP-TFII in myogenic precursors to maintain COUP-TFII activity during myogenesis and found that elevated COUP-TFII activity resulted in inefficient skeletal muscle development. Using in vitro cell culture and in vivo mouse models, we showed that COUP-TFII hinders myogenic development by repressing myoblast fusion. Mechanistically, the inefficient muscle cell fusion correlates well with the transcriptional repression of Npnt, Itgb1D and Cav3, genes important for cell-cell fusion. We further demonstrated that COUP-TFII also reduces the activation of focal adhesion kinase (FAK), an integrin downstream regulator which is essential for fusion process. Collectively, our studies highlight the importance of down-regulation of COUP-TFII signaling to allow for the induction of factors crucial for myoblast fusion.
Collapse
Affiliation(s)
- Hui-Ju Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chung-Yang Kao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shih-Chieh Lin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Mafei Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xin Xie
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Griffin J, St-Pierre N, Lilburn M, Wick M. Transcriptional comparison of myogenesis in leghorn and low score normal embryos. Poult Sci 2017; 96:1531-1543. [DOI: 10.3382/ps/pew452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
|
34
|
Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9. Stem Cells Int 2017; 2017:9210494. [PMID: 28473859 PMCID: PMC5394914 DOI: 10.1155/2017/9210494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/05/2017] [Indexed: 01/02/2023] Open
Abstract
It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To verify this hypothesis, we generated MYOGENIN-mutated human iPS cells by using CRISPR/Cas9 genome-editing technology. Our results suggest that MYOD1-independent or MYOD1-dependent mechanisms can compensate for the loss of MYOGENIN and that these mechanisms are likely to be crucial for regulating skeletal muscle differentiation and formation.
Collapse
|
35
|
Ma M, Wang X, Chen X, Cai R, Chen F, Dong W, Yang G, Pang W. MicroRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/AKT/mTOR signaling pathway. RNA Biol 2017; 14:347-360. [PMID: 28085550 DOI: 10.1080/15476286.2017.1279786] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle is the dominant executant in locomotion and regulator in energy metabolism. Embryonic myogenesis and postnatal muscle growth are controlled by a cascade of transcription factors and epigenetic regulatory mechanisms. MicroRNAs (miRNAs), a family of non-coding RNA of 22 nucleotides in length, post-transcriptionally regulates expression of mRNA by pairing the seed sequence to 3' UTR of target mRNA. Increasing evidence has demonstrated that miRNAs are important regulators in diverse myogenic processes. The profiling of miRNA expression revealed that miR-432 is more enriched in the longissimus dorsi of 35-day-old piglets than that of adult pigs. Our gain of function study showed that miR-432 can negatively regulate both myoblast proliferation and differentiation. Mechanically, we found that miR-432 is able to down-regulate E2F transcription factor 3 (E2F3) to inactivate the expression of cell cycle and myogenic genes. We also identified that phosphatidylinositol 3-kinase regulatory subunit (P55PIK) is another target gene of miR-432 in muscle cells. downregulation of P55PIK by miR-432 leads to inhibition of P55PIK-mediated PI3K/AKT/mTOR signaling pathway during differentiation. The blocking effect of miR-432 on this pathway can be rescued by insulin treatment. Taken together, our findings identified microRNA-432 as a potent inhibitor of myogenesis which functions by targeting E2F3 and P55PIK in muscle cells.
Collapse
Affiliation(s)
- Meilin Ma
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| | - Xiangming Wang
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| | - Xiaochang Chen
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| | - Rui Cai
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| | - Fenfen Chen
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| | - Wuzi Dong
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| | - Gongshe Yang
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| | - Weijun Pang
- a Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi , China
| |
Collapse
|
36
|
Lammirato A, Patsch K, Feiereisen F, Maly K, Nofziger C, Paulmichl M, Hackl H, Trajanoski Z, Valovka T, Huber LA, Vietor I. TIS7 induces transcriptional cascade of methylosome components required for muscle differentiation. BMC Biol 2016; 14:95. [PMID: 27782840 PMCID: PMC5080701 DOI: 10.1186/s12915-016-0318-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/14/2016] [Indexed: 02/01/2023] Open
Abstract
Background TPA Induced Sequence 7 acts as a transcriptional co-regulator controlling the expression of genes involved in differentiation of various cell types, including skeletal myoblasts. We and others have shown that TIS7 regulates adult myogenesis through MyoD, one of the essential myogenic regulatory factors. Results Here, we present data identifying ICln as the specific, novel protein downstream of TIS7 controlling myogenesis. We show that TIS7/ICln epigenetically regulate myoD expression controlling protein methyl transferase activity. In particular, ICln regulates MyoD expression via its interaction with PRMT5 by an epigenetic modification that utilizes symmetrical di-methylation of histone H3 on arginine 8. We provide multiple evidences that TIS7 directly binds DNA, which is a functional feature necessary for its role in transcriptional regulation. Conclusion We present here a molecular insight into TIS7-specific control of MyoD gene expression and thereby skeletal muscle differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0318-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Lammirato
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Katherin Patsch
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Fabien Feiereisen
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Karl Maly
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Taras Valovka
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Ilja Vietor
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria.
| |
Collapse
|
37
|
Huang SC, Zhou A, Nguyen DT, Zhang HS, Benz EJ. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation. J Biol Chem 2016; 291:25591-25607. [PMID: 27780863 DOI: 10.1074/jbc.m116.761296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/28/2023] Open
Abstract
Protein 4.1R (4.1R) isoforms are expressed in both cardiac and skeletal muscle. 4.1R is a component of the contractile apparatus. It is also associated with dystrophin at the sarcolemma in skeletal myofibers. However, the expression and function of 4.1R during myogenesis have not been characterized. We now report that 4.1R expression increases during C2C12 myoblast differentiation into myotubes. Depletion of 4.1R impairs skeletal muscle differentiation and is accompanied by a decrease in the levels of myosin heavy and light chains and caveolin-3. Furthermore, the expression of myogenin at the protein, but not mRNA, level is drastically decreased in 4.1R knockdown myocytes. Similar results were obtained using MyoD-induced differentiation of 4.1R-/- mouse embryonic fibroblast cells. von Hippel-Lindau (VHL) protein is known to destabilize myogenin via the ubiquitin-proteasome pathway. We show that 4.1R associates with VHL and, when overexpressed, reverses myogenin ubiquitination and stability. This suggests that 4.1R may influence myogenesis by preventing VHL-mediated myogenin degradation. Together, our results define a novel biological function for 4.1R in muscle differentiation and provide a molecular mechanism by which 4.1R promotes myogenic differentiation.
Collapse
Affiliation(s)
- Shu-Ching Huang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, .,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Anyu Zhou
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Dan T Nguyen
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
38
|
Boyarchuk E, Robin P, Fritsch L, Joliot V, Ait-Si-Ali S. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry. J Vis Exp 2016. [PMID: 27286495 DOI: 10.3791/53924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Skeletal muscle terminal differentiation starts with the commitment of pluripotent mesodermal precursor cells to myoblasts. These cells have still the ability to proliferate or they can differentiate and fuse into multinucleated myotubes, which maturate further to form myofibers. Skeletal muscle terminal differentiation is orchestrated by the coordinated action of various transcription factors, in particular the members of the Muscle Regulatory Factors or MRFs (MyoD, Myogenin, Myf5, and MRF4), also called the myogenic bHLH transcription factors family. These factors cooperate with chromatin-remodeling complexes within elaborate transcriptional regulatory network to achieve skeletal myogenesis. In this, MyoD is considered the master myogenic transcription factor in triggering muscle terminal differentiation. This notion is strengthened by the ability of MyoD to convert non-muscle cells into skeletal muscle cells. Here we describe an approach used to identify MyoD protein partners in an exhaustive manner in order to elucidate the different factors involved in skeletal muscle terminal differentiation. The long-term aim is to understand the epigenetic mechanisms involved in the regulation of skeletal muscle genes, i.e., MyoD targets. MyoD partners are identified by using Tandem Affinity Purification (TAP-Tag) from a heterologous system coupled to mass spectrometry (MS) characterization, followed by validation of the role of relevant partners during skeletal muscle terminal differentiation. Aberrant forms of myogenic factors, or their aberrant regulation, are associated with a number of muscle disorders: congenital myasthenia, myotonic dystrophy, rhabdomyosarcoma and defects in muscle regeneration. As such, myogenic factors provide a pool of potential therapeutic targets in muscle disorders, both with regard to mechanisms that cause disease itself and regenerative mechanisms that can improve disease treatment. Thus, the detailed understanding of the intermolecular interactions and the genetic programs controlled by the myogenic factors is essential for the rational design of efficient therapies.
Collapse
Affiliation(s)
- Ekaterina Boyarchuk
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Philippe Robin
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Lauriane Fritsch
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Véronique Joliot
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité;
| | - Slimane Ait-Si-Ali
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité;
| |
Collapse
|
39
|
Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation. Stem Cell Res 2015; 15:542-553. [DOI: 10.1016/j.scr.2015.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/20/2022] Open
|
40
|
Abstract
The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
41
|
Zhao C, Carrillo JA, Tian F, Zan L, Updike SM, Zhao K, Zhan F, Song J. Genome-Wide H3K4me3 Analysis in Angus Cattle with Divergent Tenderness. PLoS One 2015; 10:e0115358. [PMID: 26086782 PMCID: PMC4473007 DOI: 10.1371/journal.pone.0115358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022] Open
Abstract
Tenderness is one of the most important properties of meat quality, which is influenced by genetic and environmental factors. As an intensively studied epigenetic marker, histone methylation, occurring on arginine and lysine residues, has pivotal regulatory functions on gene expression. To examine whether histone methylation involves in beef tenderness variation, we analyzed the transcriptome and H3K4me3 enrichment profiles of muscle strips obtained from the longissimus dorsi (LD) of Angus steers previously classify to the tender or tough group. We first plotted a global bovine H3K4me3 map on chromosomes and called peak-enriched regions and genes. We found that majorities of H3K4me3 on genes were occupying the first intron and intergenic regions and its maps displayed similar patterns in tender and tough groups, with high H3K4me3 enrichment surrounding the transcription start site (TSS). We also explored the relationship of H3K4me3 and gene expression. The results showed that H3K4me3 enrichment is highly positively correlated with gene expression across the whole genome. Cluster analysis results confirmed the relationship of H3K4me3 enrichment and gene expression. By using a pathway-based approach in genes with H3K4me3 enrichment in promoter regions from the tender cluster, we revealed that those genes involved in the development of different tissues-connective tissue, skeletal and muscular system and functional tissues-; while in tough group those genes engaged in cell death, lipid metabolism and small molecule biochemistry. The results from this study provide a deep insight into understanding of the mechanisms of epigenetic regulations in meat quality and beef tenderness.
Collapse
Affiliation(s)
- Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - José A. Carrillo
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Fei Tian
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Scott M. Updike
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Fei Zhan
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States of America
- * E-mail:
| |
Collapse
|
42
|
Masilamani TJ, Loiselle JJ, Sutherland LC. Assessment of reference genes for real-time quantitative PCR gene expression normalization during C2C12 and H9c2 skeletal muscle differentiation. Mol Biotechnol 2014; 56:329-39. [PMID: 24146429 DOI: 10.1007/s12033-013-9712-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Skeletal muscle differentiation occurs during muscle development and regeneration. To initiate and maintain the differentiated state, a multitude of gene expression changes occur. Accurate assessment of these differentiation-related gene expression changes requires good quality template, but more specifically, appropriate internal controls for normalization. Two cell line-based models used for in vitro analyses of muscle differentiation incorporate mouse C2C12 and rat H9c2 cells. In this study, we set out to identify the most appropriate controls for mRNA expression normalization during C2C12 and H9c2 differentiation. We assessed the expression profiles of Actb, Gapdh, Hprt, Rps12 and Tbp during C2C12 differentiation and of Gapdh and Rps12 during H9c2 differentiation. Using NormFinder, we validated the stability of the genes individually and of the geometric mean generated from different gene combinations. We verified our results using Myogenin. Our study demonstrates that using the geometric mean of a combination of specific reference genes for normalization provides a platform for more precise test gene expression assessment during myoblast differentiation than using the absolute expression value of an individual gene and reinforces the necessity of reference gene validation.
Collapse
Affiliation(s)
- Twinkle J Masilamani
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada,
| | | | | |
Collapse
|
43
|
Antigny F, Konig S, Bernheim L, Frieden M. Inositol 1,4,5 trisphosphate receptor 1 is a key player of human myoblast differentiation. Cell Calcium 2014; 56:513-21. [PMID: 25468730 DOI: 10.1016/j.ceca.2014.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022]
Abstract
Cytosolic Ca(2+) signals are fundamental for the early and late steps of myoblast differentiation and are, as in many cells, generated by Ca(2+) release from internal stores as well as by plasma membrane Ca(2+) entry. Our recent studies identified the store-operated Ca(2+) channels, Orai1 and TRPC1&C4, as crucial for the early steps of human myogenesis and for the late fusion events. In the present work, we assessed the role of the inositol-1,4,5 tris-phosphate receptor (IP3R) type 1 during human myoblast differentiation. We demonstrated, using siRNA strategy that IP3R1 is required for the expression of muscle-specific transcription factors such as myogenin and MEF2 (myocyte enhancer factor 2), and for the formation of myotubes. The knockdown of IP3R1 strongly reduced endogenous spontaneous Ca(2+) transients, and attenuated store-operated Ca(2+) entry. As well, two Ca(2+)-dependent key enzymes of muscle differentiation, NFAT and CamKII are down-regulated upon siIP3R1 treatment. On the contrary, the overexpression of IP3R1 accelerated myoblasts differentiation. These findings identify Ca(2+) release mediated by IP3R1 as an essential mechanism during the early steps of myoblast differentiation.
Collapse
MESH Headings
- Calcium/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- MEF2 Transcription Factors/physiology
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/physiology
- Myogenin/physiology
- NFATC Transcription Factors/physiology
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
- Fabrice Antigny
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Stéphane Konig
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Maud Frieden
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland; Department of Cell Physiology and Metabolism, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
44
|
Di Renzo L, Gratteri S, Sarlo F, Cabibbo A, Colica C, De Lorenzo A. Individually tailored screening of susceptibility to sarcopenia using p53 codon 72 polymorphism, phenotypes, and conventional risk factors. DISEASE MARKERS 2014; 2014:743634. [PMID: 25371596 PMCID: PMC4211310 DOI: 10.1155/2014/743634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/22/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIM p53 activity plays a role in muscle homeostasis and skeletal muscle differentiation; all pathways that lead to sarcopenia are related to p53 activities. We investigate the allelic frequency of the TP53 codon 72 in exon 4 polymorphism in the Italian female population and the association with appendicular skeletal muscle mass index in normal weight (NW), normal weight obese (NWO), and preobese-obese (Preob-Ob) subjects. METHODS We evaluated anthropometry, body composition, and p53 polymorphism in 140 women distinguished in NW, NWO, and Preob-Ob. RESULTS *Arg/*Arg genotype increases sarcopenia risk up to 20% (*Arg/*Arg genotype OR = 1.20; 95% CI = 0.48-2.9; *proallele carriers OR = 0.83; 95% CI = 0.83-2.06). The risk of being sarcopenic for *Arg/*Arg genotype in NWO and Preob-Ob is 31% higher than NW carriers of *proallele (RR = 0,31, 95% CI = 0,15-0,66, P = 0,0079). We developed a model able to predict sarcopenia risk based on age, body fat, and p53 polymorphism. CONCLUSION Our study evidences that genotyping TP53 polymorphism could be a useful new genetic approach, in association with body composition evaluations, to assess sarcopenia risk.
Collapse
Affiliation(s)
- Laura Di Renzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomics, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Nuova Clinica Annunziatella, 00147 Roma, Italy
| | - Santo Gratteri
- Department of Surgery and Medical Science, University “Magna Graecia”, 88100 Germaneto, Italy
| | - Francesca Sarlo
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, Italy
| | - Andrea Cabibbo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmen Colica
- CNR, ISN UOS of Pharmacology, Department of Pharmacology, University “Magna Graecia”, 88100 Roccelletta di Borgia, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomics, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Nuova Clinica Annunziatella, 00147 Roma, Italy
- National Institute for Mediterranean Diet and Nutrigenomics (I.N.Di.M.), 87032 Amantea, Italy
| |
Collapse
|
45
|
Choi Y, Suh Y, Ahn J, Lee K. Muscle hypertrophy in heavy weight Japanese quail line: Delayed muscle maturation and continued muscle growth with prolonged upregulation of myogenic regulatory factors. Poult Sci 2014; 93:2271-7. [DOI: 10.3382/ps.2013-03844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. JAKSTAT 2014; 2:e23282. [PMID: 24058805 PMCID: PMC3710318 DOI: 10.4161/jkst.23282] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Myogenic differentiation plays an important role in muscle regeneration and is regulated by two transcription factor families, MRFs and MEF2, which induce differentiation of myoblasts through expression of the muscle-specific gene, myogenin. In addition, many intracellular signaling pathways are also involved in myogenic differentiation, including p38 MAPK, ERK/MAPK and PI3K/AKT. The JAK-STAT pathway is activated by various cytokines and positively or negatively regulates the differentiation of myoblasts. JAK1 plays a notable role in proliferation; whereas, JAK2 and JAK3 function mainly in differentiation. The STATs, molecules downstream of JAK, regulate myogenesis. With JAK1, STAT1 promotes proliferation, while STAT3 has a dual effect on proliferation and differentiation. The JAK-STAT negative regulator, SOCS, is also associated with myogenesis; although, its role is controversial. In this review, we will discuss the role of the JAK-STAT pathway on myogenic differentiation.
Collapse
Affiliation(s)
- You-Na Jang
- Department of Physiology; Chronic Inflammatory Disease Research Center; Ajou University School of Medicine; Suwon, Korea
| | | |
Collapse
|
47
|
RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels. Mol Cell Biol 2014; 34:3106-19. [PMID: 24891619 DOI: 10.1128/mcb.00423-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D [hnRNP D]) binds to numerous mRNAs and influences their posttranscriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RNP immunoprecipitation (RIP) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor MEF2C. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3' untranslated region (UTR) of Mef2c mRNA and promoted MEF2C translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring MEF2C expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that MEF2C is a key effector of the myogenesis program promoted by AUF1.
Collapse
|
48
|
Abstract
Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present during the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or 'catch-up' postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and the risk of cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts toward improving muscle growth early in life to prevent the development of chronic metabolic diseases later in life.
Collapse
Affiliation(s)
- Laura D. Brown
- Department of Pediatrics (Neonatology), University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23 Avenue, Aurora, CO 80045, Phone: 303-724-0106, Fax: 303-724-0898
| |
Collapse
|
49
|
Bricceno KV, Martinez T, Leikina E, Duguez S, Partridge TA, Chernomordik LV, Fischbeck KH, Sumner CJ, Burnett BG. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet 2014; 23:4745-57. [PMID: 24760765 DOI: 10.1093/hmg/ddu189] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility.
Collapse
Affiliation(s)
- Katherine V Bricceno
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and Institute of Biomedical Sciences, The George Washington University, Washington, DC, USA
| | | | - Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Duguez
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Terence A Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Leonid V Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and
| | - Charlotte J Sumner
- Department of Neurology and Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Barrington G Burnett
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke and Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD, USA
| |
Collapse
|
50
|
Connolly PF, Jäger R, Fearnhead HO. New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 2014; 5:149. [PMID: 24795644 PMCID: PMC3997007 DOI: 10.3389/fphys.2014.00149] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences Rheinbach, Germany
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| |
Collapse
|