1
|
Hughes MDG, Cussons S, Borumand A, Tyler AII, Brockwell DJ, Dougan L. Capturing the impact of protein unfolding on the dynamic assembly of protein networks. SOFT MATTER 2025; 21:1748-1759. [PMID: 39930881 DOI: 10.1039/d4sm01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The rapid assembly of molecular or nanoscale building blocks into extended arrays is crucial to the construction of functional networks in vivo and in vitro and depends on various factors. One factor seldom considered is the dynamic changes of the building block shape. Folded protein building blocks offer a unique system to investigate dynamic shape changes due to their intrinsic ability to change from a compact and specific folded structure to an extended unfolded structure in response to a perturbation such as force. Here, we use photochemically crosslinked folded protein hydrogels constructed from force labile protein building blocks as a model dynamic shape-changing network system and characterise them by combining time-resolved rheology and small-angle X-ray scattering (SAXS). This approach probes both the load-bearing network structures, using rheology, and network architectures, using SAXS, thereby providing a crosslength scale understanding of the network formation. We propose a triple assembly model for the structural evolution of networks constructed from force labile protein building block consisting of: primary formation where monomeric folded proteins create the preliminary protein network scaffold; a subsequent secondary formation phase, where larger oligomers of protein diffuse to join the preliminary network scaffold; and finally in situ unfolding and relaxation which leads to the mature network structure of connected larger and denser fractal-like clusters. The time-resolved SAXS data provides evidence that protein unfolding occurs on the edges of the fractal-like clusters, resulting in a population of unfolded proteins in the space between clusters. Identifying the key stages of assembly in protein networks constructed from force labile proteins provides a greater understanding of the importance of protein unfolding in hierarchical biomechanics in vivo and creates future opportunities to develop bespoke biomaterials for novel biomedical applications.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Ahmad Borumand
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Arwen I I Tyler
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| |
Collapse
|
2
|
Jain A, Judy E, Kishore N. Analytical Aspects of ANSA-BSA Association: A Thermodynamic and Conformational Approach. J Phys Chem B 2024; 128:5344-5362. [PMID: 38773936 DOI: 10.1021/acs.jpcb.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Many studies have demonstrated the manner in which ANS interacts with bovine serum albumin (BSA), although they are limited by the extremely low solubility of dye. The present study demonstrates the binding of ANSA dye with BSA, and since this dye can easily replace ANS, it not only simplifies research but also improves sensor accuracy for serum albumin. A combination of calorimetry and spectroscopy has been employed to establish the thermodynamic signatures associated with the interaction of ANSA with the protein and the consequent conformational changes in the latter. The results of differential scanning calorimetry reveal that when the concentration of ANSA in solution is increased, the thermal stability of the protein increases substantially. The fluorescence data demonstrated a decrease in the binding affinity of ANSA with the protein when pH increased but was unable to identify a change in the mode of interaction of the ligand. ITC has demonstrated that the mode of interaction between ANSA and the protein varies from a single set of binding sites at pH 5 and 7.4 to a sequential binding site at pH 10, emphasizing the potential relevance of protein conformational changes. TCSPC experiments suggested a dynamic type in the presence of ANSA. Molecular docking studies suggest that ANSA molecules are able to find ionic centers in the hydrophobic pockets of BSA. The findings further imply that given its ease of use in experiments, ANSA may be a useful probe for tracking the presence of serum albumin and partially folded protein states.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Sun H, Le S, Guo Z, Chen H. Exploring the free energy landscape of proteins using magnetic tweezers. Methods Enzymol 2024; 694:237-261. [PMID: 38492953 DOI: 10.1016/bs.mie.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Proteins fold to their native states by searching through the free energy landscapes. As single-domain proteins are the basic building block of multiple-domain proteins or protein complexes composed of subunits, the free energy landscapes of single-domain proteins are of critical importance to understand the folding and unfolding processes of proteins. To explore the free energy landscapes of proteins over large conformational space, the stability of native structure is perturbed by biochemical or mechanical means, and the conformational transition process is measured. In single molecular manipulation experiments, stretching force is applied to proteins, and the folding and unfolding transitions are recorded by the extension time course. Due to the broad force range and long-time stability of magnetic tweezers, the free energy landscape over large conformational space can be obtained. In this article, we describe the magnetic tweezers instrument design, protein construct design and preparation, fluid chamber preparation, common-used measuring protocols including force-ramp and force-jump measurements, and data analysis methods to construct the free energy landscape. Single-domain cold shock protein is introduced as an example to build its free energy landscape by magnetic tweezers measurements.
Collapse
Affiliation(s)
- Hao Sun
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, P.R. China
| | - Shimin Le
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, P.R. China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, P.R. China.
| | - Hu Chen
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, P.R. China; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, P.R. China.
| |
Collapse
|
5
|
Tripathi P, Mehrafrooz B, Aksimentiev A, Jackson SE, Gruebele M, Wanunu M. A Marcus-Type Inverted Region in the Translocation Kinetics of a Knotted Protein. J Phys Chem Lett 2023; 14:10719-10726. [PMID: 38009629 PMCID: PMC11176711 DOI: 10.1021/acs.jpclett.3c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Knotted proteins are rare but important species, yet how their complex topologies affect their physical properties is not fully understood. Here we combine single molecule nanopore experiments and all-atom MD simulations to study the electric-field-driven unfolding during the translocation through a model pore of individual protein knots important for methylating tRNA. One of these knots shows an unusual behavior that resembles the behavior of electrons hopping between two potential surfaces: as the electric potential driving the translocation reaction is increased, the rate eventually plateaus or slows back down in the "Marcus inverted regime". Our results shed light on the influence of topology in knotted proteins on their forced translocation through a pore connecting two electrostatic potential wells.
Collapse
Affiliation(s)
- Prabhat Tripathi
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP-221005, India
| | - Behzad Mehrafrooz
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Sophie E. Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield `Road, Cambridge CB2 1EW, UK
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA-02115, USA
| |
Collapse
|
6
|
Hebishy M, Shintouo CM, Dufait I, Debacq-Chainiaux F, Bautmans I, Njemini R. Heat shock proteins and cellular senescence in humans: A systematic review. Arch Gerontol Geriatr 2023; 113:105057. [PMID: 37207540 DOI: 10.1016/j.archger.2023.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Cellular senescence (CS) is a permanent arrest of cell growth and exit of the cell cycle. It is an important tumor suppression mechanism and has a key role in wound healing, tissue regeneration, and prevention of tissue fibrosis. Despite the short-term benefits of CS, accumulation of senescent cells has deleterious effects and is associated with several pathological age-related phenotypes. As Heat Shock Proteins (HSP) are associated with cyto-protection, their role in longevity and CS became a research interest. However, an overview of the relationship between HSP and CS in humans still lacks in the literature. To provide an overview of the current state of the literature, this systematic review focused on the role of HSP in the development of CS in humans. PubMed, Web of Science and Embase were systematically screened for studies on the relationship between HSP and CS in humans. A total of 14 articles were eligible for inclusion. The heterogeneity and lack of numerical reporting of outcomes obstructed the conduction of a meta-analysis. The results consistently show that HSP depletion results in increased CS, while overexpression of HSP decreases CS, whether in cancer, fibroblasts, or stem cell lines. This systematic review summarized the literature on the prospective role of HSP in the development of CS in humans.
Collapse
Affiliation(s)
- Mariam Hebishy
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Cabirou Mounchili Shintouo
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
| | - Ines Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Florence Debacq-Chainiaux
- Research Unit on Cellular Biology (URBC), Department of Biology, University of Namur, Rue de Bruxelles, 61, Namur B-5000, Belgium
| | - Ivan Bautmans
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Rose Njemini
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|
7
|
Gaffney KA, Guo R, Bridges MD, Muhammednazaar S, Chen D, Kim M, Yang Z, Schilmiller AL, Faruk NF, Peng X, Jones AD, Kim KH, Sun L, Hubbell WL, Sosnick TR, Hong H. Lipid bilayer induces contraction of the denatured state ensemble of a helical-bundle membrane protein. Proc Natl Acad Sci U S A 2022; 119:e2109169119. [PMID: 34969836 PMCID: PMC8740594 DOI: 10.1073/pnas.2109169119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.
Collapse
Affiliation(s)
- Kristen A Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Michael D Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | | | - Daoyang Chen
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108
| | - Anthony L Schilmiller
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Nabil F Faruk
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Xiangda Peng
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Kelly H Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tobin R Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Heedeok Hong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824;
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
8
|
Jarmoskaite I, Tijerina P, Russell R. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. J Biol Chem 2020; 296:100132. [PMID: 33262215 PMCID: PMC7948464 DOI: 10.1074/jbc.ra120.015029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
DEAD-box helicase proteins perform ATP-dependent rearrangements of structured RNAs throughout RNA biology. Short RNA helices are unwound in a single ATPase cycle, but the ATP requirement for more complex RNA structural rearrangements is unknown. Here we measure the amount of ATP used for native refolding of a misfolded group I intron ribozyme by CYT-19, a Neurospora crassa DEAD-box protein that functions as a general chaperone for mitochondrial group I introns. By comparing the rates of ATP hydrolysis and ribozyme refolding, we find that several hundred ATP molecules are hydrolyzed during refolding of each ribozyme molecule. After subtracting nonproductive ATP hydrolysis that occurs in the absence of ribozyme refolding, we find that approximately 100 ATPs are hydrolyzed per refolded RNA as a consequence of interactions specific to the misfolded ribozyme. This value is insensitive to changes in ATP and CYT-19 concentration and decreases with decreasing ribozyme stability. Because of earlier findings that ∼90% of global ribozyme unfolding cycles lead back to the kinetically preferred misfolded conformation and are not observed, we estimate that each global unfolding cycle consumes ∼10 ATPs. Our results indicate that CYT-19 functions as a general RNA chaperone by using a stochastic, energy-intensive mechanism to promote RNA unfolding and refolding, suggesting an evolutionary convergence with protein chaperones.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Pilar Tijerina
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
9
|
Henry L, Panman MR, Isaksson L, Claesson E, Kosheleva I, Henning R, Westenhoff S, Berntsson O. Real-time tracking of protein unfolding with time-resolved x-ray solution scattering. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054702. [PMID: 32984436 PMCID: PMC7511240 DOI: 10.1063/4.0000013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/17/2020] [Indexed: 05/14/2023]
Abstract
The correct folding of proteins is of paramount importance for their function, and protein misfolding is believed to be the primary cause of a wide range of diseases. Protein folding has been investigated with time-averaged methods and time-resolved spectroscopy, but observing the structural dynamics of the unfolding process in real-time is challenging. Here, we demonstrate an approach to directly reveal the structural changes in the unfolding reaction. We use nano- to millisecond time-resolved x-ray solution scattering to probe the unfolding of apomyoglobin. The unfolding reaction was triggered using a temperature jump, which was induced by a nanosecond laser pulse. We demonstrate a new strategy to interpret time-resolved x-ray solution scattering data, which evaluates ensembles of structures obtained from molecular dynamics simulations. We find that apomyoglobin passes three states when unfolding, which we characterize as native, molten globule, and unfolded. The molten globule dominates the population under the conditions investigated herein, whereas native and unfolded structures primarily contribute before the laser jump and 30 μs after it, respectively. The molten globule retains much of the native structure but shows a dynamic pattern of inter-residue contacts. Our study demonstrates a new strategy to directly observe structural changes over the cause of the unfolding reaction, providing time- and spatially resolved atomic details of the folding mechanism of globular proteins.
Collapse
Affiliation(s)
- L. Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - M. R. Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - L. Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - E. Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - I. Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - R. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - S. Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
10
|
Protein mechanics probed using simple molecular models. Biochim Biophys Acta Gen Subj 2020; 1864:129613. [DOI: 10.1016/j.bbagen.2020.129613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 01/14/2023]
|
11
|
Zhou K, Liu S, Hardenbrook NJ, Cui Y, Krantz BA, Zhou ZH. Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors. Structure 2020; 28:879-887.e3. [PMID: 32521227 DOI: 10.1016/j.str.2020.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Pathogenesis of anthrax disease involves two cytotoxic enzymes-edema factor (EF) and lethal factor (LF)-which are individually recruited by the protective antigen heptamer (PA7) or octamer (PA8) prechannel and subsequently translocated across channels formed on the endosomal membrane upon exposure to low pH. Here, we report the atomic structures of PA8 prechannel-bound full-length EF and LF. In this pretranslocation state, the N-terminal segment of both factors refolds into an α helix engaged in the α clamp of the prechannel. Recruitment to the PA prechannel exposes an originally buried β strand of both toxins and enables domain organization of EF. Many interactions occur on domain interfaces in both PA prechannel-bound EF and LF, leading to toxin compaction prior to translocation. Our results provide key insights into the molecular mechanisms of translocation-coupled protein unfolding and translocation.
Collapse
Affiliation(s)
- Kang Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Shiheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Nathan J Hardenbrook
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Bryan A Krantz
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA.
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Anumalla B, Prabhu NP. Surface hydration and preferential interaction directs the charged amino acids-induced changes in protein stability. J Mol Graph Model 2020; 98:107602. [PMID: 32251994 DOI: 10.1016/j.jmgm.2020.107602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
In the present study, we investigate the interaction of amino acid osmolytes, Arg, Lys, Asp and Glu, and a denaturant, guanidinium chloride (Gdm) with proteins. To achieve this, molecular dynamics (MD) simulation of RNase A and α-lactalbumin was performed in the presence of three charged amino acids Arg, Lys, and Asp and the molecular mechanism of amino acid-induced (de)stabilization of the proteins was examined by combining with our earlier report on Glu. As Arg has the side chain similar to that of Gdm and destabilizes the proteins, MD simulation was carried out in the presence of Gdm as well. Radial distribution function and hydration fraction around the protein surface reveals that preferential hydration increases upon the addition of any of the cosolvent; however, the extent of increase is more in the presence of stabilizing cosolvents (stAAs: Lys, Asp and Glu) compared to destabilizing cosolvents (Arg and Gdm). Moreover, the preferential interaction of Arg and Gdm with the proteins is higher than that of stAAs. Residue-level interaction analysis suggests that stAAs preferably interacts with charged amino acids of the proteins whereas Arg and Gdm interactions could be found on almost all the surface exposed residues which might provide higher preferential interaction for these residues. From the results, we propose that the net outcome of preferential hydration versus preferential interaction of the amino acids might determine their effect on the stability of proteins.
Collapse
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
13
|
Bao Y, Luo Z, Cui S. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem Soc Rev 2020; 49:2799-2827. [PMID: 32236171 DOI: 10.1039/c9cs00855a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"The Tao begets the One. One begets all things of the world." This quote from Tao Te Ching is still inspiring for scientists in chemistry and materials science: The "One" can refer to a single molecule. A macroscopic material is composed of numerous molecules. Although the relationship between the properties of the single molecule and macroscopic material is not well understood yet, it is expected that a deeper understanding of the single-chain mechanics of macromolecules will certainly facilitate the development of materials science. Atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) has been exploited extensively as a powerful tool to study the single-chain behaviors of macromolecules. In this review, we summarize the recent advances in the emerging field of environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by means of AFM-SMFS. First, the single-chain inherent elasticities of several typical linear macromolecules are introduced, which are also confirmed by one of three polymer models with theoretical elasticities of the corresponding macromolecules obtained from quantum mechanical (QM) calculations. Then, the effects of the external environments on the single-chain mechanics of synthetic polymers and biomacromolecules are reviewed. Finally, the impacts of single-chain mechanics of macromolecules on the development of polymer science especially polymer materials are illustrated.
Collapse
Affiliation(s)
- Yu Bao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | |
Collapse
|
14
|
Hardenbrook NJ, Liu S, Zhou K, Ghosal K, Zhou ZH, Krantz BA. Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Nat Commun 2020; 11:840. [PMID: 32047164 PMCID: PMC7012834 DOI: 10.1038/s41467-020-14658-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022] Open
Abstract
Following assembly, the anthrax protective antigen (PA) forms an oligomeric translocon that unfolds and translocates either its lethal factor (LF) or edema factor (EF) into the host cell. Here, we report the cryo-EM structures of heptameric PA channels with partially unfolded LF and EF at 4.6 and 3.1-Å resolution, respectively. The first α helix and β strand of LF and EF unfold and dock into a deep amphipathic cleft, called the α clamp, which resides at the interface of two PA monomers. The α-clamp-helix interactions exhibit structural plasticity when comparing the structures of lethal and edema toxins. EF undergoes a largescale conformational rearrangement when forming the complex with the channel. A critical loop in the PA binding interface is displaced for about 4 Å, leading to the weakening of the binding interface prior to translocation. These structures provide key insights into the molecular mechanisms of translocation-coupled protein unfolding and translocation.
Collapse
Affiliation(s)
- Nathan J Hardenbrook
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Koyel Ghosal
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| | - Bryan A Krantz
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates. Proc Natl Acad Sci U S A 2018; 115:E4786-E4795. [PMID: 29735657 DOI: 10.1073/pnas.1721811115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.
Collapse
|
16
|
Abstract
By assisting in the proteolysis, disaggregation and refolding of the aggregated proteins, Caseinolytic proteases (Clps) enhance the cellular survival under stress conditions. In the current study, comparative roles of two such Clps, ClpA (involved in proteolysis) and ClpB (involved in protein disaggregation and refolding) in the survival of Salmonella Typhimurium (S. Typhimurium) under different stresses and in virulence have been investigated. clpA and clpB gene deletion mutant strains (∆clpA and ∆clpB) of S. Typhimurium have been hypersensitive to 42 °C, HOCl and paraquat. However, the ∆clpB strain was comparatively much more susceptible (p < 0.001) to the above stresses than ∆clpA strain. ∆clpB strain also showed reduced survival (p < 0.001) in poultry macrophages. The hypersusceptibilities of ∆clpB strain to oxidants and macrophages were restored in plasmid based complemented (∆clpB + pclpB) strain. Further, the ∆clpB strain was defective for colonization in the poultry caecum and showed decreased dissemination to the spleen and liver. Our findings suggest that the role of ClpB is more important than the role of ClpA for the survival of S. Typhimurium under stress and colonization in chickens.
Collapse
|
17
|
Differences in the mechanical unfolding pathways of apo- and copper-bound azurins. Sci Rep 2018; 8:1989. [PMID: 29386517 PMCID: PMC5792602 DOI: 10.1038/s41598-018-19755-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023] Open
Abstract
Metalloproteins carry out diverse biological functions including metal transport, electron transfer, and catalysis. At present, the influence of metal cofactors on metalloprotein stability is not well understood. Here, we report the mechanical stability and unfolding pathway of azurin, a cupredoxin family protein with β-barrel topology and type I copper-binding centre. Single-molecule force spectroscopy (SMFS) experiments reveal 2-state and 3-state unfolding pathways for apo-azurin. The intermediate in the 3-state pathway occurs at an unfolding contour length of 7.5 nm from the native state. Steered molecular dynamics (SMD) simulations show that apo-azurin unfolds via a first transition state (TS) where β2Β–β8 and β7–β8 strand pairs rupture to form the intermediate, which subsequently unfolds by the collective rupture of remaining strands. SMFS experiments on holo-azurin exhibit an additional 4-state pathway besides the 2-state and 3-state pathways. The unfolding contour length leading to the first intermediate is 6.7 nm suggesting a sequestration of ~1 nm polypeptide chain length by the copper. SMD simulations reveal atomistic details of the copper sequestration and predict a combined β4–β7 pair and copper coordination sphere rupture to create the third TS in the 4-state pathway. Our systematic studies provide detailed mechanistic insights on modulation of protein mechanical properties by metal-cofactors.
Collapse
|
18
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
19
|
Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Proc Natl Acad Sci U S A 2017; 114:E6306-E6313. [PMID: 28724722 DOI: 10.1073/pnas.1707794114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AAA+ proteases and remodeling machines couple hydrolysis of ATP to mechanical unfolding and translocation of proteins following recognition of sequence tags called degrons. Here, we use single-molecule optical trapping to determine the mechanochemistry of two AAA+ proteases, Escherichia coli ClpXP and ClpAP, as they unfold and translocate substrates containing multiple copies of the titinI27 domain during degradation initiated from the N terminus. Previous studies characterized degradation of related substrates with C-terminal degrons. We find that ClpXP and ClpAP unfold the wild-type titinI27 domain and a destabilized variant far more rapidly when pulling from the N terminus, whereas translocation speed is reduced only modestly in the N-to-C direction. These measurements establish the role of directionality in mechanical protein degradation, show that degron placement can change whether unfolding or translocation is rate limiting, and establish that one or a few power strokes are sufficient to unfold some protein domains.
Collapse
|
20
|
Bittner LM, Arends J, Narberhaus F. Mini review: ATP-dependent proteases in bacteria. Biopolymers 2017; 105:505-17. [PMID: 26971705 DOI: 10.1002/bip.22831] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
AAA(+) proteases are universal barrel-like and ATP-fueled machines preventing the accumulation of aberrant proteins and regulating the proteome according to the cellular demand. They are characterized by two separate operating units, the ATPase and peptidase domains. ATP-dependent unfolding and translocation of a substrate into the proteolytic chamber is followed by ATP-independent degradation. This review addresses the structure and function of bacterial AAA(+) proteases with a focus on the ATP-driven mechanisms and the coordinated movements in the complex mainly based on the knowledge of ClpXP. We conclude by discussing strategies how novel protease substrates can be trapped by mutated AAA(+) protease variants. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 505-517, 2016.
Collapse
Affiliation(s)
| | - Jan Arends
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
21
|
Relevance of mortalin to cancer cell stemness and cancer therapy. Sci Rep 2017; 7:42016. [PMID: 28165047 PMCID: PMC5292728 DOI: 10.1038/srep42016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/06/2017] [Indexed: 01/06/2023] Open
Abstract
Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy.
Collapse
|
22
|
Parveen R, Shamsi TN, Fatima S. Nanoparticles-protein interaction: Role in protein aggregation and clinical implications. Int J Biol Macromol 2017; 94:386-395. [DOI: 10.1016/j.ijbiomac.2016.10.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/27/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
|
23
|
Pearce KF, Balavarca Y, Norden J, Jackson G, Holler E, Dressel R, Greinix H, Toubert A, Gluckman E, Hromadnikova I, Sedlacek P, Wolff D, Holtick U, Bickeböller H, Dickinson AM. Impact of genomic risk factors on survival after haematopoietic stem cell transplantation for patients with acute leukaemia. Int J Immunogenet 2016; 43:404-412. [DOI: 10.1111/iji.12295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Affiliation(s)
- K. F. Pearce
- Haematological Sciences; Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Y. Balavarca
- Department of Genetic Epidemiology; University Medical Center; Göttingen Germany
| | - J. Norden
- Haematological Sciences; Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
| | - G. Jackson
- Northern Centre for Cancer Care; Newcastle upon Tyne Hospitals NHS Foundation Trust; Newcastle upon Tyne UK
| | - E. Holler
- Department of Internal Medicine III; University of Regensburg; Regensburg Germany
| | - R. Dressel
- Department of Cellular and Molecular Immunology; University Medical Center; Göttingen Germany
| | - H. Greinix
- Department of Internal Medicine; Division of Haematology; Medical University of Graz; Graz Austria
| | - A. Toubert
- Departement d′Immunologie; Université Paris Diderot; INSERM UMRS-940; AP-HP; Paris France
| | - E. Gluckman
- EUROCORD; University Research Institute; St Louis Hospital Paris France
| | - I. Hromadnikova
- Department of Molecular Biology and Cell Pathology; Third Faculty of Medicine; Charles University Prague; Prague Czech Republic
| | - P. Sedlacek
- Department of Pediatric Hematology and Oncology; Second Faculty of Medicine; Charles University Prague; Prague Czech Republic
| | - D. Wolff
- Department of Internal Medicine III; University of Regensburg; Regensburg Germany
| | - U. Holtick
- Department I of Internal Medicine; University of Cologne; Cologne Germany
| | - H. Bickeböller
- Department of Genetic Epidemiology; University Medical Center; Göttingen Germany
| | - A. M. Dickinson
- Haematological Sciences; Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
24
|
Makarov DE. Perspective: Mechanochemistry of biological and synthetic molecules. J Chem Phys 2016; 144:030901. [PMID: 26801011 DOI: 10.1063/1.4939791] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
25
|
Xing L, Lin K, Zhou X, Liu S, Luo Y. Multistate Mechanism of Lysozyme Denaturation through Synchronous Analysis of Raman Spectra. J Phys Chem B 2016; 120:10660-10667. [DOI: 10.1021/acs.jpcb.6b07900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Ke Lin
- School
of Physics and Optoelectronic Engineering, Xidian University, Xi’an, Shanxi 710071, China
| | | | | | | |
Collapse
|
26
|
Is there any relationship between polymorphism of Heat Shock Protein 70 genes and Pemphigus foliaceus? Immunol Lett 2015; 164:94-9. [DOI: 10.1016/j.imlet.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
|
27
|
Cheng B, Wu S, Liu S, Rodriguez-Aliaga P, Yu J, Cui S. Protein denaturation at a single-molecule level: the effect of nonpolar environments and its implications on the unfolding mechanism by proteases. NANOSCALE 2015; 7:2970-2977. [PMID: 25597693 DOI: 10.1039/c4nr07140a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Most proteins are typically folded into predetermined three-dimensional structures in the aqueous cellular environment. However, proteins can be exposed to a nonpolar environment under certain conditions, such as inside the central cavity of chaperones and unfoldases during protein degradation. It remains unclear how folded proteins behave when moved from an aqueous solvent to a nonpolar one. Here, we employed single-molecule atomic force microscopy and molecular dynamics (MD) simulations to investigate the structural and mechanical variations of a polyprotein, I278, during the change from a polar to a nonpolar environment. We found that the polyprotein was unfolded into an unstructured polypeptide spontaneously when pulled into nonpolar solvents. This finding was corroborated by MD simulations where I27 was dragged from water into a nonpolar solvent, revealing details of the unfolding process at the water/nonpolar solvent interface. These results highlight the importance of water in maintaining folding stability, and provide insights into the response of folded proteins to local hydrophobic environments.
Collapse
Affiliation(s)
- Bo Cheng
- Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | | | | | | | |
Collapse
|
28
|
Broom A, Gosavi S, Meiering EM. Protein unfolding rates correlate as strongly as folding rates with native structure. Protein Sci 2014; 24:580-7. [PMID: 25422093 DOI: 10.1002/pro.2606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/19/2023]
Abstract
Although the folding rates of proteins have been studied extensively, both experimentally and theoretically, and many native state topological parameters have been proposed to correlate with or predict these rates, unfolding rates have received much less attention. Moreover, unfolding rates have generally been thought either to not relate to native topology in the same manner as folding rates, perhaps depending on different topological parameters, or to be more difficult to predict. Using a dataset of 108 proteins including two-state and multistate folders, we find that both unfolding and folding rates correlate strongly, and comparably well, with well-established measures of native topology, the absolute contact order and the long range order, with correlation coefficient values of 0.75 or higher. In addition, compared to folding rates, the absolute values of unfolding rates vary more strongly with native topology, have a larger range of values, and correlate better with thermodynamic stability. Similar trends are observed for subsets of different protein structural classes. Taken together, these results suggest that choosing a scaffold for protein engineering may require a compromise between a simple topology that will fold sufficiently quickly but also unfold quickly, and a complex topology that will unfold slowly and hence have kinetic stability, but fold slowly. These observations, together with the established role of kinetic stability in determining resistance to thermal and chemical denaturation as well as proteases, have important implications for understanding fundamental aspects of protein unfolding and folding and for protein engineering and design.
Collapse
Affiliation(s)
- Aron Broom
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L 1W2
| | | | | |
Collapse
|
29
|
Kim JH, Hong YC. HSP70-hom gene polymorphisms modify the association of diethylhexyl phthalates with insulin resistance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:727-34. [PMID: 25044062 DOI: 10.1002/em.21884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/23/2014] [Indexed: 05/27/2023]
Abstract
Recent studies suggest that diethylhexyl phthalates (DEHP) could contribute to the development of insulin resistance (IR) through oxidative stress, and that heat shock protein (HSP) could be related with the association between DEHP and IR. Therefore, we evaluated the effect modification of genetic polymorphisms of HSP70-hom, an oxidative stress related gene, on the relation between exposure to DEHP and IR. We obtained repeated blood and urine samples from 414 elderly female participants and measured urinary levels of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) as metabolites of DEHP. We also measured serum levels of fasting glucose and insulin, derived the homeostatic model assessment (HOMA) index to assess IR, and genotyped two HSP70-hom polymorphisms (rs2227956 and rs2075800). A mixed effect model and penalized regression spline were used to estimate the associations between DEHP exposure and IR by genetic polymorphisms. The molar sum of MEHHP and MEOHP (∑DEHP) were significantly associated with HOMA (β = 0.30, P = 0.022). When stratified by genotype at rs2227956, the relationship between ∑DEHP and HOMA was statistically significant in participants with TT (β = 0.32, P = 0.048) or TC (β = 0.60, P = 0.008), while at rs2075800 there was a marginal association for the GA genotype (β = 0.33, P = 0.097). When haplotypes were constituted across the two HSP70-hom polymorphisms (rs2227956 and rs2075800), the association was apparent only in participants with the T-A haplotype (β = 0.39, P = 0.029). Our study suggests that HSP70-hom polymorphisms modify the association of DEHP with IR.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
30
|
Cascio P. PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 2014; 4:566-84. [PMID: 24970231 PMCID: PMC4101498 DOI: 10.3390/biom4020566] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 11/16/2022] Open
Abstract
PA28αβ is a γ-interferon-induced 11S complex that associates with the ends of the 20S proteasome and stimulates in vitro breakdown of small peptide substrates, but not proteins or ubiquitin-conjugated proteins. In cells, PA28 also exists in larger complexes along with the 19S particle, which allows ATP-dependent degradation of proteins; although in vivo a large fraction of PA28 is present as PA28αβ-20S particles whose exact biological functions are largely unknown. Although several lines of evidence strongly indicate that PA28αβ plays a role in MHC class I antigen presentation, the exact molecular mechanisms of this activity are still poorly understood. Herein, we review current knowledge about the biochemical and biological properties of PA28αβ and discuss recent findings concerning its role in modifying the spectrum of proteasome's peptide products, which are important to better understand the molecular mechanisms and biological consequences of PA28αβ activity.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| |
Collapse
|
31
|
Movileanu L. Watching single proteins using engineered nanopores. Protein Pept Lett 2014; 21:235-46. [PMID: 24370252 PMCID: PMC3924890 DOI: 10.2174/09298665113209990078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/03/2012] [Accepted: 11/10/2012] [Indexed: 12/22/2022]
Abstract
Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnostics.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA.
| |
Collapse
|
32
|
Lim J, Xiao T, Fan J, Yang D. An Off-Pathway Folding Intermediate of an Acyl Carrier Protein Domain Coexists with the Folded and Unfolded States under Native Conditions. Angew Chem Int Ed Engl 2014; 53:2358-61. [DOI: 10.1002/anie.201308512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/12/2013] [Indexed: 12/19/2022]
|
33
|
Lim J, Xiao T, Fan J, Yang D. An Off-Pathway Folding Intermediate of an Acyl Carrier Protein Domain Coexists with the Folded and Unfolded States under Native Conditions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Kotamarthi HC, Sharma R, Narayan S, Ray S, Ainavarapu SRK. Multiple Unfolding Pathways of Leucine Binding Protein (LBP) Probed by Single-Molecule Force Spectroscopy (SMFS). J Am Chem Soc 2013; 135:14768-74. [DOI: 10.1021/ja406238q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Riddhi Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Satya Narayan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sayoni Ray
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
35
|
Chen Y, Liu K, Su Y, Zheng X, Wang Q. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH. BIORESOURCE TECHNOLOGY 2013; 140:97-102. [PMID: 23685363 DOI: 10.1016/j.biortech.2013.04.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
This work reported the enhancement of continuous SCFA production from sludge by the combined use of surfactant (sodium dodecylbenzene sulfonate (SDBS)) and pH 10 (i.e., SDBS & pH 10). The maximal SCFA production (2056 mg COD/L) was achieved under the SDBS & pH 10 condition at a sludge retention time (SRT) of 12d, which was much higher than that of the blank, sole SDBS, or pH 10. The mechanisms investigation showed that the combined strategy had greater sludge solubilization, higher protein hydrolysis, and lower activity of methanogens. Fluorescence in situ hybridization analysis revealed that the abundance of bacteria was increased, whereas that of archaea was decreased by SDBS & pH 10. The excitation emission matrix fluorescence spectroscopy assay further suggested that SBDS caused protein structure change, which benefited protein hydrolysis.
Collapse
Affiliation(s)
- Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
36
|
Doyle SR, Kasinadhuni NRP, Chan CK, Grant WN. Evidence of evolutionary constraints that influences the sequence composition and diversity of mitochondrial matrix targeting signals. PLoS One 2013; 8:e67938. [PMID: 23825690 PMCID: PMC3692466 DOI: 10.1371/journal.pone.0067938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial targeting signals (MTSs) are responsible for trafficking nuclear encoded proteins to their final destination within mitochondria. These sequences are diverse, sharing little amino acid homology and vary significantly in length, and although the formation of a positively-charged amphiphilic alpha helix within the MTS is considered to be necessary and sufficient to mediate import, such a feature does not explain their diversity, nor how such diversity influences target sequence function, nor how such dissimilar signals interact with a single, evolutionarily conserved import mechanism. An in silico analysis of 296 N-terminal, matrix destined MTSs from Homo sapiens, Mus musculus, Saccharomyces cerevisiae, Arabidopsis thaliana, and Oryza sativa was undertaken to investigate relationships between MTSs, and/or, relationships between an individual targeting signal sequence and the protein that it imports. We present evidence that suggests MTS diversity is influenced in part by physiochemical and N-terminal characteristics of their mature sequences, and that some of these correlated characteristics are evolutionarily maintained across a number of taxa. Importantly, some of these associations begin to explain the variation in MTS length and composition.
Collapse
Affiliation(s)
- Stephen R Doyle
- La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Australia.
| | | | | | | |
Collapse
|
37
|
Abstract
Archaea contain, both a functional proteasome and an ubiquitin-like protein conjugation system (termed sampylation) that is related to the ubiquitin proteasome system (UPS) of eukaryotes. Archaeal proteasomes have served as excellent models for understanding how proteins are degraded by the central energy-dependent proteolytic machine of eukaryotes, the 26S proteasome. While sampylation has only recently been discovered, it is thought to be linked to proteasome-mediated degradation in archaea. Unlike eukaryotes, sampylation only requires an E1 enzyme homolog of the E1-E2-E3 ubiquitylation cascade to mediate protein conjugation. Furthermore, recent evidence suggests that archaeal and eurkaryotic E1 enzyme homologs can serve dual roles in mediating protein conjugation and activating sulfur for incorporation into biomolecules. The focus of this book chapter is the energy-dependent proteasome and sampylation systems of Archaea.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA,
| |
Collapse
|
38
|
Chien CY, Chang NC, Tai SY, Wang LF, Wu MT, Ho KY. Heat shock protein 70 gene polymorphisms in sudden sensorineural hearing loss. Audiol Neurootol 2012; 17:381-5. [PMID: 22922572 DOI: 10.1159/000341815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Heat shock proteins protect cells and tissues against different types of damage. Previous studies have revealed that the serum level of heat shock protein 70 (HSP70) increases in sudden sensorineural hearing loss (SSNHL) patients. We hypothesized that genetic variants of the HSP70 gene are associated with susceptibility to SSNHL. METHODS We conducted a case-control study with 160 SSNHL cases and 178 controls. Three tagging single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. A haplotype analysis was also performed. RESULTS All three SNPs were in Hardy-Weinberg equilibrium. The CT genotype of rs2075800 exhibited an adjusted odds ratio of 0.59 (95% confidence interval 0.37-0.94; p = 0.027). The T allele of SNP rs2075800 was associated with SSNHL under the dominant model (p = 0.019; odds ratio 0.59). Haplotype analysis of the three SNPs demonstrated that the haplotype TGC (rs2075800/rs1043618/rs2763979) was statistically significant (p = 0.0137). CONCLUSIONS These results suggest that HSP70 gene polymorphisms influence the susceptibility to the development of SSNHL in the Taiwanese population.
Collapse
Affiliation(s)
- Chen-Yu Chien
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
39
|
Lichter S, Rafferty B, Flohr Z, Martini A. Protein high-force pulling simulations yield low-force results. PLoS One 2012; 7:e34781. [PMID: 22529933 PMCID: PMC3329509 DOI: 10.1371/journal.pone.0034781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/09/2012] [Indexed: 11/20/2022] Open
Abstract
All-atom explicit-solvent molecular dynamics simulations are used to pull with extremely large constant force (750–3000 pN) on three small proteins. The introduction of a nondimensional timescale permits direct comparison of unfolding across all forces. A crossover force of approximately 1100 pN divides unfolding dynamics into two regimes. At higher forces, residues sequentially unfold from the pulling end while maintaining the remainder of the protein force-free. Measurements of hydrodynamic viscous stresses are made easy by the high speeds of unfolding. Using an exact low-Reynolds-number scaling, these measurements can be extrapolated to provide, for the first time, an estimate of the hydrodynamic force on low-force unfolding. Below 1100 pN, but surprisingly still at extremely large applied force, intermediate states and cooperative unfoldings as seen at much lower forces are observed. The force-insensitive persistence of these structures indicates that decomposition into unfolded fragments requires a large fluctuation. This finding suggests how proteins are constructed to resist transient high force. The progression of helix and sheet unfolding is also found to be insensitive to force. The force-insensitivity of key aspects of unfolding opens the possibility that numerical simulations can be accelerated by high applied force while still maintaining critical features of unfolding.
Collapse
Affiliation(s)
- Seth Lichter
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America.
| | | | | | | |
Collapse
|
40
|
Braselmann E, Clark PL. Autotransporters: The Cellular Environment Reshapes a Folding Mechanism to Promote Protein Transport. J Phys Chem Lett 2012; 3:1063-1071. [PMID: 23687560 PMCID: PMC3654826 DOI: 10.1021/jz201654k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We know very little about how the cellular environment affects protein folding mechanisms. Here, we focus on one unique aspect of that environment that is difficult to recapitulate in the test tube: the effect of a folding vector. When protein folding is initiated at one end of the polypeptide chain, folding starts from a much smaller ensemble of conformations than during refolding of a full-length polypeptide chain. But to what extent can vectorial folding affect protein folding kinetics and the conformations of folding intermediates? We focus on recent studies of autotransporter proteins, the largest class of virulence proteins from pathogenic Gram-negative bacteria. Autotransporter proteins are secreted across the bacterial inner membrane from N→C-terminus, which, like refolding in vitro, retards folding. But in contrast, upon C→N-terminal secretion across the outer membrane autotransporter folding proceeds orders of magnitude faster. The potential impact of vectorial folding on the folding mechanisms of other proteins is also discussed.
Collapse
Affiliation(s)
| | - Patricia L. Clark
- To whom correspondence should be addressed: , (574)631-8353 [phone], (574)631-6652 [fax]
| |
Collapse
|
41
|
Feld GK, Brown MJ, Krantz BA. Ratcheting up protein translocation with anthrax toxin. Protein Sci 2012; 21:606-24. [PMID: 22374876 DOI: 10.1002/pro.2052] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/09/2023]
Abstract
Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation.
Collapse
Affiliation(s)
- Geoffrey K Feld
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
42
|
Fraga AS, Esteves AC, Micaelo N, Cruz PF, Brito RMM, Nutley M, Cooper A, Barros MMT, Pires EMV. Functional and conformational changes in the aspartic protease cardosin A induced by TFE. Int J Biol Macromol 2012; 50:323-30. [PMID: 22212471 DOI: 10.1016/j.ijbiomac.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 12/01/2022]
Abstract
Conformational and functional changes of cardosin A, an aspartic protease of vegetal origin, in the presence of 2,2,2-trifluoroethanol (TFE), were assessed. TFE induced alterations of cardosin activity and conformation that differed with the solvent concentration. MD simulations showed that there are significant local alterations in protein flexibility and TFE molecules were found to replace several hydration molecules in the active site of the enzyme. This may explain some of the activity loss observed in the presence of TFE, especially at low TFE concentrations, as well as the recovery of enzyme activity upon aqueous dilution, indicating the release of the TFE molecules from the active site.
Collapse
Affiliation(s)
- Ana Sofia Fraga
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Park TJ, Kim YS, Hwang T, Govindaiah P, Choi SW, Kim E, Won K, Lee SH, Kim JH. Preparation and characterization of heparinized multi-walled carbon nanotubes. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Disordered form of the scaffold protein IscU is the substrate for iron-sulfur cluster assembly on cysteine desulfurase. Proc Natl Acad Sci U S A 2011; 109:454-9. [PMID: 22203963 DOI: 10.1073/pnas.1114372109] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The scaffold protein for iron-sulfur cluster assembly, apo-IscU, populates two interconverting conformational states, one disordered (D) and one structured (S) as revealed by extensive NMR assignments. At pH 8 and 25 °C, approximately 70% of the protein is S, and the lifetimes of the states are 1.3 s (S) and 0.50 s (D). Zn(II) and Fe(II) each bind and stabilize structured (S-like) states. Single amino acid substitutions at conserved residues were found that shift the equilibrium toward either the S or the D state. Cluster assembly takes place in the complex between IscU and the cysteine desulfurase, IscS, and our NMR studies demonstrate that IscS binds preferentially the D form of apo-IscU. The addition of 10% IscS to IscU was found to greatly increase H/D exchange at protected amides of IscU, to increase the rate of the S → D reaction, and to decrease the rate of the D → S reaction. In the saturated IscU:IscS complex, IscU is largely disordered. In vitro cluster assembly reactions provided evidence for the functional importance of the S&lrarr2;D equilibrium. IscU variants that favor the S state were found to undergo a lag phase, not observed with the wild type, that delayed cluster assembly; variants that favor the D state were found to assemble less stable clusters at an intermediate rate without the lag. It appears that IscU has evolved to exist in a disordered conformational state that is the initial substrate for the desulfurase and to convert to a structured state that stabilizes the cluster once it is assembled.
Collapse
|
45
|
Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu X. The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J 2011; 279:20-8. [PMID: 22060915 DOI: 10.1111/j.1742-4658.2011.08413.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) play critical roles in the regulation of many cellular functions by growth factors, G-protein-coupled receptors and ligand-gated ion channels. Recent data have shown that SFKs serve as a convergent point of multiple signaling pathways regulating N-methyl-d-aspartate (NMDA) receptors in the central nervous system. Multiple SFK molecules, such as Src and Fyn, closely associate with their substrate, NMDA receptors, via indirect and direct binding mechanisms. The NMDA receptor is associated with an SFK signaling complex consisting of SFKs; the SFK-activating phosphatase, protein tyrosine phosphatase α; and the SFK-inactivating kinase, C-terminal Src kinase. Early studies have demonstrated that intramolecular interactions with the SH2 or SH3 domain lock SFKs in a closed conformation. Disruption of the interdomain interactions can induce the activation of SFKs with multiple signaling pathways involved in regulation of this process. The enzyme activity of SFKs appears 'graded', exhibiting different levels coinciding with activation states. It has also been proposed that the SH2 and SH3 domains may stimulate catalytic activity of protein tyrosine kinases, such as Abl. Recently, it has been found that the enzyme activity of neuronal Src protein is associated with its stability, and that the SH2 and SH3 domain interactions may act not only to constrain the activation of neuronal Src, but also to regulate the enzyme activity of active neuronal Src. Collectively, these findings demonstrate novel mechanisms underlying the regulation of SFKs.
Collapse
Affiliation(s)
- Bradley R Groveman
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Miklos AC, Sarkar M, Wang Y, Pielak GJ. Protein crowding tunes protein stability. J Am Chem Soc 2011; 133:7116-20. [PMID: 21506571 DOI: 10.1021/ja200067p] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thirty percent of a cell's volume is filled with macromolecules, and protein chemistry in a crowded environment is predicted to differ from that in dilute solution. We quantified the effect of crowding by globular proteins on the equilibrium thermodynamic stability of a small globular protein. Theory has long predicted that crowding should stabilize proteins, and experiments using synthetic polymers as crowders show such stabilizing effects. We find that protein crowders can be mildly destabilizing. The destabilization arises from a competition between stabilizing excluded-volume effects and destabilizing nonspecific interactions, including electrostatic interactions. This competition results in tunable stability, which could impact our understanding of the spatial and temporal roles of proteins in living systems.
Collapse
Affiliation(s)
- Andrew C Miklos
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
47
|
Zheng W, Rohrdanz MA, Maggioni M, Clementi C. Polymer reversal rate calculated via locally scaled diffusion map. J Chem Phys 2011; 134:144109. [DOI: 10.1063/1.3575245] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Kim I, Kim JH, Rhee JY, Kim JW, Cho HJ, Cho EY, Lee JE, Hong YC, Park SS, Yoon SS, Park MH, Park S, Kim BK. Patient HSP70-hom TG haplotype is associated with decreased transplant-related mortality and improved survival after sibling HLA-matched hematopoietic stem cell transplantation. Clin Transplant 2011; 24:459-66. [PMID: 19758266 DOI: 10.1111/j.1399-0012.2009.01094.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heat shock protein 70-hom (HSP70-hom) plays an important role in protein folding and immune responses. Therefore, HSP70-hom gene polymorphisms may act as important factors in predicting the prognosis of patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). To evaluate the role of HSP70-hom gene polymorphisms in the prognosis of patients receiving sibling human leukocyte antigen (HLA)-matched allogeneic HSCT, the HSP70-hom polymorphisms, T2437C and G2763A, were genotyped in 147 patients receiving sibling HLA-matched allogeneic HSCT. Individual diplotypes were estimated from genotype data of the two HSP70-hom polymorphisms using the expectation maximization algorithm. Patients with the 2763GG or GA genotype showed longer overall survival compared with those with the 2763AA genotype, and patients with a TG haplotype (TG/TA, TG/TG or TG/CG) also showed longer overall survival compared with those with a non-TG haplotype (TA/TA or TA/CG) (both G2763A genotype and diplotype, p<0.01). Moreover, the 2437TT genotype was found to be protective for treatment-related death compared with the 2437TC genotype, and a TG haplotype was found to be very protective for treatment-related death compared with a non-TG haplotype (T2437C genotype, p=0.04; and diplotype, p=0.02). Therefore, our results suggest that HSP70-hom polymorphisms play an important role in the prognosis of patients receiving sibling HLA-matched allogeneic HSCT.
Collapse
Affiliation(s)
- Inho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG, Williams ER, Krantz BA. Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 2010; 17:1383-90. [PMID: 21037566 PMCID: PMC3133606 DOI: 10.1038/nsmb.1923] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/07/2010] [Indexed: 01/07/2023]
Abstract
The protein transporter anthrax lethal toxin is composed of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. After its assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LF(N)). The first α-helix and β-strand of each LF(N) unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight into the mechanism of translocation-coupled protein unfolding.
Collapse
Affiliation(s)
- Geoffrey K Feld
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yang Z, Li S, Zhang L, Ur Rehman A, Liang H. Translocation of α-helix chains through a nanopore. J Chem Phys 2010; 133:154903. [PMID: 20969422 DOI: 10.1063/1.3493332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The translocation of α-helix chains through a nanopore is studied through Langevin dynamics simulations. The α-helix chains exhibit several different characteristics about their average translocation times and the α-helix structures when they transport through the nanopores under the driving forces. First, the relationship between average translocation times τ and the chain length N satisfies the scaling law, τ∼N(α), and the scaling exponent α depends on the driving force f for the small forces while it is close to the Flory exponent (ν) in the other force regions. For the chains with given chain lengths, it is observed that the dependence of the average translocation times can be expressed as τ∼f(-1/2) for the small forces while can be described as τ∼f in the large force regions. Second, for the large driving force, the average number of α-helix structures N(h) decreases first and then increases in the translocation process. The average waiting time of each bead, especially of the first bead, is also dependent on the driving forces. Furthermore, an elasticity spring model is presented to reasonably explain the change of the α-helix number during the translocation and its elasticity can be locally damaged by the large driving forces. Our results demonstrate the unique behaviors of α-helix chains transporting through the pores, which can enrich our insights into and knowledge on biopolymers transporting through membranes.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | | | | | | |
Collapse
|