1
|
Arur S. Signaling-Mediated Regulation of Meiotic Prophase I and Transition During Oogenesis. Results Probl Cell Differ 2017; 59:101-123. [PMID: 28247047 DOI: 10.1007/978-3-319-44820-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Generation of healthy oocytes requires coordinated regulation of multiple cellular events and signaling pathways. Oocytes undergo a unique developmental growth and differentiation pattern interspersed with long periods of arrest. Oocytes from almost all species arrest in prophase I of oogenesis that allows for long period of growth and differentiation essential for normal oocyte development. Depending on species, oocytes that transit from prophase I to meiosis I also arrest at meiosis I for fairly long periods of time and then undergo a second arrest at meiosis II that is completed upon fertilization. While there are species-specific differences in C. elegans, D. melanogaster, and mammalian oocytes in stages of prophase I, meiosis I, or meiosis II arrest, in all cases cell signaling pathways coordinate the developmental events controlling oocyte growth and differentiation to regulate these crucial phases of transition. In particular, the ERK MAP kinase signaling pathway, cyclic AMP second messengers, and the cell cycle regulators CDK1/cyclin B are key signaling pathways that seem evolutionarily conserved in their control of oocyte growth and meiotic maturation across species. Here, I identify the common themes and differences in the regulation of key meiotic events during oocyte growth and maturation.
Collapse
Affiliation(s)
- Swathi Arur
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
|
3
|
Nakaguchi A, Hiraoka T, Endo Y, Iwabuchi K. Compatible invasion of a phylogenetically distant host embryo by a hymenopteran parasitoid embryo. Cell Tissue Res 2006; 324:167-73. [PMID: 16408198 DOI: 10.1007/s00441-005-0111-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/26/2005] [Indexed: 11/30/2022]
Abstract
Embryonic invasion into the tissue of genetically different organisms has been known only in mother-embryo interactions of viviparous organisms. Hence, embryonic invasions have been thought to occur only within the same or closely related species. For endoparasitic Hymenoptera, which are oviposited in their host egg but complete their development in the later stages, entry into the host embryo is essential. To date, the entry of these parasitoids is known to be accomplished by either egg deposition directly into the embryo or by the newly hatched larva boring into the embryo. However, Copidosoma floridanum is a polyembryonic parasitoid whose development is characterized by a prolonged embryonic stage, and which lacks a larval form during its host embryogenesis. We have analyzed the behavior and fate of C. floridanum embryos co-cultured with their host embryo in vitro. Here, we show that the morula-stage embryo of C. floridanum actively invades the host embryo. Histological analyses have demonstrated that C. floridanum embryonic invasion is associated with adherent junction to host cells rather than causing an obvious wound on the host cells. These findings provide a novel case of embryonic invasion into a phylogenetically distant host embryo, ensuring cellular compatibility with host tissues.
Collapse
Affiliation(s)
- Azusa Nakaguchi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | | | | |
Collapse
|
4
|
Sigal Y, McDERMOTT M, Morris A. Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J 2005; 387:281-93. [PMID: 15801912 PMCID: PMC1134956 DOI: 10.1042/bj20041771] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phospholipids and sphingolipids play critical roles in signal transduction, intracellular membrane trafficking, and control of cell growth and survival. We discuss recent progress in the identification and characterization of a family of integral membrane proteins with central roles in bioactive lipid metabolism and signalling. These five groups of homologous proteins, which we collectively term LPTs (lipid phosphatases/phosphotransferases), are characterized by a core domain containing six transmembrane-spanning alpha-helices connected by extramembrane loops, two of which interact to form the catalytic site. LPT family members are localized to all major membrane compartments of the cell. The transmembrane topology of these proteins places their active site facing the lumen of endomembrane compartments or the extracellular face of the plasma membrane. Sequence conservation between the active site of the LPPs (lipid phosphate phosphatases), SPPs (sphingosine phosphate phosphatases) and the recently identified SMSs (sphingomyelin synthases) with vanadium-dependent fungal oxidases provides a framework for understanding their common catalytic mechanism. LPPs hydrolyse LPA (lysophosphatidic acid), S1P (sphingosine 1-phosphate) and structurally-related substrates. Although LPPs can dephosphorylate intracellularly generated substrates to control intracellular lipid metabolism and signalling, their best understood function is to regulate cell surface receptor-mediated signalling by LPA and S1P by inactivating these lipids at the plasma membrane or in the extracellular space. SPPs are intracellularly localized S1P-selective phosphatases, with key roles in the pathways of sphingolipid metabolism linked to control of cell growth and survival. The SMS enzymes catalyse the interconversion of phosphatidylcholine and ceramide with sphingomyelin and diacylglycerol, suggesting a pivotal role in both housekeeping lipid synthesis and regulation of bioactive lipid mediators. The remaining members of the LPT family, the LPR/PRGs (lipid phosphatase-related proteins/plasticity-related genes) and CSS2s (type 2 candidate sphingomyelin synthases), are presently much less well studied. These two groups include proteins that lack critical amino acids within the catalytic site, and could therefore not use the conserved LPT reaction mechanism to catalyse lipid phosphatase or phosphotransferase reactions. In this review, we discuss recent ideas about their possible biological activities and functions, which appear to involve regulation of cellular morphology and, possibly, lipid metabolism and signalling in the nuclear envelope.
Collapse
Affiliation(s)
- Yury J. Sigal
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, U.S.A
| | - Mark I. McDERMOTT
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, U.S.A
| | - Andrew J. Morris
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
5
|
Abstract
Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
6
|
Schumacher S, Gryzik T, Tannebaum S, Müller HAJ. The RhoGEF Pebble is required for cell shape changes during cell migration triggered by the Drosophila FGF receptor Heartless. Development 2004; 131:2631-40. [PMID: 15128660 DOI: 10.1242/dev.01149] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The FGF receptor Heartless (HTL) is required for mesodermal cell migration in the Drosophila gastrula. We show that mesoderm cells undergo different phases of specific cell shape changes during mesoderm migration. During the migratory phase, the cells adhere to the basal surface of the ectoderm and exhibit extensive protrusive activity. HTL is required for the protrusive activity of the mesoderm cells. Moreover, the early phenotype of htl mutants suggests that HTL is required for the adhesion of mesoderm cells to the ectoderm. In a genetic screen we identified pebble (pbl) as a novel gene required for mesoderm migration. pbl encodes a guanyl nucleotide exchange factor (GEF) for RHO1 and is known as an essential regulator of cytokinesis. We show that the function of PBL in cell migration is independent of the function of PBL in cytokinesis. Although RHO1 acts as a substrate for PBL in cytokinesis, compromising RHO1 function in the mesoderm does not block cell migration. These data suggest that the function of PBL in cell migration might be mediated through a pathway distinct from RHO1. This idea is supported by allele-specific differences in the expressivity of the cytokinesis and cell migration phenotypes of different pbl mutants. We show that PBL is autonomously required in the mesoderm for cell migration. Like HTL, PBL is required for early cell shape changes during mesoderm migration. Expression of a constitutively active form of HTL is unable to rescue the early cellular defects in pbl mutants, suggesting that PBL is required for the ability of HTL to trigger these cell shape changes. These results provide evidence for a novel function of the Rho-GEF PBL in HTL-dependent mesodermal cell migration.
Collapse
Affiliation(s)
- Sabine Schumacher
- Institut für Genetik, Heinrich Heine Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
7
|
Wilson R, Battersby A, Csiszar A, Vogelsang E, Leptin M. A functional domain of Dof that is required for fibroblast growth factor signaling. Mol Cell Biol 2004; 24:2263-76. [PMID: 14993266 PMCID: PMC355857 DOI: 10.1128/mcb.24.6.2263-2276.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transduction by fibroblast growth factor (FGF) receptors in Drosophila depends upon the intracellular protein Dof, which has been proposed to act downstream of the receptors and upstream of Ras. Dof is the product of a fast-evolving gene whose vertebrate homologs, BCAP and BANK, are involved in signaling downstream of the B-cell receptor. Mapping functional domains within Dof revealed that neither of its potential interaction motifs, the ankyrin repeats and the coiled coil, is essential for the function of Dof. However, we have identified a region within the N terminus of the protein with similarity to BCAP and BANK, which we refer to as the Dof, BCAP, and BANK (DBB) motif, that it is required for FGF-dependent signal transduction and is necessary for efficient interaction of Dof with the FGF receptor Heartless. In addition, we demonstrate that Dof is phosphorylated in the presence of an activated FGF receptor and that tyrosine residues could contribute to the function of the molecule.
Collapse
Affiliation(s)
- Robert Wilson
- Institut für Genetik, Universität zu Köln, Weyertal 121, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
8
|
Heino TI, Kärpänen T, Wahlström G, Pulkkinen M, Eriksson U, Alitalo K, Roos C. The Drosophila VEGF receptor homolog is expressed in hemocytes. Mech Dev 2001; 109:69-77. [PMID: 11677054 DOI: 10.1016/s0925-4773(01)00510-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several signalling pathways have been defined by studies of genes originally characterised in Drosophila. However, some mammalian signalling systems have so far escaped discovery in the fly. Here, we describe the identification and characterisation of fly homologs for the mammalian vascular endothelial growth factor/platelet derived growth factor (VEGF/PDGF) and the VEGF receptor. The Drosophila factor (DmVEGF-1) gene has two splice variants and is expressed during all stages, the signal distribution during embryogenesis being ubiquitous. The receptor (DmVEGFR) gene has several splice variants; the variations affecting only the extracellular domain. The most prominent form is expressed in cells of the embryonic haematopoietic cell lineage, starting in the mesodermal area of the head around stage 10 of embryogenesis. Expression persists in hemocytes as embryonic development proceeds and the cells migrate posteriorly. In a fly strain carrying a deletion uncovering the DmVEGFR gene, hemocytes are still present, but their migration is hampered and the hemocytes remain mainly in the anterior end close to their origin. These data suggest that the VEGF/PDGF signalling system may regulate the migration of the Drosophila embryonic haemocyte precursor cells.
Collapse
Affiliation(s)
- T I Heino
- Institute of Biotechnology, Viikki Biocenter, PB 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Recent studies in two invertebrate systems, border cells in Drosophila melanogaster and distal tip cells in Caenorhabditis elegans, have provided important insight into the mechanisms of directed cell migration. These migrating cells are guided by extracellular signals, such as EGF, TGF-beta and netrin. In addition, metalloproteases alter the extracellular matrix of the tissue through which these cells migrate. Along the migratory path, migrating cells respond to changes in guidance signals by altering the expression of receptor signaling pathways. Finally, Dock180, CrkII and the GTPase Rac link the extracellular signals to the cellular machinery that controls cell motility.
Collapse
Affiliation(s)
- R Lehmann
- Developmental Genetics Program, Skirball Institute and Howard Hughes Medical Institute, Department of Cell Biology, New York University Medical School, 540 First Avenue, New York 10016, New York, USA.
| |
Collapse
|
10
|
Abstract
Forward-genetic analyses in Drosophila and Caenorhabditis elegans have given us unprecedented insights into many developmental mechanisms. To study the formation of organs that contain cell types and structures not present in invertebrates, a vertebrate model system amenable to forward genetics would be very useful. Recent work shows that a newly initiated genetic approach in zebrafish is already making significant contributions to understanding the development of the vertebrate heart, an organ that contains several vertebrate-specific features. These and other studies point to the utility of the zebrafish system for studying a wide range of vertebrate-specific processes.
Collapse
Affiliation(s)
- D Y Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, 513 Parnassus Avenue, Box 0448, San Francisco, California 94143-0448, USA.
| |
Collapse
|
11
|
Zhang N, Sundberg JP, Gridley T. Mice mutant for Ppap2c, a homolog of the germ cell migration regulator wunen, are viable and fertile. Genesis 2000; 27:137-40. [PMID: 10992322 DOI: 10.1002/1526-968x(200008)27:4<137::aid-gene10>3.0.co;2-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidic acid phosphatases (PAPs) catalyze the conversion of phosphatidic acid to diacylglycerol and inorganic phosphate and have been postulated to function both in lipid biosynthesis and in cellular signal transduction. In Drosophila melanogaster, the Type 2 phosphatidic acid phosphatase protein encoded by the wunen gene, negatively regulates primordial germ cell migration. We recently described the cloning and characterization of the mouse Ppap2c gene, which encodes the Type 2 phosphatidic acid phosphatase Pap2c (Zhang et al., Genomics 63:142-144). To analyze the in vivo role of the Ppap2c gene we constructed a null mutation by gene targeting. Ppap2c(-/-) homozygous mutant mice were viable, fertile, and exhibited no obvious phenotypic defects. These data demonstrate that the Ppap2c gene is not essential for embryonic development or fertility in mice.
Collapse
Affiliation(s)
- N Zhang
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
12
|
Kupperman E, An S, Osborne N, Waldron S, Stainier DY. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 2000; 406:192-5. [PMID: 10910360 DOI: 10.1038/35018092] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coordinated cell migration is essential in many fundamental biological processes including embryonic development, organogenesis, wound healing and the immune response. During organogenesis, groups of cells are directed to specific locations within the embryo. Here we show that the zebrafish miles apart (mil) mutation specifically affects the migration of the heart precursors to the midline. We found that mutant cells transplanted into a wild-type embryo migrate normally and that wild-type cells in a mutant embryo fail to migrate, suggesting that mil may be involved in generating an environment permissive for migration. We isolated mil by positional cloning and show that it encodes a member of the lysosphingolipid G-protein-coupled receptor family. We also show that sphingosine-1-phosphate is a ligand for Mil, and that it activates several downstream signalling events that are not activated by the mutant alleles. These data reveal a new role for lysosphingolipids in regulating cell migration during vertebrate development and provide the first molecular clues into the fusion of the bilateral heart primordia during organogenesis of the heart.
Collapse
Affiliation(s)
- E Kupperman
- Department of Biochemistry, University of California San Francisco, 94143-0448, USA
| | | | | | | | | |
Collapse
|