1
|
Current Theories in Odorant Binding. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Bigday EV, Samojlov VO. Chemosensory and Mechanosensory Functions of Olfactory Cilia. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Abstract
Since the first attempts to mimic the human nose with artificial devices, a variety of sensors have been developed, ranging from simple inorganic and organic gas detectors to biosensing elements incorporating proteins of the biological olfactory system. In order to design a device able to mimic the human nose, two major issues still need to be addressed regarding the complexity of olfactory coding and the extreme sensitivity of the biological system. So far, only 50 of the approximately 300–400 functioning olfactory receptors have been de-orphanized, still a long way from breaking the human olfactory code. On the other hand, the exceptional sensitivity of the human nose is based on amplification mechanisms difficult to reproduce with electronic circuits, and perhaps novel approaches are required to address this issue. Here, we review the recent literature on chemical sensing both in biological systems and artificial devices, and try to establish the state-of-the-art towards the design of an electronic nose.
Collapse
|
4
|
Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P. KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple Biological Functions. Curr Genomics 2013; 14:268-78. [PMID: 24294107 PMCID: PMC3731817 DOI: 10.2174/13892029113149990002] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/23/2022] Open
Abstract
Zinc finger proteins containing the Kruppel associated box (KRAB-ZFPs) constitute the largest individual family of transcriptional repressors encoded by the genomes of higher organisms. KRAB domain, positioned at the NH2 terminus of the KRAB-ZFPs, interacts with a scaffold protein, KAP-1, which is able to recruit various transcriptional factors causing repression of genes to which KRAB ZFPs bind. The relevance of such repression is reflected in the large number of the KRAB zinc finger protein genes in the human genome. However, in spite of their numerical abundance little is currently known about the gene targets and the physiological functions of KRAB- ZFPs. However, emerging evidence links the transcriptional repression mediated by the KRAB-ZFPs to cell proliferation, differentiation, apoptosis and cancer. Moreover, the fact that KRAB containing proteins are vertebrate-specific suggests that they have evolved recently, and that their key roles lie in some aspects of vertebrate development. In this review, we will briefly discuss some regulatory functions of the KRAB-ZFPs in different physiological and pathological states, thus contributing to better understand their biological roles.
Collapse
Affiliation(s)
- Angelo Lupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy; ; Dipartimento di Scienze per la Biologia, la Geologia e l'Ambiente, Facoltà di Scienze, Università del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Blanco-Hernández E, Valle-Leija P, Zomosa-Signoret V, Drucker-Colín R, Vidaltamayo R. Odor memory stability after reinnervation of the olfactory bulb. PLoS One 2012; 7:e46338. [PMID: 23071557 PMCID: PMC3468571 DOI: 10.1371/journal.pone.0046338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.
Collapse
Affiliation(s)
- Eduardo Blanco-Hernández
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Pablo Valle-Leija
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Viviana Zomosa-Signoret
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - René Drucker-Colín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Román Vidaltamayo
- Departamento de Ciencias Básicas, Centro de Diagnóstico Molecular y Medicina Personalizada, Universidad de Monterrey, Nuevo León, México
- * E-mail:
| |
Collapse
|
6
|
Wu L, Pan Y, Chen GQ, Matsunami H, Zhuang H. Receptor-transporting protein 1 short (RTP1S) mediates translocation and activation of odorant receptors by acting through multiple steps. J Biol Chem 2012; 287:22287-94. [PMID: 22570474 DOI: 10.1074/jbc.m112.345884] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Odorant receptor (OR) proteins are retained in the endoplasmic reticulum when heterologously expressed in cultured cells of non-olfactory origins. RTP1S is an accessory protein to mammalian ORs and facilitates their trafficking to the cell-surface membrane and ligand-induced responses in heterologous cells. The mechanism by which RTP1S promotes the functional expression of ORs remains poorly understood. To obtain a better understanding of the role(s) of RTP1S, we performed a series of structure-function analyses of RTP1S in HEK293T cells. By constructing RTP1S deletion and chimera series and subsequently introducing single-site mutations into the protein, we found the N terminus of RTP1S is important for the endoplasmic reticulum exit of ORs and that a middle region of RTP1S is important for OR trafficking from the Golgi to the membrane. Using sucrose gradient centrifugation, we found that the localization of RTP1S to the lipid raft microdomain is critical to the activation of ORs. Finally, in a protein-protein interaction analysis, we determined that the C terminus of RTP1S may be interacting with ORs. These findings provide new insights into the distinct roles of RTP1S in OR translocation and activation.
Collapse
Affiliation(s)
- Lifang Wu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
7
|
Song HG, Young Kwon J, Soo Han H, Bae YC, Moon C. First Contact to Odors: Our Current Knowledge about Odorant Receptor. SENSORS 2008; 8:6303-6320. [PMID: 27873871 PMCID: PMC3707451 DOI: 10.3390/s8106303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
Chemical senses – especially smell – are known to be important for the fundamental life events such as sensing predators, selecting mates, as well as finding food. The chemical senses are decoded in the olfactory system which is able to detect and differentiate thousands of odorous substances comprised of chemically divergent structures (i.e. odorants). The high selectivity of the olfactory system is heavily dependent on the receptors for each odorants (i.e. odorant receptors). Thus, studying odorant receptors may not only facilitate our understanding the initial events of olfaction but provide crucial knowledge for developing a novel, odorant receptor-based biosensor for chemical screening. Here we provide a review of recent advances in our understanding of odorant receptors.
Collapse
Affiliation(s)
- Hyoung-Gon Song
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Cheil Moon
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
8
|
Emanuel BS, Saitta SC. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet 2007; 8:869-83. [PMID: 17943194 DOI: 10.1038/nrg2136] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Submicroscopic chromosomal rearrangements that lead to copy-number changes have been shown to underlie distinctive and recognizable clinical phenotypes. The sensitivity to detect copy-number variation has escalated with the advent of array comparative genomic hybridization (CGH), including BAC and oligonucleotide-based platforms. Coupled with improved assemblies and annotation of genome sequence data, these technologies are facilitating the identification of new syndromes that are associated with submicroscopic genomic changes. Their characterization reveals the role of genome architecture in the aetiology of many clinical disorders. We review a group of genomic disorders that are mediated by segmental duplications, emphasizing the impact that high-throughput detection methods and the availability of the human genome sequence have had on their dissection and diagnosis.
Collapse
Affiliation(s)
- Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Abramson Research Center, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Philadelphia 19104-4318, USA.
| | | |
Collapse
|
9
|
Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 2006; 34:252-69. [PMID: 16698724 DOI: 10.1080/01926230600713475] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nose is a very complex organ with multiple functions that include not only olfaction, but also the conditioning (e.g., humidifying, warming, and filtering) of inhaled air. The nose is also a "scrubbing tower" that removes inhaled chemicals that may be harmful to the more sensitive tissues in the lower tracheobronchial airways and pulmonary parenchyma. Because the nasal airway may also be a prime target for many inhaled toxicants, it is important to understand the comparative aspects of nasal structure and function among laboratory animals commonly used in inhalation toxicology studies, and how nasal tissues and cells in these mammalian species may respond to inhaled toxicants. The surface epithelium lining the nasal passages is often the first tissue in the nose to be directly injured by inhaled toxicants. Five morphologically and functionally distinct epithelia line the mammalian nasal passages--olfactory, respiratory, squamous, transitional, and lymphoepithelial--and each nasal epithelium may be injured by an inhaled toxicant. Toxicant-induced epithelial lesions in the nasal passages of laboratory animals (and humans) are often site-specific and dependent on the intranasal regional dose of the inhaled chemical and the sensitivity of the nasal epithelial tissue to the specific chemical. In this brief review, we present examples of nonneoplastic epithelial lesions (e.g., cell death, hyperplasia, metaplasia) caused by single or repeated exposure to various inhaled chemical toxicants. In addition, we provide examples of how nasal maps may be used to record the character, magnitude and distribution of toxicant-induced epithelial injury in the nasal airways of laboratory animals. Intranasal mapping of nasal histopathology (or molecular and biochemical alterations to the nasal mucosa) may be used along with innovative dosimetric models to determine dose/response relationships and to understand if site-specific lesions are driven primarily by airflow, by tissue sensitivity, or by another mechanism of toxicity. The present review provides a brief overview of comparative nasal structure, function and toxicologic pathology of the mammalian nasal epithelium and a brief discussion on how data from animal toxicology studies have been used to estimate the risk of inhaled chemicals to human health.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
10
|
Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, Gordon L, Branscomb E, Stubbs L. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 2006; 16:669-77. [PMID: 16606702 PMCID: PMC1457042 DOI: 10.1101/gr.4842106] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Krüppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotes. KRAB-ZNF proteins, in which a potent repressor domain is attached to a tandem array of DNA-binding zinc-finger motifs, are specific to tetrapod vertebrates and represent the largest class of ZNF proteins in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the genome sequence for key motifs and then constructed and manually curated gene models incorporating those sequences. The resulting gene catalog contains 423 KRAB-ZNF protein-coding loci, yielding alternative transcripts that altogether predict at least 742 structurally distinct proteins. Active rounds of segmental duplication, involving single genes or larger regions and including both tandem and distributed duplication events, have driven the expansion of this mammalian gene family. Comparisons between the human genes and ZNF loci mined from the draft mouse, dog, and chimpanzee genomes not only identified 103 KRAB-ZNF genes that are conserved in mammals but also highlighted a substantial level of lineage-specific change; at least 136 KRAB-ZNF coding genes are primate specific, including many recent duplicates. KRAB-ZNF genes are widely expressed and clustered genes are typically not coregulated, indicating that paralogs have evolved to fill roles in many different biological processes. To facilitate further study, we have developed a Web-based public resource with access to gene models, sequences, and other data, including visualization tools to provide genomic context and interaction with other public data sets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elbert Branscomb
- Microbial Systems Divisions, Biosciences, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Lisa Stubbs
- Genome Biology
- Corresponding author.E-mail ; fax (925) 422-2099
| |
Collapse
|
11
|
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
12
|
Hoppe R, Frank H, Breer H, Strotmann J. The clustered olfactory receptor gene family 262: genomic organization, promotor elements, and interacting transcription factors. Genome Res 2004; 13:2674-85. [PMID: 14656972 PMCID: PMC403809 DOI: 10.1101/gr.1372203] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For six mouse olfactory receptor genes from family 262 which are expressed in clustered populations of olfactory sensory neurons, the genomic as well as cDNA structures were deciphered. All genes contained several exons which in some cases were alternatively spliced. Immediately upstream of the transcription start sites, sequence motif blocks were identified that are highly conserved among olfactory receptor (OR) genes which are expressed in clustered neuronal populations. By means of electrophoretic mobility shift assays, it was demonstrated that segments of the motif block region interact with proteins extracted from nuclear fractions of the olfactory epithelium. Yeast one-hybrid screenings of an olfactory cDNA library led to the identification of a set of transcription factors that specifically bind to particular elements of the motif block region. The identified factors can be categorized into two types: One group is known to be involved in transcriptional initiation, and the second group represents factors involved in pattern formations. The identified components may contribute to govern the precise topographic expression pattern of olfactory receptor genes.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
13
|
Whinnett A, Mundy NI. Isolation of novel olfactory receptor genes in marmosets (Callithrix): insights into pseudogene formation and evidence for functional degeneracy in non-human primates. Gene 2003; 304:87-96. [PMID: 12568718 DOI: 10.1016/s0378-1119(02)01182-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nineteen olfactory receptor (OR) genes were isolated from three OR subfamilies in two species of marmoset (Callithrix). Olfactory receptor 912-93 has high sequence similarity among marmosets and between marmosets and humans, suggesting strong conservation of function. All of the remaining seventeen OR genes identified from subfamilies 3A and 1E were pseudogenes. Following pseudogene formation, marmoset OR genes in both 1E and 3A subfamilies underwent duplications, indel events and a high rate of nucleotide substitution. These results provide a contrast to previous studies, and show that in spite of the keen olfactory sense of marmosets, they harbour many OR pseudogenes. A high rate of in vitro recombination using Pfu polymerase but not Taq polymerase was confirmed. The rapid molecular evolution of OR pseudogenes suggests that they do not provide a useful source of sequence variation for conversion to intact OR genes over evolutionary timescales. The overall pattern of OR evolution in marmosets is comparable to the 'birth-and-death' model of gene family evolution. An unbiased view on the evolutionary timing of the reduction of the functional olfactory repertoire in humans must await more data.
Collapse
Affiliation(s)
- Alaine Whinnett
- Department of Biological Anthropology, University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Abstract
The nose of Homo sapiens is a sophisticated chemical sensor. It is able to smell almost any type of volatile molecule, often at extraordinarily low concentrations, and can make fine perceptual discriminations between structurally related molecules. The diversity of odor recognition is mediated by odorant receptor (OR) genes, discovered in 1991 by Buck & Axel. OR genes form the largest gene families in mammalian genomes. A decade after their discovery, advances in the sequencing of the human genome have provided a first draft of the human OR repertoire: It consists of approximately 1000 sequences, residing in multiple clusters spread throughout the genome, with more than half being pseudogenes. Allelic variants are beginning to be recognized and may provide an opportunity for genotype-phenotype correlations. Here, I review the current knowledge of the human OR repertoire and summarize the limited information available regarding putative pheromone and taste receptors in humans.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
15
|
Abstract
BACKGROUND The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. RESULTS The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. CONCLUSIONS The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction.
Collapse
Affiliation(s)
- S Zozulya
- Senomyx Inc, 11099 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
16
|
Younger RM, Amadou C, Bethel G, Ehlers A, Lindahl KF, Forbes S, Horton R, Milne S, Mungall AJ, Trowsdale J, Volz A, Ziegler A, Beck S. Characterization of clustered MHC-linked olfactory receptor genes in human and mouse. Genome Res 2001; 11:519-30. [PMID: 11282967 PMCID: PMC311051 DOI: 10.1101/gr.gr-1603r] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Olfactory receptor (OR) loci frequently cluster and are present on most human chromosomes. They are members of the seven transmembrane receptor (7-TM) superfamily and, as such, are part of one of the largest mammalian multigene families, with an estimated copy number of up to 1000 ORs per haploid genome. As their name implies, ORs are known to be involved in the perception of odors and possibly also in other, nonolfaction-related, functions. Here, we report the characterization of ORs that are part of the MHC-linked OR clusters in human and mouse (partial sequence only). These clusters are of particular interest because of their possible involvement in olfaction-driven mate selection. In total, we describe 50 novel OR loci (36 human, 14 murine), making the human MHC-linked cluster the largest sequenced OR cluster in any organism so far. Comparative and phylogenetic analyses confirm the cluster to be MHC-linked but divergent in both species and allow the identification of at least one ortholog that will be useful for future regulatory and functional studies. Quantitative feature analysis shows clear evidence of duplications of blocks of OR genes and reveals the entire cluster to have a genomic environment that is very different from its neighboring regions. Based on in silico transcript analysis, we also present evidence of extensive long-distance splicing in the 5'-untranslated regions and, for the first time, of alternative splicing within the single coding exon of ORs. Taken together with our previous finding that ORs are also polymorphic, the presented data indicate that the expression, function, and evolution of these interesting genes might be more complex than previously thought.
Collapse
Affiliation(s)
- R M Younger
- The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Younger RM, Amadou C, Bethel G, Ehlers A, Lindahl KF, Forbes S, Horton R, Milne S, Mungall AJ, Trowsdale J, Volz A, Ziegler A, Beck S. Characterization of Clustered MHC-Linked Olfactory Receptor Genes in Human and Mouse. Genome Res 2001. [DOI: 10.1101/gr.160301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Olfactory receptor (OR) loci frequently cluster and are present on most human chromosomes. They are members of the seven transmembrane receptor (7-TM) superfamily and, as such, are part of one of the largest mammalian multigene families, with an estimated copy number of up to 1000 ORs per haploid genome. As their name implies, ORs are known to be involved in the perception of odors and possibly also in other, nonolfaction-related, functions. Here, we report the characterization of ORs that are part of the MHC-linked OR clusters in human and mouse (partial sequence only). These clusters are of particular interest because of their possible involvement in olfaction-driven mate selection. In total, we describe 50 novel OR loci (36 human, 14 murine), making the human MHC-linked cluster the largest sequenced OR cluster in any organism so far. Comparative and phylogenetic analyses confirm the cluster to be MHC-linked but divergent in both species and allow the identification of at least one ortholog that will be useful for future regulatory and functional studies. Quantitative feature analysis shows clear evidence of duplications of blocks of OR genes and reveals the entire cluster to have a genomic environment that is very different from its neighboring regions. Based on in silico transcript analysis, we also present evidence of extensive long-distance splicing in the 5′-untranslated regions and, for the first time, of alternative splicing within the single coding exon of ORs. Taken together with our previous finding that ORs are also polymorphic, the presented data indicate that the expression, function, and evolution of these interesting genes might be more complex than previously thought.[The sequence data described in this paper have been submitted to the EMBL nucleotide data library under accession nos.Z84475, Z98744, Z98745, AL021807, AL021808, AL022723, AL022727,AL031893, AL035402, AL035542, AL050328, AL050339, AL078630, AL096770,AL121944, AL133160, and AL133267.]
Collapse
|
18
|
Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 2001; 68:874-83. [PMID: 11231899 PMCID: PMC1275641 DOI: 10.1086/319506] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Accepted: 01/22/2001] [Indexed: 11/03/2022] Open
Abstract
The olfactory receptor (OR)-gene superfamily is the largest in the mammalian genome. Several of the human OR genes appear in clusters with > or = 10 members located on almost all human chromosomes, and some chromosomes contain more than one cluster. We demonstrate, by experimental and in silico data, that unequal crossovers between two OR gene clusters in 8p are responsible for the formation of three recurrent chromosome macrorearrangements and a submicroscopic inversion polymorphism. The first two macrorearrangements are the inverted duplication of 8p, inv dup(8p), which is associated with a distinct phenotype, and a supernumerary marker chromosome, +der(8)(8p23.1pter), which is also a recurrent rearrangement and is associated with minor anomalies. We demonstrate that it is the reciprocal of the inv dup(8p). The third macrorearrangment is a recurrent 8p23 interstitial deletion associated with heart defect. Since inv dup(8p)s originate consistently in maternal meiosis, we investigated the maternal chromosomes 8 in eight mothers of subjects with inv dup(8p) and in the mother of one subject with +der(8), by means of probes included between the two 8p-OR gene clusters. All the mothers were heterozygous for an 8p submicroscopic inversion that was delimited by the 8p-OR gene clusters and was present, in heterozygous state, in 26% of a population of European descent. Thus, inversion heterozygosity may cause susceptibility to unequal recombination, leading to the formation of the inv dup(8p) or to its reciprocal product, the +der(8p). After the Yp inversion polymorphism, which is the preferential background for the PRKX/PRKY translocation in XX males and XY females, the OR-8p inversion is the second genomic polymorphism that confers susceptibility to the formation of common chromosome rearrangements. Accordingly, it may be possible to develop a profile of the individual risk of having progeny with chromosome rearrangements.
Collapse
MESH Headings
- Chromosome Breakage/genetics
- Chromosome Deletion
- Chromosome Inversion
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Human, Pair 8/genetics
- Cloning, Molecular
- Contig Mapping
- Crossing Over, Genetic/genetics
- DNA Probes/genetics
- Electrophoresis, Gel, Pulsed-Field
- Female
- Genes, Duplicate/genetics
- Heterozygote
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Microsatellite Repeats/genetics
- Multigene Family/genetics
- Polymorphism, Genetic/genetics
- Receptors, Odorant/genetics
Collapse
Affiliation(s)
- S Giglio
- Department of Human Genetics, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zozulya S, Echeverri F, Nguyen T. The human olfactory receptor repertoire. Genome Biol 2001; 2:RESEARCH0018. [PMID: 11423007 PMCID: PMC33394 DOI: 10.1186/gb-2001-2-6-research0018] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Revised: 04/12/2001] [Accepted: 04/18/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. RESULTS The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. CONCLUSIONS The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction.
Collapse
Affiliation(s)
- S Zozulya
- Senomyx Inc, 11099 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
20
|
Ehlers A, Beck S, Forbes SA, Trowsdale J, Volz A, Younger R, Ziegler A. MHC-linked olfactory receptor loci exhibit polymorphism and contribute to extended HLA/OR-haplotypes. Genome Res 2000; 10:1968-78. [PMID: 11116091 PMCID: PMC313068 DOI: 10.1101/gr.10.12.1968] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clusters of olfactory receptor (OR) genes are found on most human chromosomes. They are one of the largest mammalian multigene families. Here, we report a systematic study of polymorphism of OR genes belonging to the largest fully sequenced OR cluster. The cluster contains 36 OR genes, of which two belong to the vomeronasal 1 (V1-OR) family. The cluster is divided into a major and a minor region at the telomeric end of the HLA complex on chromosome 6. These OR genes could be involved in MHC-related mate preferences. The polymorphism screen was carried out with 13 genes from the HLA-linked OR cluster and three genes from chromosomes 7, 17, and 19 as controls. Ten human cell lines, representing 18 different chromosome 6s, were analyzed. They were from various ethnic origins and exhibited different HLA haplotypes. All OR genes tested, including those not linked to the HLA complex, were polymorphic. These polymorphisms were dispersed along the coding region and resulted in up to seven alleles for a given OR gene. Three polymorphisms resulted either in stop codons (genes hs6M1-4P, hs6M1-17) or in a 16-bp deletion (gene hs6M1-19P), possibly leading to lack of ligand recognition by the respective receptors in the cell line donors. In total, 13 HLA-linked OR haplotypes could be defined. Therefore, allelic variation appears to be a general feature of human OR genes.
Collapse
Affiliation(s)
- A Ehlers
- Institut für Immungenetik, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, 14050 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Ehlers A, Beck S, Forbes SA, Trowsdale J, Volz A, Younger R, Ziegler A. MHC-Linked Olfactory Receptor Loci Exhibit Polymorphism and Contribute to Extended HLA/OR-Haplotypes. Genome Res 2000. [DOI: 10.1101/gr.120400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Clusters of olfactory receptor (OR) genes are found on most human chromosomes. They are one of the largest mammalian multigene families. Here, we report a systematic study of polymorphism of OR genes belonging to the largest fully sequenced OR cluster. The cluster contains 36 OR genes, of which two belong to the vomeronasal 1 (V1-OR) family. The cluster is divided into a major and a minor region at the telomeric end of the HLA complex on chromosome 6. These OR genes could be involved in MHC-related mate preferences. The polymorphism screen was carried out with 13 genes from the HLA-linked OR cluster and three genes from chromosomes 7, 17, and 19 as controls. Ten human cell lines, representing 18 different chromosome 6s, were analyzed. They were from various ethnic origins and exhibited different HLA haplotypes. All OR genes tested, including those not linked to the HLA complex, were polymorphic. These polymorphisms were dispersed along the coding region and resulted in up to seven alleles for a given OR gene. Three polymorphisms resulted either in stop codons (genes hs6M1-4P,hs6M1-17) or in a 16–bp deletion (gene hs6M1-19P), possibly leading to lack of ligand recognition by the respective receptors in the cell line donors. In total, 13 HLA-linked OR haplotypes could be defined. Therefore, allelic variation appears to be a general feature of human OR genes.[The sequence data reported in this paper have been submitted to EMBL under accession nos. AC006137, AC004178, AJ132194, AL022727, AL031983,AL035402, AL035542, Z98744, CAB55431, AL050339, AL035402, AL096770,AL133267, AL121944, Z98745, AL021808, and AL021807.]
Collapse
|
22
|
Rodriguez I, Greer CA, Mok MY, Mombaerts P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 2000; 26:18-9. [PMID: 10973240 DOI: 10.1038/79124] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pheromones elicit specific behavioural responses and physiological alterations in recipients of the same species. In mammals, these chemical signals are recognized within the nasal cavity by sensory neurons that express pheromone receptors. In rodents, these receptors are thought to be represented by two large multigene families, comprising the V1r and V2r genes, which encode seven-transmembrane proteins. Although pheromonal effects have been demonstrated in humans, V1R or V2R counterparts of the rodent genes have yet to be characterized.
Collapse
Affiliation(s)
- I Rodriguez
- The Rockefeller University, New York, New York, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Odorant receptors (ORs) located in the nasal epithelium, at the ciliated surface of olfactory sensory neurons, represent the initial step of a transduction cascade that leads to odor detection. ORs form the largest and most diverse family of G-protein-coupled receptors (GPCRs). They are encoded by a multigene family that has been partially characterized in cyclostomes, teleosts, amphibia, birds and mammals, as well as in Drosophila melanogaster and the nematode Caenorhabditis elegans. As new sequence data emerge, it is increasingly clear that OR primary structure can vary dramatically across phyla. Some chemoreceptors are encoded by genes with little sequence similarity to the prototypical ORs originally isolated in mammals. A large number of sequences are now available allowing a detailed study of the evolutionary implications of OR diversity across species. This review discusses the evolutionary implications of the divergent primary structures of chemoreceptors with identical functions.
Collapse
Affiliation(s)
- L Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA.
| |
Collapse
|
24
|
Hoppe R, Weimer M, Beck A, Breer H, Strotmann J. Sequence analyses of the olfactory receptor gene cluster mOR37 on mouse chromosome 4. Genomics 2000; 66:284-95. [PMID: 10873383 DOI: 10.1006/geno.2000.6205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor multigene family is organized in clusters spread throughout the genome. In the present study, we have sequenced two subregions of the mOR37 gene cluster on mouse chromosome 4. The resulting 100 kb of sequence revealed seven odorant receptor coding regions and one gene fragment. Sequence analyses reveal that the mOR37 gene cluster may represent a rather ancient cluster. The mOR37 genes exhibit a complex intron/exon structure, and some appear to be differentially spliced. All genes in the cluster share conserved sequence motifs 5' of their putative initial exons, which represent potential binding sites for transcription factors. The clustered organization and conserved sequence motifs suggest common expression control mechanisms for these genes.
Collapse
Affiliation(s)
- R Hoppe
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, Stuttgart, D-70593, Germany
| | | | | | | | | |
Collapse
|
25
|
Rouquier S, Blancher A, Giorgi D. The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci U S A 2000; 97:2870-4. [PMID: 10706615 PMCID: PMC16022 DOI: 10.1073/pnas.040580197] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfactory receptors (ORs) located in the cell membrane of olfactory sensory neurons of the nasal epithelium are responsible for odor detection by binding specific odorant ligands. Primates are thought to have a reduced sense of smell (microsmatic) with respect to other mammals such as dogs or rodents. We have previously demonstrated that over 70% of the human OR genes have become nonfunctional pseudogenes, leading us to hypothesize that the reduced sense of smell could correlate with the loss of functional genes. To extend these results, we sampled the OR gene repertoire of 10 primate species, from prosimian lemur to human, in addition to mouse. About 221 previously unidentified primate sequences and 33 mouse sequences were analyzed. These sequences encode ORs distributed in seven families and 56 subfamilies. Analysis showed a high fraction ( approximately 50% on average) of pseudogenes in hominoids. In contrast, only approximately 27% of OR genes are pseudogenes in Old World monkeys, and New World monkeys are almost free of pseudogenes. The prosimian branch seems to have evolved differently from the other primates and has approximately 37% pseudogene content. No pseudogenes were found in mouse. With the exception of New World monkeys, we demonstrate that primates have a high fraction of OR pseudogenes compared with mouse. We hypothesize that under relaxed selective constraints, primates would have progressively accumulated pseudogenes with the highest level seen in hominoids. The fraction of pseudogenes in the OR gene repertoire could parallel the evolution of the olfactory sensory function.
Collapse
Affiliation(s)
- S Rouquier
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique Unité Propre de Recherche 1142, 141 rue de la Cardonille, 34396 Montpellier cédex 5, France
| | | | | |
Collapse
|
26
|
Abstract
The olfactory systems of various species solve the challenging problem of general molecular recognition in widely differing ways. Despite this variety, the molecular receptors are invariably G protein-coupled seven-transmembrane proteins, and are encoded by the largest gene families known to exist in a given animal genome. Receptor gene families have been identified in vertebrates and two invertebrate species, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The complexity of the odorant receptor repertoire is estimated in mouse and rat at 1000 genes, or 1 percent of the genome, surpassing that of the immunoglobulin and T cell receptor genes combined. Two distinct seven-transmembrane gene families may encode in rodents the chemosensory receptors of the vomeronasal organ, which is specialized in the detection of pheromones. Remarkably, these five receptor families have practically no sequence homology among them. Genetic manipulation experiments in mice imply that vertebrate odorant receptors may fulfill a dual role, also serving as address molecules that guide axons of olfactory sensory neurons to their precise target in the brain.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|