1
|
Wickramasingha PD, Morrissey CA, Phillips ID, Crane AL, Ferrari MCO, Chivers DP. Exposure to the insecticide, imidacloprid, impairs predator-recognition learning in damselfly larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123085. [PMID: 38072015 DOI: 10.1016/j.envpol.2023.123085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Many aquatic organisms use chemosensory information to learn about local predation threats, but contaminants in their environment may impair such cognitive processes. Neonicotinoids are a class of water-soluble systemic insecticides that have become a major concern in aquatic systems. In this study, we explored how a 10-day exposure to various concentrations (0, 0.1, 1.0, or 10.0 μg/L) of the neonicotinoid imidacloprid affects the learned recognition of predator odour by non-target damselfly larvae (Lestes spp). Unexposed larvae and those exposed to the low concentration (0.1 μg/L) demonstrated an appropriate learned response to a novel predator odour following a conditioning with the odour paired with chemical alarm cues. However, such learning failed to occur for larvae that were exposed to imidacloprid concentrations of 1.0 and 10.0 μg/L. Thus, either the cognitive processing of the chemical information was impaired or the chemistry of one or both of the conditioning cues was altered, making them ineffective for learning. In a second experiment, we found evidence for this latter hypothesis. In the absence of background imidacloprid exposure, larvae did not show significant learned responses to the predator odour when the conditioning cues were mixed with imidacloprid (initial pulse solution of 3.0 μg/L) at the start of conditioning (reaching a final concentration of 0.01 μg/L). These findings indicate that even low levels of imidacloprid can have important implications for chemosensory cognition of non-target species in aquatic environments.
Collapse
Affiliation(s)
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Iain D Phillips
- Water Security Agency, 10 - 3904 Miller Ave., Saskatoon, SK, S7P 0B1, Canada
| | - Adam L Crane
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada.
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
2
|
Panyushev N, Selitskiy M, Melnichenko V, Lebedev E, Okorokova L, Adonin L. Dynamic Evolution of Repetitive Elements and Chromatin States in Apis mellifera Subspecies. Genes (Basel) 2024; 15:89. [PMID: 38254978 PMCID: PMC10815273 DOI: 10.3390/genes15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we elucidate the contribution of repetitive DNA sequences to the establishment of social structures in honeybees (Apis mellifera). Despite recent advancements in understanding the molecular mechanisms underlying the formation of honeybee castes, primarily associated with Notch signaling, the comprehensive identification of specific genomic cis-regulatory sequences remains elusive. Our objective is to characterize the repetitive landscape within the genomes of two honeybee subspecies, namely A. m. mellifera and A. m. ligustica. An observed recent burst of repeats in A. m. mellifera highlights a notable distinction between the two subspecies. After that, we transitioned to identifying differentially expressed DNA elements that may function as cis-regulatory elements. Nevertheless, the expression of these sequences showed minimal disparity in the transcriptome during caste differentiation, a pivotal process in honeybee eusocial organization. Despite this, chromatin segmentation, facilitated by ATAC-seq, ChIP-seq, and RNA-seq data, revealed a distinct chromatin state associated with repeats. Lastly, an analysis of sequence divergence among elements indicates successive changes in repeat states, correlating with their respective time of origin. Collectively, these findings propose a potential role of repeats in acquiring novel regulatory functions.
Collapse
Affiliation(s)
- Nick Panyushev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (N.P.); (M.S.)
- Bioinformatics Institute, 197342 St. Petersburg, Russia;
| | - Max Selitskiy
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (N.P.); (M.S.)
| | - Vasilina Melnichenko
- International Scientific and Research Institute of Bioengineering, ITMO University, 197101 St. Petersburg, Russia;
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (N.P.); (M.S.)
| | | | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (N.P.); (M.S.)
- Institute of Biomedical Chemistry, Group of Mechanisms for Nanosystems Targeted Delivery, 119121 Moscow, Russia
| |
Collapse
|
3
|
Dhein K. The cognitive map debate in insects: A historical perspective on what is at stake. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 98:62-79. [PMID: 36863222 DOI: 10.1016/j.shpsa.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/19/2023]
Abstract
Though well established in mammals, the cognitive map hypothesis has engendered a decades-long, ongoing debate in insect navigation studies involving many of the field's most prominent researchers. In this paper, I situate the debate within the broader context of 20th century animal behavior research and argue that the debate persists because competing research groups are guided by different constellations of epistemic aims, theoretical commitments, preferred animal subjects, and investigative practices. The expanded history of the cognitive map provided in this paper shows that more is at stake in the cognitive map debate than the truth value of propositions characterizing insect cognition. What is at stake is the future direction of an extraordinarily productive tradition of insect navigation research stretching back to Karl von Frisch. Disciplinary labels like ethology, comparative psychology, and behaviorism became less relevant at the turn of the 21st century, but as I show, the different ways of knowing animals associated with these disciplines continue to motivate debates about animal cognition. This examination of scientific disagreement surrounding the cognitive map hypothesis also has significant consequences for philosophers' use of cognitive map research as a case study.
Collapse
Affiliation(s)
- Kelle Dhein
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| |
Collapse
|
4
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Wang IH, Murray E, Andrews G, Jiang HC, Park SJ, Donnard E, Durán-Laforet V, Bear DM, Faust TE, Garber M, Baer CE, Schafer DP, Weng Z, Chen F, Macosko EZ, Greer PL. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nat Neurosci 2022; 25:484-492. [PMID: 35314823 PMCID: PMC9281876 DOI: 10.1038/s41593-022-01030-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.
Collapse
Affiliation(s)
- I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Greg Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hao-Ching Jiang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel M Bear
- Department of Psychology, Stanford University, Palo Alto, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA
| | - Travis E Faust
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Manuel Garber
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christina E Baer
- Sanderson Center for Optical Imaging and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Burger H, Marquardt M, Babucke K, Heuel KC, Ayasse M, Dötterl S, Galizia CG. Neural and behavioural responses of the pollen-specialist bee Andrena vaga to Salix odours. J Exp Biol 2021; 224:269108. [PMID: 34113983 DOI: 10.1242/jeb.242166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
An effective means of finding food is crucial for organisms. Whereas specialized animals select a small number of potentially available food sources, generalists use a broader range. Specialist (oligolectic) bees forage on a small range of flowering plants for pollen and use primarily olfactory and visual cues to locate their host flowers. So far, however, little is known about the specific cues oligoleges use to discriminate between hosts and non-hosts and how floral scent compounds of hosts and non-hosts are processed in the bees' olfactory system. In this study, we recorded physiological responses of the antennae (electroantennographic detection coupled to gas chromatography; GC-EAD) and in the brain (optical imaging; GC imaging), and studied host-finding behaviour of oligolectic Andrena vaga bees, a specialist on Salix plants. In total, we detected 37 physiologically active compounds in host and non-host scents. 4-Oxoisophorone, a common constituent in the scent of many Salix species, evoked strong responses in the antennal lobe glomeruli of A. vaga, but not the generalist honeybee Apis mellifera. The specific glomerular responses to 4-oxoisophorone in natural Salix scents reveals a high degree of specialization in A. vaga for this typical Salix odorant component. In behavioural experiments, we found olfactory cues to be the key attractants for A. vaga to Salix hosts, which are also used to discriminate between hosts and non-hosts, and A. vaga demonstrated a behavioural activity for 4-oxoisophorone. A high sensitivity to floral scents enables the specialized bees to effectively find flowers and it appears that A. vaga bees are highly tuned to 4-oxoisophorone at a very low concentration.
Collapse
Affiliation(s)
- Hannah Burger
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Melanie Marquardt
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Katharina Babucke
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Kim C Heuel
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Use of odor by host-finding insects: the role of real-time odor environment and odor mixing degree. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Mariette J, Carcaud J, Sandoz JC. The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell Tissue Res 2021; 383:177-194. [PMID: 33447877 DOI: 10.1007/s00441-020-03401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The honeybee Apis mellifera L. is a crucial pollinator as well as a prominent scientific model organism, in particular for the neurobiological study of olfactory perception, learning, and memory. A wealth of information is indeed available about how the worker bee brain detects, processes, and learns about odorants. Comparatively, olfaction in males (the drones) and queens has received less attention, although they engage in a fascinating mating behavior that strongly relies on olfaction. Here, we present our current understanding of the molecules, cells, and circuits underlying bees' sexual communication. Mating in honeybees takes place at so-called drone congregation areas and places high in the air where thousands of drones gather and mate in dozens with virgin queens. One major queen-produced olfactory signal-9-ODA, the major component of the queen pheromone-has been known for decades to attract the drones. Since then, some of the neural pathways responsible for the processing of this pheromone have been unraveled. However, olfactory receptor expression as well as brain neuroanatomical data point to the existence of three additional major pathways in the drone brain, hinting at the existence of 4 major odorant cues involved in honeybee mating. We discuss current evidence about additional not only queen- but also drone-produced pheromonal signals possibly involved in bees' sexual behavior. We also examine data revealing recent evolutionary changes in drone's olfactory system in the Apis genus. Lastly, we present promising research avenues for progressing in our understanding of the neural basis of bees mating behavior.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Fuscà D, Kloppenburg P. Odor processing in the cockroach antennal lobe-the network components. Cell Tissue Res 2021; 383:59-73. [PMID: 33486607 PMCID: PMC7872951 DOI: 10.1007/s00441-020-03387-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Highly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.
Collapse
Affiliation(s)
- Debora Fuscà
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
10
|
Drozd D, Wolf H, Stemme T. Structure of the pecten neuropil pathway and its innervation by bimodal peg afferents in two scorpion species. PLoS One 2020; 15:e0243753. [PMID: 33301509 PMCID: PMC7728269 DOI: 10.1371/journal.pone.0243753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022] Open
Abstract
The pectines of scorpions are comb-like structures, located ventrally behind the fourth walking legs and consisting of variable numbers of teeth, or pegs, which contain thousands of bimodal peg sensillae. The associated neuropils are situated ventrally in the synganglion, extending between the second and fourth walking leg neuromeres. While the general morphology is consistent among scorpions, taxon-specific differences in pecten and neuropil structure remain elusive but are crucial for a better understanding of chemosensory processing. We analysed two scorpion species (Mesobuthus eupeus and Heterometrus petersii) regarding their pecten neuropil anatomy and the respective peg afferent innervation with anterograde and lipophilic tracing experiments, combined with immunohistochemistry and confocal laser-scanning microscopy. The pecten neuropils consisted of three subcompartments: a posterior pecten neuropil, an anterior pecten neuropil and a hitherto unknown accessory pecten neuropil. These subregions exhibited taxon-specific variations with regard to compartmentalisation and structure. Most notable were structural differences in the anterior pecten neuropils that ranged from ovoid shape and strong fragmentation in Heterometrus petersii to elongated shape with little compartmentalisation in Mesobuthus eupeus. Labelling the afferents of distinct pegs revealed a topographic organisation of the bimodal projections along a medio-lateral axis. At the same time, all subregions along the posterior-anterior axis were innervated by a single peg's afferents. The somatotopic projection pattern of bimodal sensillae appears to be common among arachnids, including scorpions. This includes the structure and organisation of the respective neuropils and the somatotopic projection patterns of chemosensory afferents. Nonetheless, the scorpion pecten pathway exhibits unique features, e.g. glomerular compartmentalisation superimposed on somatotopy, that are assumed to allow high resolution of substrate-borne chemical gradients.
Collapse
Affiliation(s)
- Denise Drozd
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Billard P, Clayton NS, Jozet-Alves C. Cuttlefish retrieve whether they smelt or saw a previously encountered item. Sci Rep 2020; 10:5413. [PMID: 32214190 PMCID: PMC7096502 DOI: 10.1038/s41598-020-62335-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/24/2020] [Indexed: 11/15/2022] Open
Abstract
According to the Source Monitoring Framework, the origin of a memory is remembered through the retrieval of specific features (e.g. perceptive, sensitive, affective signals). In two source discrimination tasks, we studied the ability of cuttlefish to remember the modality in which an item had been presented several hours ago. In Experiment 1, cuttlefish were able to retrieve the modality of presentation of a crab (visual vs olfactory) sensed before 1 h and 3 hrs delays. In Experiment 2, cuttlefish were trained to retrieve the modality of the presentation of fish, shrimp, and crabs. After training, cuttlefish performed the task with another item never encountered before (e.g. mussel). The cuttlefish successfully passed transfer tests with and without a delay of 3 hrs. This study is the first to show the ability to discriminate between two sensory modalities (i.e. see vs smell) in an animal. Taken together, these results suggest that cuttlefish can retrieve perceptual features of a previous event, namely whether they had seen or smelled an item.
Collapse
Affiliation(s)
- P Billard
- Normandie Univ, Unicaen, CNRS, EthoS, 14000, Caen, France.
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000, Rennes, France.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - N S Clayton
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - C Jozet-Alves
- Normandie Univ, Unicaen, CNRS, EthoS, 14000, Caen, France
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000, Rennes, France
| |
Collapse
|
12
|
Characterization of the olfactory system of the giant honey bee, Apis dorsata. Cell Tissue Res 2019; 379:131-145. [PMID: 31410628 DOI: 10.1007/s00441-019-03078-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Apis dorsata is an open-nesting, undomesticated, giant honey bee found in southern Asia. We characterized a number of aspects of olfactory system of Apis dorsata and compared it with the well-characterized, western honeybee, Apis mellifera, a domesticated, cavity-nesting species. A. dorsata differs from A. mellifera in nesting behavior, foraging activity, and defense mechanisms. Hence, there can be different demands on its olfactory system. We elucidated the glomerular organization of A. dorsata by creating a digital atlas for the antennal lobe and visualized the antennal lobe tracts and localized their innervations. We showed that the neurites of Kenyon cells with cell bodies located in a neighborhood in calyx retain their relative neighborhoods in the pedunculus and the vertical lobe forming a columnar organization in the mushroom body. The vertical lobe and the calyx of the mushroom body were found to be innervated by extrinsic neurons with cell bodies in the lateral protocerebrum. We found that the species was amenable to olfactory conditioning and showed good learning and memory retention at 24 h after training. It was also amenable to massed and spaced conditioning and could distinguish trained odor from an untrained novel odor. We found that all the above mentioned features in A. dorsata are very similar to those in A. mellifera. We thereby establish A. dorsata as a good model system, strikingly similar to A. mellifera despite the differences in their nesting and foraging behavior.
Collapse
|
13
|
Di Natale C, Martinelli E, Magna G, Mandoj F, Monti D, Nardis S, Stefanelli M, Paolesse R. Porphyrins for olfaction mimic: The Rome Tor Vergata approach. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424617300026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The impressive chemistry shown by porphyrins in natural systems is particularly attractive for exploitation in chemical sensors. In these devices the sensing mechanisms can mimic most of the porphyrin biological reactivity, such as reversible binding, activation of small molecules, redox activity, and photoactivated processes. The simultaneous presence of multiple binding mechanisms allows porphyrins to interact with a large variety of analytes. This feature reduces the selectivity, but prompts the development of sensor arrays, where the cross-selectivity of more sensors is used to classify and identify samples characterized by a complex composition. Since 1995 the Sensors Group of the University of Rome Tor Vergata has exploited these features to prepare sensor arrays based on different transducers and aimed at several applications. These kinds of devices have been reported as electronic noses (gaseous phase analytes) and electronic tongues (liquid phase analytes) to underline that their working mechanisms are tentatively similar to that of biological senses. We report here some of the results obtained.
Collapse
Affiliation(s)
- Corrado Di Natale
- Dipartimento di Ingegneria Elettronica, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Eugenio Martinelli
- Dipartimento di Ingegneria Elettronica, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Gabriele Magna
- Dipartimento di Ingegneria Elettronica, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Federica Mandoj
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Donato Monti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Sara Nardis
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Manuela Stefanelli
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Roberto Paolesse
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| |
Collapse
|
14
|
Ramirez-Esquivel F, Leitner NE, Zeil J, Narendra A. The sensory arrays of the ant, Temnothorax rugatulus. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:552-563. [PMID: 28347859 DOI: 10.1016/j.asd.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
Individual differences in response thresholds to task-related stimuli may be one mechanism driving task allocation among social insect workers. These differences may arise at various stages in the nervous system. We investigate variability in the peripheral nervous system as a simple mechanism that can introduce inter-individual differences in sensory information. In this study we describe size-dependent variation of the compound eyes and the antennae in the ant Temnothorax rugatulus. Head width in T. rugatulus varies between 0.4 and 0.7 mm (2.6-3.8 mm body length). But despite this limited range of worker sizes we find sensory array variability. We find that the number of ommatidia and of some, but not all, antennal sensilla types vary with head width. The antennal array of T. rugatulus displays the full complement of sensillum types observed in other species of ants, although at much lower quantities than other, larger, studied species. In addition, we describe what we believe to be a new type of sensillum in hymenoptera that occurs on the antennae and on all body segments. T. rugatulus has apposition compound eyes with 45-76 facets per eye, depending on head width, with average lens diameters of 16.5 μm, rhabdom diameters of 5.7 μm and inter-ommatidial angles of 16.8°. The optical system of T. rugatulus ommatidia is severely under focussed, but the absolute sensitivity of the eyes is unusually high. We discuss the functional significance of these findings and the extent to which the variability of sensory arrays may correlate with task allocation.
Collapse
Affiliation(s)
| | - Nicole E Leitner
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721-0088, USA.
| | - Jochen Zeil
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
15
|
Abstract
Summary
Odorants provide insects with crucial information about their environment and trigger various insect behaviors. A remarkably sensitive and selective sense of smell allows the animals to detect extremely low amounts of relevant odorants and thereby recognize, e.g., food, conspecifics, and predators. In recent years, significant progress has been made towards understanding the molecular elements and cellular mechanisms of odorant detection in the antenna and the principles underlying the primary processing of olfactory signals in the brain. These findings show that olfactory hairs on the antenna are specifically equipped with chemosensory detector units. They contain several binding proteins, which transfer odorants to specific receptors residing in the dendritic membrane of olfactory sensory neurons (OSN). Binding of odorant to the receptor initiates ionotropic and/or metabotropic mechanisms, translating the chemical signal into potential changes, which alter the spontaneous action potential frequency in the axon of the sensory neurons. The odor-dependent action potentials propagate from the antennae along the axon to the brain leading to an input signal within the antennal lobe. In the antennal lobe, the first relay station for olfactory information, the input signals are extensively processed by a complex network of local interneurons before being relayed by projection neurons to higher brain centers, where olfactory perception takes place.
Collapse
Affiliation(s)
- Silke Sachse
- Abt. Evolutionäre Neuroethologie, Max Planck Institut für Chemische Ökologie Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Jürgen Krieger
- Universität Hohenheim, Institut für Physiologie (230) Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
16
|
Zwaka H, Münch D, Manz G, Menzel R, Rybak J. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee, Apis mellifera. Front Neuroanat 2016; 10:90. [PMID: 27746723 PMCID: PMC5040750 DOI: 10.3389/fnana.2016.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL.
Collapse
Affiliation(s)
- Hanna Zwaka
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für NeurobiologieMagdeburg, Germany
| | - Daniel Münch
- Neurobiology, University of Konstanz Konstanz, Germany
| | - Gisela Manz
- Institute of Neurobiology, Free University Berlin Berlin, Germany
| | - Randolf Menzel
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
17
|
Schürmann FW. Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:399-421. [PMID: 27555065 DOI: 10.1016/j.asd.2016.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
In the insect brain, mushroom bodies represent a prominent central neuropil for multisensory integration and, crucially, for learning and memory. For this reason, special attention has been focused on its small chemical synapses. Early studies on synaptic types and their distribution, using conventional electron microscopy, and recent publications have resolved basic features of synaptic circuits. More recent studies, using experimental methods for resolving neurons, such as immunocytochemistry, genetic labelling, high resolution confocal microscopy and more advanced electron microscopy, have revealed many new details about the fine structure and molecular contents of identifiable neurons of mushroom bodies and has led to more refined modelling of functional organisation. Synaptic circuitries have been described in most detail for the calyces. In contrast, the mushroom bodies' columnar peduncle and lobes have been explored to a lesser degree. In dissecting local microcircuits, the scientist is confronted with complex neuronal compartmentalisation and specific synaptic arrangements. This article reviews classical and modern studies on the fine structure of synapses and their networks in mushroom bodies across several insect species.
Collapse
Affiliation(s)
- Friedrich-Wilhelm Schürmann
- Johann-Friedrich-Blumenbach Institut für Zoologie und Anthropologie, Georg-August-University Göttingen, Berlinerstrasse 28, D-37073 Göttingen, Germany.
| |
Collapse
|
18
|
Paoli M, Weisz N, Antolini R, Haase A. Spatially resolved time-frequency analysis of odour coding in the insect antennal lobe. Eur J Neurosci 2016; 44:2387-95. [PMID: 27452956 DOI: 10.1111/ejn.13344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/15/2016] [Accepted: 07/18/2016] [Indexed: 11/28/2022]
Abstract
Antennal lobes constitute the first neurophils in the insect brain involved in coding and processing of olfactory information. With their stereotyped functional and anatomical organization, they provide an accessible model with which to investigate information processing of an external stimulus in a neural network in vivo. Here, by combining functional calcium imaging with time-frequency analysis, we have been able to monitor the oscillatory components of neural activity upon olfactory stimulation. The aim of this study is to investigate the presence of stimulus-induced oscillatory patterns in the honeybee antennal lobe, and to analyse the distribution of those patterns across the antennal lobe glomeruli. Fast two-photon calcium imaging reveals the presence of low-frequency oscillations, the intensity of which is perturbed by an incoming stimulus. Moreover, analysis of the spatial arrangement of this activity indicates that it is not homogeneous throughout the antennal lobe. On the contrary, each glomerulus displays an odorant-specific time-frequency profile, and acts as a functional unit of the oscillatory activity. The presented approach allows simultaneous recording of complex activity patterns across several nodes of the antennal lobe, providing the means to better understand the network dynamics regulating olfactory coding and leading to perception.
Collapse
Affiliation(s)
- Marco Paoli
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068, Rovereto, Italy.
| | - Nathan Weisz
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068, Rovereto, Italy.,Division of Physiological Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Renzo Antolini
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068, Rovereto, Italy.,Department of Physics, University of Trento, Trento, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068, Rovereto, Italy. .,Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
19
|
Grüter C, Keller L. Inter-caste communication in social insects. Curr Opin Neurobiol 2016; 38:6-11. [PMID: 26803006 DOI: 10.1016/j.conb.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 01/02/2023]
Abstract
Social insect colonies function as highly integrated units despite consisting of many individuals. This requires the different functional parts of the colony (e.g. different castes) to exchange information that aid in colony functioning and ontogeny. Here we discuss inter-caste communication in three contexts, firstly, the communication between males and females during courtship, secondly, the communication between queens and workers that regulate reproduction and thirdly, the communication between worker castes that allows colonies to balance the number of different worker types. Some signals show surprising complexity in both their chemistry and function, whereas others are simple compounds that were probably already used as pheromones in the solitary ancestors of several social insect lineages.
Collapse
Affiliation(s)
- Christoph Grüter
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
|
21
|
Zhou Z, Kulasiri D, Samarasinghe S, Rains G, Olson DM. Computational modeling and experimental validation of odor detection behaviors of classically conditioned parasitic wasp, Microplitis croceipes. Biotechnol Prog 2014; 31:596-606. [PMID: 25482381 DOI: 10.1002/btpr.2025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/06/2014] [Indexed: 11/09/2022]
Abstract
A prototype chemical sensor named Wasp hound® that utilizes five classically conditioned parasitoid wasps, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), to detect volatile odors was successfully implemented in a previous study. To improve the odor-detecting ability of Wasp Hound®, searching behaviors of an individual wasp in a confined area are studied and modeled through stochastic differential equations in this paper. The wasps are conditioned to 20 mg of coffee when associated with food and subsequently, tested to 5, 10, 20, and 40 mg of coffee. A stochastic model is developed and validated based on three positive behavioral responses (walking, rotation around odor source, and self-rotation) from conditioned wasps at four different test dosages. The model is capable to reproducing the behaviors of conditioned wasps, and can be used to improve the ability of Wasp Hound® to assess changes in odor concentration. The model simulation results show the behaviors of conditioned wasps are significantly different when tested at different coffee dosages. We conjecture that the searching behaviors of conditioned wasps are based on the temporal and spatial neuron activity of olfactory receptor neurons and glomeruli, which are strongly correlated to the training dosages. The overall results demonstrate the utility of mathematical models for interpreting experimental observations, gaining novel insights into the dynamic behavior of classically conditioned wasps, as well as broadening the practical uses of Wasp Hound.
Collapse
Affiliation(s)
- Zhongkun Zhou
- Centre for Advanced Solutions (C-fACS), Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
22
|
Shlizerman E, Riffell JA, Kutz JN. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe. Front Comput Neurosci 2014; 8:70. [PMID: 25165442 PMCID: PMC4131428 DOI: 10.3389/fncom.2014.00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/20/2014] [Indexed: 11/13/2022] Open
Abstract
The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns.
Collapse
Affiliation(s)
- Eli Shlizerman
- Department of Applied Mathematics, University of Washington Seattle, WA, USA
| | | | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington Seattle, WA, USA
| |
Collapse
|
23
|
Contrasting Effects of Histone Deacetylase Inhibitors on Reward and Aversive Olfactory Memories in the Honey Bee. INSECTS 2014; 5:377-98. [PMID: 26462690 PMCID: PMC4592598 DOI: 10.3390/insects5020377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/12/2014] [Accepted: 05/19/2014] [Indexed: 11/17/2022]
Abstract
Much of what we have learnt from rodent models about the essential role of epigenetic processes in brain plasticity has made use of aversive learning, yet the role of histone acetylation in aversive memory in the honey bee, a popular invertebrate model for both memory and epigenetics, was previously unknown. We examined the effects of histone deacetylase (HDAC) inhibition on both aversive and reward olfactory associative learning in a discrimination proboscis extension reflex (PER) assay. We report that treatment with the HDAC inhibitors APHA compound 8 (C8), phenylbutyrate (PB) or sodium butyrate (NaB) impaired discrimination memory due to impairment of aversive memory in a dose-dependent manner, while simultaneously having no effect on reward memory. Treatment with C8 1 h before training, 1 h after training or 1 h before testing, impaired aversive but not reward memory at test. C8 treatment 1 h before training also improved aversive but not reward learning during training. PB treatment only impaired aversive memory at test when administered 1 h after training, suggesting an effect on memory consolidation specifically. Specific impairment of aversive memory (but not reward memory) by HDAC inhibiting compounds was robust, reproducible, occurred following treatment with three drugs targeting the same mechanism, and is likely to be genuinely due to alterations to memory as sucrose sensitivity and locomotion were unaffected by HDAC inhibitor treatment. This pharmacological dissection of memory highlights the involvement of histone acetylation in aversive memory in the honey bee, and expands our knowledge of epigenetic control of neural plasticity in invertebrates.
Collapse
|
24
|
Thomas-Danguin T, Sinding C, Romagny S, El Mountassir F, Atanasova B, Le Berre E, Le Bon AM, Coureaud G. The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front Psychol 2014; 5:504. [PMID: 24917831 PMCID: PMC4040494 DOI: 10.3389/fpsyg.2014.00504] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Smelling monomolecular odors hardly ever occurs in everyday life, and the daily functioning of the sense of smell relies primarily on the processing of complex mixtures of volatiles that are present in the environment (e.g., emanating from food or conspecifics). Such processing allows for the instantaneous recognition and categorization of smells and also for the discrimination of odors among others to extract relevant information and to adapt efficiently in different contexts. The neurophysiological mechanisms underpinning this highly efficient analysis of complex mixtures of odorants is beginning to be unraveled and support the idea that olfaction, as vision and audition, relies on odor-objects encoding. This configural processing of odor mixtures, which is empirically subject to important applications in our societies (e.g., the art of perfumers, flavorists, and wine makers), has been scientifically studied only during the last decades. This processing depends on many individual factors, among which are the developmental stage, lifestyle, physiological and mood state, and cognitive skills; this processing also presents striking similarities between species. The present review gathers the recent findings, as observed in animals, healthy subjects, and/or individuals with affective disorders, supporting the perception of complex odor stimuli as odor objects. It also discusses peripheral to central processing, and cognitive and behavioral significance. Finally, this review highlights that the study of odor mixtures is an original window allowing for the investigation of daily olfaction and emphasizes the need for knowledge about the underlying biological processes, which appear to be crucial for our representation and adaptation to the chemical environment.
Collapse
Affiliation(s)
- Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Charlotte Sinding
- Smell and Taste Clinic, Department of Otorhinolaryngoly TU Dresden, Dresden, Germany
| | - Sébastien Romagny
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Fouzia El Mountassir
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | | | | | - Anne-Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| |
Collapse
|
25
|
López-Riquelme GO. Representación odotópica de la organización glomerular del lóbulo antenal en los cuerpos fungiformes de las hormigas (Hymenoptera: Formicidae): Comparaciones entre dos especies. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70317-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Szyszka P, Stierle JS. Mixture processing and odor-object segregation in insects. PROGRESS IN BRAIN RESEARCH 2014; 208:63-85. [PMID: 24767479 DOI: 10.1016/b978-0-444-63350-7.00003-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When enjoying the scent of grinded coffee or cut grass, most of us are unaware that these scents consist of up to hundreds of volatile substances. We perceive these odorant mixtures as a unitary scent rather than a combination of multiple odorants. The olfactory system processes odor mixtures into meaningful odor objects to provide animals with information that is relevant in everyday tasks, such as habitat localization, foraging, social communication, reproduction, and orientation. For example, odor objects can be a particular flower species on which a bee feeds or the receptive female moth which attracts males by its specific pheromone blend. Using odor mixtures as cues for odor-driven behavior rather than single odorants allows unambiguous identification of a potentially infinite number of odor objects. When multiple odor objects are present at the same time, they form a temporally complex mixture. In order to segregate this mixture into its meaningful constituents, animals must have evolved odor-object segregation mechanisms which are robust against the interference by background odors. In this review, we describe how insects use information of the olfactory environment to either bind odorants into unitary percepts or to segregate them from each other.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany.
| | - Jacob S Stierle
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
27
|
Comparison of two voltage-sensitive dyes and their suitability for long-term imaging of neuronal activity. PLoS One 2013; 8:e75678. [PMID: 24124505 PMCID: PMC3790875 DOI: 10.1371/journal.pone.0075678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
One of the key approaches for studying neural network function is the simultaneous measurement of the activity of many neurons. Voltage-sensitive dyes (VSDs) simultaneously report the membrane potential of multiple neurons, but often have pharmacological and phototoxic effects on neuronal cells. Yet, to study the homeostatic processes that regulate neural network function long-term recordings of neuronal activities are required. This study aims to test the suitability of the VSDs RH795 and Di-4-ANEPPS for optically recording pattern generating neurons in the stomatogastric nervous system of crustaceans with an emphasis on long-term recordings of the pyloric central pattern generator. We demonstrate that both dyes stain pyloric neurons and determined an optimal concentration and light intensity for optical imaging. Although both dyes provided sufficient signal-to-noise ratio for measuring membrane potentials, Di-4-ANEPPS displayed a higher signal quality indicating an advantage of this dye over RH795 when small neuronal signals need to be recorded. For Di-4-ANEPPS, higher dye concentrations resulted in faster and brighter staining. Signal quality, however, only depended on excitation light strength, but not on dye concentration. RH795 showed weak and slowly developing phototoxic effects on the pyloric motor pattern as well as slow bleaching of the staining and is thus the better choice for long-term experiments. Low concentrations and low excitation intensities can be used as, in contrast to Di-4-ANEPPS, the signal-to-noise ratio was independent of excitation light strength. In summary, RH795 and Di-4-ANEPPS are suitable for optical imaging in the stomatogastric nervous system of crustaceans. They allow simultaneous recording of the membrane potential of multiple neurons with high signal quality. While Di-4-ANEPPS is better suited for short-term experiments that require high signal quality, RH795 is a better candidate for long-term experiments since it has only minor effects on the motor pattern.
Collapse
|
28
|
Auffarth B. Understanding smell—The olfactory stimulus problem. Neurosci Biobehav Rev 2013; 37:1667-79. [DOI: 10.1016/j.neubiorev.2013.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
|
29
|
|
30
|
Strauch M, Ditzen M, Galizia CG. Keeping their distance? Odor response patterns along the concentration range. Front Syst Neurosci 2012; 6:71. [PMID: 23087621 PMCID: PMC3474990 DOI: 10.3389/fnsys.2012.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/28/2012] [Indexed: 11/30/2022] Open
Abstract
We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations.
Collapse
Affiliation(s)
- Martin Strauch
- Department of Neurobiology, University of Konstanz Konstanz, Germany ; Bioinformatics and Information Mining, University of Konstanz Konstanz, Germany
| | | | | |
Collapse
|
31
|
Pregitzer P, Schubert M, Breer H, Hansson BS, Sachse S, Krieger J. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front Cell Neurosci 2012; 6:42. [PMID: 23060749 PMCID: PMC3465774 DOI: 10.3389/fncel.2012.00042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/20/2012] [Indexed: 11/17/2022] Open
Abstract
In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization.
Collapse
Affiliation(s)
- Pablo Pregitzer
- Institute of Physiology, University of Hohenheim Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Løfaldli BB, Kvello P, Kirkerud N, Mustaparta H. Activity in Neurons of a Putative Protocerebral Circuit Representing Information about a 10 Component Plant Odor Blend in Heliothis virescens. Front Syst Neurosci 2012; 6:64. [PMID: 23060753 PMCID: PMC3461648 DOI: 10.3389/fnsys.2012.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022] Open
Abstract
The olfactory pathway in the insect brain is anatomically well described from the antennal lobe (AL) to the mushroom bodies and the lateral protocerebrum (LP) in several species. Less is known about the further connections of the olfactory network in protocerebrum and how information about relevant plant odorants and mixtures are represented in this network, resulting in output information mediated by descending neurons. In the present study we have recorded intracellularly followed by dye injections from neurons in the LP and superior protocerebrum (SP) of the moth, Heliothis virescens. As relevant stimuli, we have used selected primary plant odorants and mixtures of them. The results provide the morphology and physiological responses of neurons involved in a putative circuit connecting the mushroom body lobes, the SP, and the LP, as well as input to SP and LP by one multiglomerular AL neuron and output from the LP by one descending neuron. All neurons responded to a particular mixture of ten primary plant odorants, some of them also to single odorants of the mixture. Altogether, the physiological data indicate integration in protocerebral neurons of information from several of the receptor neuron types functionally described in this species.
Collapse
Affiliation(s)
- Bjarte Bye Løfaldli
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology Trondheim, Norway
| | | | | | | |
Collapse
|
33
|
Repeated unrewarded scent exposure influences the food choice of stingless bee foragers, Melipona scutellaris. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2011.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
The plight of pollination and the interface of neurobiology, ecology and food security. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s10669-012-9394-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Abstract
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain.
Collapse
Affiliation(s)
- Rose C Ong
- National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Rm 3A-102, MSC 3715, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
|
37
|
Sombke A, Lipke E, Kenning M, Müller CH, Hansson BS, Harzsch S. Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 2012; 13:1-17. [PMID: 22214384 PMCID: PMC3320525 DOI: 10.1186/1471-2202-13-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/03/2012] [Indexed: 02/08/2023] Open
Abstract
Background Originating from a marine ancestor, the myriapods most likely invaded land independently of the hexapods. As these two evolutionary lineages conquered land in parallel but separately, we are interested in comparing the myriapod chemosensory system to that of hexapods to gain insights into possible adaptations for olfaction in air. Our study connects to a previous analysis of the brain and behavior of the chilopod (centipede) Scutigera coleoptrata in which we demonstrated that these animals do respond to volatile substances and analyzed the structure of their central olfactory pathway. Results Here, we examined the architecture of the deutocerebral brain areas (which process input from the antennae) in seven additional representatives of the Chilopoda, covering all major subtaxa, by histology, confocal laser-scan microscopy, and 3D reconstruction. We found that in all species that we studied the majority of antennal afferents target two separate neuropils, the olfactory lobe (chemosensory, composed of glomerular neuropil compartments) and the corpus lamellosum (mechanosensory). The numbers of olfactory glomeruli in the different chilopod taxa ranged from ca. 35 up to ca. 90 and the shape of the glomeruli ranged from spheroid across ovoid or drop-shape to elongate. Conclusion A split of the afferents from the (first) pair of antennae into separate chemosensory and mechanosensory components is also typical for Crustacea and Hexapoda, but this set of characters is absent in Chelicerata. We suggest that this character set strongly supports the Mandibulata hypothesis (Myriapoda + (Crustacea + Hexapoda)) as opposed to the Myriochelata concept (Myriapoda + Chelicerata). The evolutionary implications of our findings, particularly the plasticity of glomerular shape, are discussed.
Collapse
Affiliation(s)
- Andy Sombke
- Ernst Moritz Arndt University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Chemical Communication in Insects: The Peripheral Odour Coding System of Drosophila Melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:59-77. [DOI: 10.1007/978-1-4614-1704-0_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Martinelli E, Polese D, Dini F, Paolesse R, Filippini D, Lundström I, Di Natale C. An investigation on the role of spike latency in an artificial olfactory system. FRONTIERS IN NEUROENGINEERING 2011; 4:16. [PMID: 22194721 PMCID: PMC3243114 DOI: 10.3389/fneng.2011.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022]
Abstract
Experimental studies have shown that the reactions to external stimuli may appear only few hundreds of milliseconds after the physical interaction of the stimulus with the proper receptor. This behavior suggests that neurons transmit the largest meaningful part of their signal in the first spikes, and than that the spike latency is a good descriptor of the information content in biological neural networks. In this paper this property has been investigated in an artificial sensorial system where a single layer of spiking neurons is trained with the data generated by an artificial olfactory platform based on a large array of chemical sensors. The capability to discriminate between distinct chemicals and mixtures of them was studied with spiking neural networks endowed with and without lateral inhibitions and considering as output feature of the network both the spikes latency and the average firing rate. Results show that the average firing rate of the output spikes sequences shows the best separation among the experienced vapors, however the latency code is able in a shorter time to correctly discriminate all the tested volatile compounds. This behavior is qualitatively similar to those recently found in natural olfaction, and noteworthy it provides practical suggestions to tail the measurement conditions of artificial olfactory systems defining for each specific case a proper measurement time.
Collapse
Affiliation(s)
- Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Calábria LK, Peixoto PMV, Passos Lima AB, Peixoto LG, de Moraes VRA, Teixeira RR, Dos Santos CT, E Silva LO, da Silva MDFR, dos Santos AAD, Garcia-Cairasco N, Martins AR, Espreafico EM, Espindola FS. Myosins and DYNLL1/LC8 in the honey bee (Apis mellifera L.) brain. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1300-1311. [PMID: 21718700 DOI: 10.1016/j.jinsphys.2011.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions.
Collapse
Affiliation(s)
- Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hu JH, Wang ZY, Sun F. Anatomical organization of antennal-lobe glomeruli in males and females of the scarab beetle Holotrichia diomphalia (Coleoptera: Melolonthidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:420-428. [PMID: 21889404 DOI: 10.1016/j.asd.2011.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 03/13/2011] [Accepted: 03/16/2011] [Indexed: 05/31/2023]
Abstract
The glomerular organization of the primary olfactory brain center, the antennal lobe, was studied in males and females of Holotrichia diomphalia adults using serial histological sections labeled by the reduced silver-stain technique. The results revealed an apparent sexual dimorphism. Whereas an enlarged cap-shaped glomerulus was found at the antennal nerve entrance into the antennal lobe in males, no such unit was present in females. Also the size of the antennal lobe differed between the sexes, the antennal lobe of males being larger than that of females. We estimated the total number of glomeruli at approximately 60 units in the female antennal lobe. In males, we could discriminate only those glomeruli that were located in the anterior area of the antennal lobe.
Collapse
Affiliation(s)
- Ji-Hua Hu
- School of Forestry, Northeast Forestry University, Harbin, PR China
| | | | | |
Collapse
|
42
|
Missbach C, Harzsch S, Hansson BS. New insights into an ancient insect nose: the olfactory pathway of Lepismachilis y-signata (Archaeognatha: Machilidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:317-333. [PMID: 21665539 DOI: 10.1016/j.asd.2011.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 03/07/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Hexapods most likely derived from an aquatic ancestor, which they shared with crustaceans. During the transition from water to land, their sensory systems had to face the new physiological demands that terrestrial conditions impose. This process also concerns the sense of smell and, more specifically, detection of volatile, air-borne chemicals. In insects, olfaction plays an important role in orientation, mating choice, and food and host finding behavior. The first integration center of odor information in the insect brain is the antennal lobe, which is targeted by the afferents from olfactory sensory neurons on the antennae. Within the antennal lobe of most pterygote insects, spherical substructures called olfactory glomeruli are present. In order to gain insights into the evolution of the structure of the central olfactory pathway in insects, we analyzed a representative of the wingless Archaeognatha or jumping bristletails, using immunocytochemistry, antennal backfills and histological section series combined with 3D reconstruction. In the deutocerebrum of Lepismachilis y-signata, we found three different neuropil regions. Two of them show a glomerular organization, but these glomeruli differ in their shape from those in all other insect groups. The connection of the glomerular neuropils to higher brain centers remains unclear and mushroom bodies are absent as reported from other archaeognathan species. We discuss the evolutionary implications of these findings.
Collapse
Affiliation(s)
- Christine Missbach
- Max-Planck-Institute for Chemical Ecology, Department of Neuroethology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
43
|
Valentincic T, Miklavc P, Kralj S, Zgonik V. Olfactory discrimination of complex mixtures of amino acids by the black bullhead Ameiurus melas. JOURNAL OF FISH BIOLOGY 2011; 79:33-52. [PMID: 21722109 DOI: 10.1111/j.1095-8649.2011.02976.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
On the basis of previous findings of behavioural discrimination of amino acids and on the knowledge of electrophysiology of the catfish (genera Ictalurus and Ameiurus) olfactory organs, behavioural experiments that investigated olfactory discrimination of amino acid mixtures were carried out on the black bullhead Ameiurus melas. Repeated presentations of food-rewarded mixtures released increased swimming activity measured by counting the number of turns >90° within 90 s of stimulus addition. Non-rewarded amino acids and their mixtures released little swimming activity, indicating that A. melas discriminated between the conditioned and the non-conditioned stimuli. Two questions of mixture discrimination were addressed: (1) Are A. melas able to detect components within simple and complex amino acid mixtures? (2) What are the smallest differences between two complex mixtures that A. melas can detect? Three and 13 component mixtures tested were composed primarily of equipotent amino acids [determined by equal electroolfactogram (EOG) amplitude] that contained L-Cys at ×100 the equipotent concentration. Ameiurus melas initially perceived the ternary amino acid mixture as its more stimulatory component alone [i.e. cysteine (Cys)], whereas the conditioned 13 component mixture containing the more stimulatory L-Cys was perceived immediately as different from L-Cys alone. The results indicate that components of ternary mixtures are detectable by A. melas but not those of more complex mixtures. To test for the smallest detectable differences in composition between similar multimixtures, all mixture components were equipotent. Initially, A. melas were unable to discriminate the mixtures of six amino acids from the conditioned mixtures of seven amino acids, whereas they discriminated immediately the mixtures of four and five amino acids from the conditioned mixture. Experience with dissimilar mixtures enabled the A. melas to start discriminating the seven-component conditioned mixture from its six-component counterparts. After fewer than five training trials, A. melas discriminated the mixtures of nine and 10 amino acids from a conditioned mixture of 12 equipotent amino acids; however, irrespective of the number of training trials, A. melas were unable to discriminate the 12 component mixture from its 11 component counterparts.
Collapse
Affiliation(s)
- T Valentincic
- Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
44
|
|
45
|
Eschbach C, Vogt K, Schmuker M, Gerber B. The similarity between odors and their binary mixtures in Drosophila. Chem Senses 2011; 36:613-21. [PMID: 21486995 DOI: 10.1093/chemse/bjr016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
How are odor mixtures perceived? We take a behavioral approach toward this question, using associative odor-recognition experiments in Drosophila. We test how strongly flies avoid a binary mixture after punishment training with one of its constituent elements and how much, in turn, flies avoid an odor element if it had been a component of a previously punished binary mixture. A distinguishing feature of our approach is that we first adjust odors for task-relevant behavioral potency, that is, for equal learnability. Doing so, we find that 1) generalization between mixture and elements is symmetrical and partial, 2) elements are equally similar to all mixtures containing it and that 3) mixtures are equally similar to both their constituent elements. As boundary conditions for the applicability of these rules, we note that first, although variations in learnability are small and remain below statistical cut-off, these variations nevertheless correlate with the elements' perceptual "weight" in the mixture; thus, even small differences in learnability between the elements have the potential to feign mixture asymmetries. Second, the more distant the elements of a mixture are to each other in terms of their physicochemical properties, the more distant the flies regard the elements from the mixture. Thus, titrating for task-relevant behavioral potency and taking into account physicochemical relatedness of odors reveals rules of mixture perception that, maybe surprisingly, appear to be fairly simple.
Collapse
Affiliation(s)
- Claire Eschbach
- Universität Leipzig, Institut für Biologie, Genetik, Talstrasse 33, Leipzig, Germany.
| | | | | | | |
Collapse
|
46
|
Sombke A, Harzsch S, Hansson BS. Organization of Deutocerebral Neuropils and Olfactory Behavior in the Centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses 2010; 36:43-61. [DOI: 10.1093/chemse/bjq096] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Beyaert I, Wäschke N, Scholz A, Varama M, Reinecke A, Hilker M. Relevance of resource-indicating key volatiles and habitat odour for insect orientation. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Denker M, Finke R, Schaupp F, Grün S, Menzel R. Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 2010; 31:119-33. [PMID: 20104653 DOI: 10.1111/j.1460-9568.2009.07046.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Extracellular spiking activity and local field potentials (LFP) were recorded via tetrodes at the output of the antennal lobe (AL) in the honeybee brain during olfactory conditioning. Odors induce reliable rate responses that consist of either phasic-tonic responses, or complex responses with odor-specific profiles. In addition, odors evoke consistent responses of LFP oscillations in the 50-Hz band during the phasic ON-response to odor stimulation, and variable LFP responses at other frequency bands during the sustained response. A principal component analysis of the ensemble activity during differential conditioning consistently indicates the largest changes in response to the learned odor (conditioned stimulus; CS+). Relative LFP power increases for CS+ in the 15-40-Hz frequency band during the sustained response, and decreases for frequencies above 45 Hz. To quantify the relationship between these population responses given by the ensemble spiking activity and LFP, we show that for CS+ the learning-related changes in the degree of the phase-locked spiking activity correlate with the power changes in the corresponding frequency bands. Our results indicate associative plasticity in the AL of the bee leading to both enhancement and decrease of neuronal response rates. LFP power changes and the correlated changes in the locking between spikes and LFP at different frequencies observed for the learned odor serve as further evidence for a learning-induced restructuring of temporal ensemble representations.
Collapse
Affiliation(s)
- Michael Denker
- RIKEN Brain Science Institute, Wako-Shi, 351-0198 Saitama, Japan.
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Pellegrino M, Nakagawa T. Smelling the difference: controversial ideas in insect olfaction. ACTA ACUST UNITED AC 2009; 212:1973-9. [PMID: 19525421 DOI: 10.1242/jeb.023036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, the sense of smell is often used as a powerful way to attract potential mates, to find food and to explore the environment. Different animals evolved different systems to detect volatile odorants, tuned to the specific needs of each species. Vertebrates and nematodes have been used extensively as models to study the mechanisms of olfaction: the molecular players are olfactory receptors (ORs) expressed in olfactory sensory neurons (OSNs) where they bind to volatile chemicals, acting as the first relay of olfactory processing. These receptors belong to the G protein-coupled receptor (GPCR) superfamily; binding to odorants induces the production and amplification of second messengers, which lead to the depolarization of the neuron. The anatomical features of the insect olfactory circuit are similar to those of mammals, and until recently it was thought that this similarity extended to the ORs, which were originally annotated as GPCRs. Surprisingly, recent evidence shows that insect ORs can act like ligand-gated ion channels, either completely or partially bypassing the amplification steps connected to the activation of G proteins. Although the involvement of G proteins in insect olfactory signal transduction is still under question, this new discovery raises fascinating new questions regarding the function of the sense of smell in insects, its evolution and potential benefits compared with its mammalian counterpart.
Collapse
Affiliation(s)
- Maurizio Pellegrino
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|