1
|
Matamoros M, Nichols CG. Pore-forming transmembrane domains control ion selectivity and selectivity filter conformation in the KirBac1.1 potassium channel. J Gen Physiol 2021; 153:211923. [PMID: 33779689 PMCID: PMC8008366 DOI: 10.1085/jgp.202012683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
Potassium (K+) channels are membrane proteins with the remarkable ability to very selectively conduct K+ ions across the membrane. High-resolution structures have revealed that dehydrated K+ ions permeate through the narrowest region of the pore, formed by the backbone carbonyls of the signature selectivity filter (SF) sequence TxGYG. However, the existence of nonselective channels with similar SF sequences, as well as effects of mutations in other regions on selectivity, suggest that the SF is not the sole determinant of selectivity. We changed the selectivity of the KirBac1.1 channel by introducing mutations at residue I131 in transmembrane helix 2 (TM2). These mutations increase Na+ flux in the absence of K+ and introduce significant proton conductance. Consistent with K+ channel crystal structures, single-molecule FRET experiments show that the SF is conformationally constrained and stable in high-K+ conditions but undergoes transitions to dilated low-FRET states in high-Na+/low-K+ conditions. Relative to wild-type channels, I131M mutants exhibit marked shifts in the K+ and Na+ dependence of SF dynamics to higher K+ and lower Na+ concentrations. These results illuminate the role of I131, and potentially other structural elements outside the SF, in controlling ion selectivity, by suggesting that the physical interaction of these elements with the SF contributes to the relative stability of the constrained K+-induced SF configuration versus nonselective dilated conformations.
Collapse
Affiliation(s)
- Marcos Matamoros
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Kumar S, Khullar S, Mandal SK. Steric Effect of a Capping Ligand on the Formation of Supramolecular Coordination Networks of Ni(II): Solid-State Entrapment of Cyclic Water Dimer. ACS OMEGA 2020; 5:21873-21882. [PMID: 32905340 PMCID: PMC7469418 DOI: 10.1021/acsomega.0c03065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 05/10/2023]
Abstract
Supramolecular dimer of water is the simplest of the small water clusters [(H2O) n , n = 2-10]. During the course of our work on supramolecular coordination networks of three-component systems (divalent metal ion, tridentate capping ligand, and ditopic carboxylate linker), a cyclic water dimer is found to be entrapped in the network of [Ni2(6-Mebpta)2(adc)2]·2H2O (1) (6-Mebpta = 2-methyl-N-((6-methylpyridin-2-yl)methyl)-N-(pyridin-2-ylmethyl)propan-2-amine and adc = acetylenedicarboxylate). Based on the single-crystal structure of 1, the water dimer plays an important role in connecting the bis(adc) bridged dinickel synthons to form a one-dimensional (1D) supramolecular network. To emphasize the role of 6-Mebpta in the judicious choice of components for 1, one simple modification to it by having another methyl group in the second pendant pyridyl group to make 6,6'-Me2bpta (2-methyl-N,N-bis((6-methylpyridin-2-yl)methyl)propan-2-amine) did not allow the formation of any water cluster in [Ni(6,6'-Me2bpta)(adc)(H2O)]·H2O (2), where a different coordination environment around Ni(II) is also observed. Further quantification of the difference in supramolecular interactions observed in 1 and 2 has been assessed by Hirshfeld surface analysis. Both 1 and 2 are obtained in good yields at room temperature (methanol as solvent) and are further characterized by elemental analysis, Fourier transform infrared (FTIR) and Raman spectroscopy, powder X-ray diffraction, and thermogravimetric analysis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sadhika Khullar
- Department
of Chemistry, Dr B R Ambedkar National Institute
of Technology Jalandhar, G.T. Road, Amritsar Bypass, Jalandhar, Punjab 144011, India
| | - Sanjay K. Mandal
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Raucci U, Chiariello MG, Coppola F, Perrella F, Savarese M, Ciofini I, Rega N. An electron density based analysis to establish the electronic adiabaticity of proton coupled electron transfer reactions. J Comput Chem 2020; 41:1835-1841. [PMID: 32500950 DOI: 10.1002/jcc.26224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/10/2022]
Abstract
Electrons and protons are the main actors in play in proton coupled electron transfer (PCET) reactions, which are fundamental in many biological (i.e., photosynthesis and enzymatic reactions) and electrochemical processes. The mechanism, energetics and kinetics of PCET reactions are strongly controlled by the coupling between the transferred electrons and protons. Concerted PCET reactions are classified according to the electronical adiabaticity degree of the process. To discriminate among different mechanisms, we propose a new analysis based on the use of electron density based indexes. We choose, as test case, the 3-Methylphenoxyl/phenol system in two different conformations to show how the proposed analysis is a suitable tool to discriminate between the different degree of adiabaticity of PCET processes. The very low computational cost of this procedure is extremely promising to analyze and provide evidences of PCET mechanisms ruling the reactivity of many biological and catalytic systems.
Collapse
Affiliation(s)
- Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, Napoli, Italy
| | - Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, Napoli, Italy
| | - Federico Coppola
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, Napoli, Italy
| | - Fulvio Perrella
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, Napoli, Italy
| | | | - Ilaria Ciofini
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, Napoli, Italy.,CRIB Center for Advanced Biomaterials for Healthcare, Napoli, Italy
| |
Collapse
|
4
|
Kumar N, Khullar S, Mandal SK. Encapsulation of a Water Octamer Chain in a Chiral 2D Sheetlike Supramolecular Coordination Network Composed of Dinickel-Dicarboxylate Subunits. ACS OMEGA 2018; 3:11062-11070. [PMID: 31459215 PMCID: PMC6645534 DOI: 10.1021/acsomega.8b01355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/23/2018] [Indexed: 05/25/2023]
Abstract
Four new chiral supramolecular coordination networks of Ni(II) of general formula [Ni2(Hhissal)2(dicarboxylate)(H2O)2]·nH2O (where Hhissal = histidinesalicylate; dicarboxylate = adipate; n = 8 for 1, succinate; n = 4 for 2, maleate; n = 4 for 3, fumarate; and n = 6 for 4) are reported. On the basis of the single-crystal X-ray study, an unprecedented zig-zag chain structure of water octamer encapsulated in 1 has been identified. The supramolecular network of the dimetal subunits is formed through hydrogen bonding interactions between the amine N-H of Hhissal and the oxygen atom of the coordinated water molecule of one subunit with the uncoordinated oxygen atom and the coordinated oxygen atom of the carboxylate group of Hhissal of the next subunit, respectively. The strength of hydrogen bonding within this water cluster (the range of O···O distances is 2.702-2.760 Å) is similar to that found in ice. These networks are further characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, polarimetry, UV-vis/diffuse reflectance and circular dichroism spectroscopy, and thermogravimetric analysis. A comparison of their properties indicates that these are isostructural with a variation of encapsulated water clusters.
Collapse
Affiliation(s)
- Navnita Kumar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S.
Nagar, Mohali, Punjab 140306, India
| | - Sadhika Khullar
- Department
of Chemistry, DAV University, Jalandhar-Pathankot NH44, Jalandhar, Punjab 144012, India
| | - Sanjay K. Mandal
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S.
Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Barnett JW, Tang D, Gibb BC, Ashbaugh HS. Alkane guest packing drives switching between multimeric deep-cavity cavitand assembly states. Chem Commun (Camb) 2018; 54:2639-2642. [PMID: 29469155 DOI: 10.1039/c8cc00036k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alkane guest transfer into aqueous dimeric, tetrameric, hexameric, and octameric assemblies of the deep-cavity cavitand TEMOA is examined using molecular simulations. The experimental transitions between aggregation states strongly correlate with calculated alkane transfer free energy minima, demonstrating the guiding role of guest packing on stabilizing multimeric complexes. The predictive simulation approach described affords a salient rationale as to why octameric assemblies have yet to be experimentally observed.
Collapse
Affiliation(s)
- J Wesley Barnett
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA.
| | | | | | | |
Collapse
|
6
|
Fraux G, Coudert FX, Boutin A, Fuchs AH. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Chem Soc Rev 2017; 46:7421-7437. [PMID: 29051934 DOI: 10.1039/c7cs00478h] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We review the high pressure forced intrusion studies of water in hydrophobic microporous materials such as zeolites and MOFs, a field of research that has emerged some 15 years ago and is now very active. Many of these studies are aimed at investigating the possibility of using these systems as energy storage devices. A series of all-silica zeolites (zeosil) frameworks were found suitable for reversible energy storage because of their stability with respect to hydrolysis after several water intrusion-extrusion cycles. Several microporous hydrophobic zeolite imidazolate frameworks (ZIFs) also happen to be quite stable and resistant towards hydrolysis and thus seem very promising for energy storage applications. Replacing pure water by electrolyte aqueous solutions enables to increase the stored energy by a factor close to 3, on account of the high pressure shift of the intrusion transition. In addition to the fact that aqueous solutions and microporous silica materials are environmental friendly, these systems are thus becoming increasingly interesting for the design of new energy storage devices. This review also addresses the theoretical approaches and molecular simulations performed in order to better understand the experimental behavior of nano-confined water. Molecular simulation studies showed that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional and sufficiently open. In an extreme confinement situations such as in ferrierite zeosil, condensation seem to take place through a continuous supercritical crossing from a diluted to a dense fluid, on account of the fact that the first-order transition line is shifted to higher pressure, and the confined water critical point is correlatively shifted to lower temperature. These molecular simulation studies suggest that the most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations.
Collapse
Affiliation(s)
- Guillaume Fraux
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie, Paris, 75005 Paris, France.
| | - François-Xavier Coudert
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie, Paris, 75005 Paris, France.
| | - Anne Boutin
- PASTEUR, École normale supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
| | - Alain H Fuchs
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie, Paris, 75005 Paris, France.
| |
Collapse
|
7
|
Abstract
Inside proteins, protons move on proton wires (PWs). Starting from the highest resolution X-ray structure available, we conduct a 306 ns molecular dynamics simulation of the (A-state) wild-type (wt) green fluorescent protein (GFP) to study how its PWs change with time. We find that the PW from the chromophore via Ser205 to Glu222, observed in all X-ray structures, undergoes rapid water molecule insertion between Ser205 and Glu222. Sometimes, an alternate Ser205-bypassing PW exists. Side chain rotations of Thr203 and Ser205 play an important role in shaping the PW network in the chromophore region. Thr203, with its bulkier side chain, exhibits slower transitions between its three rotameric states. Ser205 experiences more frequent rotations, slowing down when the Thr203 methyl group is close by. The combined states of both residues affect the PW probabilities. A random walk search for PWs from the chromophore reveals several exit points to the bulk, one being a direct water wire (WW) from the chromophore to the bulk. A longer WW connects the "bottom" of the GFP barrel with a "water pool" (WP1) situated below Glu222. These two WWs were not observed in X-ray structures of wt-GFP, but their analogues have been reported in related fluorescent proteins. Surprisingly, the high-resolution X-ray structure utilized herein shows that Glu222 is protonated at low temperatures. At higher temperatures, we suggest ion pairing between anionic Glu222 and a proton hosted in WP1. Upon photoexcitation, these two recombine, while a second proton dissociates from the chromophore and either exits the protein using the short WW or migrates along the GFP-barrel axis on the long WW. This mechanism reconciles the conflicting experimental and theoretical data on proton motion within GFP.
Collapse
Affiliation(s)
- Ai Shinobu
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Noam Agmon
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
8
|
Imbrogno J, Belfort G. Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals? Annu Rev Chem Biomol Eng 2016; 7:29-64. [DOI: 10.1146/annurev-chembioeng-061114-123202] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joseph Imbrogno
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180; ,
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180; ,
| |
Collapse
|
9
|
Kretchmer JS, Miller TF. Tipping the Balance between Concerted versus Sequential Proton-Coupled Electron Transfer. Inorg Chem 2015; 55:1022-31. [PMID: 26440812 DOI: 10.1021/acs.inorgchem.5b01821] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua S. Kretchmer
- Department of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F. Miller
- Department of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Blasic JR, Worcester DL, Gawrisch K, Gurnev P, Mihailescu M. Pore hydration states of KcsA potassium channels in membranes. J Biol Chem 2015; 290:26765-75. [PMID: 26370089 DOI: 10.1074/jbc.m115.661819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/30/2022] Open
Abstract
Water-filled hydrophobic cavities in channel proteins serve as gateways for transfer of ions across membranes, but their properties are largely unknown. We determined water distributions along the conduction pores in two tetrameric channels embedded in lipid bilayers using neutron diffraction: potassium channel KcsA and the transmembrane domain of M2 protein of influenza A virus. For the KcsA channel in the closed state, the distribution of water is peaked in the middle of the membrane, showing water in the central cavity adjacent to the selectivity filter. This water is displaced by the channel blocker tetrabutyl-ammonium. The amount of water associated with the channel was quantified, using neutron diffraction and solid state NMR. In contrast, the M2 proton channel shows a V-shaped water profile across the membrane, with a narrow constriction at the center, like the hourglass shape of its internal surface. These two types of water distribution are therefore very different in their connectivity to the bulk water. The water and protein profiles determined here provide important evidence concerning conformation and hydration of channels in membranes and the potential role of pore hydration in channel gating.
Collapse
Affiliation(s)
- Joseph R Blasic
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850
| | - David L Worcester
- the Department of Physiology and Biophysics, University of California, Irvine, California 92697, the National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899
| | - Klaus Gawrisch
- the Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Philip Gurnev
- the Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, and From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850
| | - Mihaela Mihailescu
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850,
| |
Collapse
|
11
|
Isaev AN. Structure of a proton wire in the harmonic model with allowance for the interproton interaction for the first and second neighbors. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Paul S, Abi TG, Taraphder S. Structure and dynamics of water inside endohedrally functionalized carbon nanotubes. J Chem Phys 2014; 140:184511. [DOI: 10.1063/1.4873695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Martínez-González E, Frontana C. Inner reorganization limiting electron transfer controlled hydrogen bonding: intra- vs. intermolecular effects. Phys Chem Chem Phys 2014; 16:8044-50. [PMID: 24653999 DOI: 10.1039/c3cp55106g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Collapse
Affiliation(s)
- Eduardo Martínez-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquimica, S. Parque Tecnologico Queretaro Sanfandila Pedro Escobedo, Queretaro 76703, Mexico.
| | | |
Collapse
|
14
|
Toliautas S, Macernis M, Sulskus J, Valkunas L. Solvent effect on the photo-induced proton transfer in 2-(N-methyl-α-iminoethyl)-phenol. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.10.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Karahka ML, Kreuzer HJ. Charge transport along proton wires. Biointerphases 2013; 8:13. [DOI: 10.1186/1559-4106-8-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/07/2013] [Indexed: 11/10/2022] Open
|
16
|
|
17
|
Kretchmer JS, Miller TF. Direct simulation of proton-coupled electron transfer across multiple regimes. J Chem Phys 2013; 138:134109. [DOI: 10.1063/1.4797462] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Bankura A, Chandra A. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores. J Phys Chem B 2012; 116:9744-57. [PMID: 22793519 DOI: 10.1021/jp301466e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon nanotubes (CNT) are known to provide a hydrophobic, confined environment for water where its structure and dynamics can be very different from those of bulk water. In particular, narrow CNTs of the type (6,6) allow only a single one-dimensional (1D) chain of water molecules inside them, thus providing an idealized scenario to study motion in 1D along water chains. In the present study, we have investigated structural and dynamic behavior of water and also of an excess proton and hydroxide ion in water-filled narrow CNTs by means of ab initio molecular dynamics and combined quantum-classical simulations. The main focus of the present work is on the molecular mechanism and kinetics of hydronium and hydroxide ion migration along 1D water chains of different lengths in confinement. It is found that the hydrogen-bonded structures of water and the excess proton and hydroxide ion in CNTs can be very different from those in bulk, and these altered solvation structures play critical roles in determining the proton-transfer (PT) rates along water chains. For the present 1D chain systems, the hydroxide ion is found to migrate at a slightly faster rate than the excess proton, unlike their relative mobilities in bulk water. This faster migration of the hydroxide ion is found not only in CNTs with periodicity along the tube axis but also in isolated CNTs where the excess proton and the hydroxide ion are allowed to move under the influence of an electric field of an oppositely charged ion. The roles of rotational jumps and hydrogen-bond fluctuations in the PT events are discussed. In addition, the significance of hydrogen-bonding defects on the dynamics of an excess proton and hydroxide ion is also discussed for varying chain lengths.
Collapse
Affiliation(s)
- Arindam Bankura
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| | | |
Collapse
|
19
|
STUCHEBRUKHOV ALEXEIA. ELECTRON TRANSFER REACTIONS COUPLED TO PROTON TRANSLOCATION: CYTOCHROME OXIDASE, PROTON PUMPS, AND BIOLOGICAL ENERGY TRANSDUCTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633603000318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytochrome oxidase (COX) is the terminal component of electron transport chain of the respiratory system in mitochondria, and one of the key enzymes responsible for energy generation in cells. COX functions as a proton pump that utilizes free energy of oxygen reduction for translocation of protons across the mitochondrion membrane. The proton gradient created in the process is later utilized to drive synthesis of ATP. Although the structure of COX has been recently resolved, the molecular mechanism of proton pumping remains unknown. In this paper, general principles and possible molecular mechanisms of energy transformations in this enzyme will be discussed. The main question is how exactly chemical energy of oxygen reduction and water formation is transformed into a proton gradient; or, how exactly electron transfer reactions are utilized to translocate protons across the mitochondrion membrane against the electrochemical gradient. A key to the solution of this problem is in understanding correlated transport of electrons and protons. Here, theoretical models are discussed for coupled electron and proton transfer reactions in which an electron is tunneling over long distance between two redox cofactors, and a coupled proton is moving along a proton conducting channel in a classical, diffusion-like random walk fashion. Such reactions are typical for COX and other enzymes involved in biological energy transformations.
Collapse
|
20
|
Hayes RL, Paddison SJ, Tuckerman ME. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics. J Phys Chem A 2011; 115:6112-24. [PMID: 21434672 DOI: 10.1021/jp110953a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the hydrogen bond network, counted using graph theory techniques, are only moderately sensitive to quantum effects. Deliberately introducing a structural defect into the native crystal yields a protonic defect with one hydrogen bond to a sulfonate group that was found to be metastable for at least 10 ps.
Collapse
Affiliation(s)
- Robin L Hayes
- Department of Chemistry, New York University, New York, New York, USA
| | | | | |
Collapse
|
21
|
Alí-Torres J, Rodríguez-Santiago L, Sodupe M. Computational calculations of pKa values of imidazole in Cu(ii) complexes of biological relevance. Phys Chem Chem Phys 2011; 13:7852-61. [DOI: 10.1039/c0cp02319a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Hammes–Schiffer S, Stuchebrukhov AA. Theory of coupled electron and proton transfer reactions. Chem Rev 2010; 110:6939-60. [PMID: 21049940 PMCID: PMC3005854 DOI: 10.1021/cr1001436] [Citation(s) in RCA: 595] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Popovic DM, Leontyev IV, Beech DG, Stuchebrukhov AA. Similarity of cytochrome c oxidases in different organisms. Proteins 2010; 78:2691-8. [PMID: 20589635 DOI: 10.1002/prot.22783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most of biological oxygen reduction is catalyzed by the heme-copper oxygen reductases. These enzymes are redox-driven proton pumps that take part in generating the proton gradient in both prokaryotes and mitochondria that drives synthesis of ATP. The enzymes have been divided into three evolutionarily-related groups: the A-, B-, and C-families. Recent comparative studies suggest that all oxygen reductases perform the same chemistry for oxygen reduction and comprise the same essential elements of the proton pumping mechanism, such as the proton loading and kinetic gating sites, which, however, appear to be different in different families. All species of the A-family, however, demonstrate remarkable similarity of the central processing unit of the enzyme, as revealed by their recent crystal structures. Here we demonstrate that cytochrome c oxidases (CcO) of such diverse organisms as a mammal (bovine heart mitochondrial CcO), photosynthetic bacteria (Rhodobacter sphaeroides CcO), and soil bacteria (Paracoccus denitrificans CcO) are not only structurally similar, but almost identical in microscopic electrostatics and thermodynamics properties of their key amino-acids. By using pK(a) calculations of some of the key residues of the catalytic site, D- and K- proton input, and putative proton output channels of these three different enzymes, we demonstrate that the microscopic properties of key residues are almost identical, which strongly suggests the same mechanism in these species. The quantitative precision with which the microscopic physical properties of these enzymes have remained constant despite different evolutionary routes undertaken is striking.
Collapse
Affiliation(s)
- D M Popovic
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
24
|
Ghosh N, Prat-Resina X, Gunner MR, Cui Q. Microscopic pKa analysis of Glu286 in cytochrome c oxidase (Rhodobacter sphaeroides): toward a calibrated molecular model. Biochemistry 2010; 48:2468-85. [PMID: 19243111 DOI: 10.1021/bi8021284] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As stringent tests for the molecular model and computational protocol, microscopic pK(a) calculations are performed for the key residue, Glu286, in cytochrome c oxidase (CcO) using a combined quantum mechanical/molecular mechanical (QM/MM) potential and a thermodynamic integration protocol. The impact of the number of water molecules in the hydrophobic cavity and protonation state of several key residues (e.g., His334, Cu(B)-bound water, and PRD(a3)) on the computed microscopic pK(a) values of Glu286 has been systematically examined. To help evaluate the systematic errors in the QM/MM-based protocol, microscopic pK(a) calculations have also been carried out for sites in a soluble protein (Asp70 in T4 lysozyme) and a better-characterized membrane protein (Asp85 in bacteriorhodopsin). Overall, the results show a significant degree of internal consistency and reproducibility that support the effectiveness of the computational framework. Although the number of water molecules in the hydrophobic cavity does not greatly influence the computed pK(a) of Glu286, the protonation states of several residues, some of which are rather far away, have more significant impacts. Adopting the standard protonation state for all titratable residues leaves a large net charge on the system and a significantly elevated pK(a) for Glu286, highlighting that any attempt to address the energetics of proton transfers in CcO at a microscopic level should carefully select the protonation state of residues, even those not in the immediate neighborhood of the active site. The calculations indirectly argue against the deprotonation of His334 for the proton pumping process, although further studies that explicitly compute its pK(a) are required for a more conclusive statement. Finally, the deprotonated Glu286 is found to be in a stable water-mediated connection with PRD(a3) for at least several nanoseconds when this presumed pumping site is protonated. This does not support the proposed role of Glu286 as a robust gating valve that prevents proton leakage, although a conclusive statement awaits a more elaborate characterization of the Glu286-PRD(a3) connectivity with free energy simulations and a protonated PRD(a3). The large sets of microscopic simulations performed here have provided useful guidance to the establishment of a meaningful molecular model and effective computational protocol for explicitly analyzing the proton transfer kinetics in CcO, which is required for answering key questions regarding the pumping function of this fascinating and complex system.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
25
|
Isaev AN. The geometry and electronic structure of the ionic defect in a chain of water molecules between a donor and an acceptor. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2010. [DOI: 10.1134/s0036024410030179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Hayes RL, Paddison SJ, Tuckerman ME. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics. J Phys Chem B 2010; 113:16574-89. [PMID: 19968267 DOI: 10.1021/jp907853p] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H(3)O(+), H(5)O(2)(+), and H(9)O(4)(+) structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. Ab initio molecular dynamics simulations indicate that protons in these solids are predisposed to transfer to the water most strongly bound to sulfonate groups via a Grotthuss-type mechanism, but quickly return to the most solvated defect structure either due to the lack of a nearby species to stabilize the new defect or a preference for the proton to be maximally hydrated. Path integral molecular dynamics of the mono- and dihydrate reveal significant quantum effects that facilitate proton transfer to the "presolvated" water or SO(3)(-) in the first solvation shell and increase the Zundel character of all the defects. These trends are quantified in free energy profiles for each bonding environment. Hydrogen bonding criteria for HOH-OH(2) and HOH-O(3)S are extracted from the two-dimensional potential of mean force. The quantum radial distribution function, radius of gyration, and root-mean-square displacement position correlation function show that the protonic charge is distributed over two or more water molecules. Metastable structural defects with one excess proton shared between two sulfonate groups and another Zundel or Eigen type cation defect are found for the mono- and dihydrate but not for the tetrahydrate crystal. Results for the tetrahydrate native crystal exhibit minor differences at 210 and 250 K. IR spectra are calculated for all native and stable defect structures. Graph theory techniques are used to characterize the chain lengths and ring sizes in the hydrogen bond network. Low conductivities when limited water is present may be attributable to trapping of protons between SO(3)(-) groups and the increased probability that protons transfer to waters bridging two different sulfonate groups.
Collapse
Affiliation(s)
- Robin L Hayes
- Department of Chemistry, New York University, New York, USA
| | | | | |
Collapse
|
27
|
Isaev AN. Quantum-chemical calculations of a long proton wire. Application of a harmonic model to analysis of the structure of an ionic defect in a water chain with an excess proton. J Phys Chem A 2010; 114:2201-12. [PMID: 20085360 DOI: 10.1021/jp908259p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum-chemical calculations of molecular complexes (NH(3))(3)Zn(2+)...(H(2)O)(n)...NH(3) (C(n), n = 11, 16, 21, and 30) simulating a proton wire donor-water chain-acceptor were carried out. Earlier found periodicity in the length of the O-H bonds in water chain is explained within the framework of a one-component harmonic model. In complexes C(n), the geometry and electronic structure of ionic defect in water chain with an excess proton were studied. Calculations carried out at ab initio (B3LYP/6-31+G**) and semiempirical (PM3) levels of theory predict different patterns of distribution of the O-H bonds lengths and positive charge on the H-bond hydrogen atoms in the region of ionic defect. The obtained data show how a length of water chain and position of a protonated water link in the chain influence the ionic defect structure. To describe the observed structures of ionic defect, the harmonic model was used and the role of parameters of the H-bonded chain was investigated. The performed analysis explains different mechanisms (concerted and stepwise) of proton transfer along the H-bonded chain derived from ab initio and semiempirical calculation schemes.
Collapse
Affiliation(s)
- Alexander N Isaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia.
| |
Collapse
|
28
|
Role of protein motions on proton transfer pathways in human carbonic anhydrase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:352-61. [PMID: 19781668 DOI: 10.1016/j.bbapap.2009.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 09/03/2009] [Accepted: 09/05/2009] [Indexed: 12/13/2022]
Abstract
We report here a theoretical study on the formation of long-range proton transfer pathways in proteins due to side chain conformational fluctuations of amino acid residues and reorganization of interior hydration positions. The proton transfer pathways in such systems may be modeled as fluctuating hydrogen-bonded networks with both short- and long-lived connections between the networked nodes, the latter being formed by polar protein atoms and water molecules. It is known that these fluctuations may extend over several decades of time ranging from a few femtoseconds to a few milliseconds. We have shown in this article how the use of a variety of theoretical methods may be utilized to detect a generic set of pathways and assess the feasibility of forming one or more transient connections. We demonstrate the application of these methods to the enzyme human carbonic anhydrase II and its mutants. Our results reveal several alternative pathways in addition to the one mediated by His-64. We also probe at length the mechanism of key conformational fluctuations contributing to the formation of the detected pathways.
Collapse
|
29
|
Leontyev IV, Stuchebrukhov AA. Dielectric relaxation of cytochrome c oxidase: Comparison of the microscopic and continuum models. J Chem Phys 2009; 130:085103. [PMID: 19256628 DOI: 10.1063/1.3060196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have studied a charge-insertion process that models the deprotonation of a histidine side chain in the active site of cytochrome c oxidase (CcO) using both the continuum electrostatic calculations and the microscopic simulations. The group of interest is a ligand to Cu(B) center of CcO, which has been previously suggested to play the role of the proton pumping element in the enzyme; the group is located near a large internal water cavity in the protein. Using the nonpolarizable Amber-99 force field in molecular dynamics (MD) simulations, we have calculated the nuclear part of the reaction-field energy of charging of the His group and combined it with the electronic part, which we estimated in terms of the electronic continuum (EC) model, to obtain the total reaction-field energy of charging. The total free energy obtained in this MDEC approach was then compared with that calculated using pure continuum electrostatic model with variable dielectric parameters. The dielectric constant for the "dry" protein and that of the internal water cavity of CcO were determined as those parameters that provide best agreement between the continuum and microscopic MDEC model. The nuclear (MD) polarization alone (without electronic part) of a dry protein was found to correspond to an unphysically low dielectric constant of only about 1.3, whereas the inclusion of electronic polarizability increases the protein dielectric constant to 2.6-2.8. A detailed analysis is presented as to how the protein structure should be selected for the continuum calculations, as well as which probe and atomic radii should be used for cavity definition. The dielectric constant of the internal water cavity was found to be 80 or even higher using "standard" parameters of water probe radius, 1.4 A, and protein atomic radii from the MD force field for cavity description; such high values are ascribed to the fact that the standard procedure produces unphysically small cavities. Using x-ray data for internal water in CcO, we have explored optimization of the parameters and the algorithm of cavity description. For Amber radii, the optimal probe size was found to be 1.25 A; the dielectric of water cavity in this case is in the range of 10-16. The most satisfactory cavity description, however, was achieved with ProtOr atomic radii, while keeping the probe radius to be standard 1.4 A. In this case, the value of cavity dielectric constant was found to be in the range of 3-6. The obtained results are discussed in the context of recent calculations and experimental measurements of dielectric properties of proteins.
Collapse
Affiliation(s)
- I V Leontyev
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
30
|
Sugitani R, Stuchebrukhov AA. Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1140-50. [PMID: 19393218 DOI: 10.1016/j.bbabio.2009.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
We have examined the network of connected internal cavities in cytochrome c oxidase along which water produced at the catalytic center is removed from the enzyme. Using combination of structural analysis, molecular dynamics simulations, and free energy calculations we have identified two exit pathways that connect the Mg2+ ion cavity to the outside of the enzyme. Each pathway has a well-defined bottleneck, which determines the overall rate of water traffic along the exit pathway, and a specific cooperative mechanism of passing it. One of the pathways is going via Arg438/439 (in bovine numbering) toward the CuA center, approaching closely its His204B ligand and Lys171B residue; and the other is going toward Asp364 and Thr294. Comparison of the pathways among different aa3-type enzymes shows that they are well conserved. Possible connections of the finding to redox-coupled proton pumping mechanism are discussed. We propose specific mutations near the bottlenecks of the exit pathways that can test some of our hypotheses.
Collapse
Affiliation(s)
- Ryogo Sugitani
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
31
|
Stuchebrukhov AA. Mechanisms of proton transfer in proteins: localized charge transfer versus delocalized soliton transfer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031927. [PMID: 19391991 PMCID: PMC4213182 DOI: 10.1103/physreve.79.031927] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Indexed: 05/10/2023]
Abstract
Proton translocation coupled to redox chemistry is ubiquitous for membrane enzymes involved in energy generation in cells. In such enzymes, proton transport occurs in special proton conducting channels, which consist of a series of protonatable groups of the protein connected by chains of mobile water molecules. Here we discuss two possible mechanisms of proton transport along such structures: diffusion of a localized charge and delocalized soliton transitions, in which several protons are collectively shifted along a chain of hydrogen bonds.
Collapse
|
32
|
Roy A, Taraphder S. A theoretical study on the detection of proton transfer pathways in some mutants of human carbonic anhydrase II. J Phys Chem B 2008; 112:13597-607. [PMID: 18826189 DOI: 10.1021/jp0757309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structural and kinetic studies of mutants can give much insight into the function of an enzyme. We report the detection of possible proton transfer pathways into the active site of a number of mutants of the enzyme human carbonic anhydrase II (HCA II). Using a recently developed method of path search in the protein conformational space, we identify hydrogen-bonded networks (or proton paths) that can dynamically connect the protein surface to the active site through fluctuations in protein structure and hydration. The feasibility of establishing such dynamical connectivities is assessed by computing the change in free energy of conformational fluctuations and compared to those identified earlier in the wild type enzyme. It is found that the point mutation facilitates or suppresses one or more of the alternative pathways. Our results allow the use of a generic set of pathways to correlate qualitatively the residual activity in the mutants to the molecular mechanism of proton transfer in the absence of His at position 64. We also demonstrate how the detected pathways may be used to compare the efficiencies of the mutants His-64-Ala/Asn-62-His and His-64-Ala/Asn-67-His using the empirical valence bond theory.
Collapse
Affiliation(s)
- Arijit Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
33
|
Abstract
Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important.
Collapse
|
34
|
Rasaiah JC, Garde S, Hummer G. Water in Nonpolar Confinement: From Nanotubes to Proteins and Beyond. Annu Rev Phys Chem 2008; 59:713-40. [DOI: 10.1146/annurev.physchem.59.032607.093815] [Citation(s) in RCA: 586] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shekhar Garde
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520;
| |
Collapse
|
35
|
Isaev AN. Cooperative interactions of hydrogen bonds in proton-transfer processes involving water molecules. Simulation of biochemical systems. RUSS J GEN CHEM+ 2008. [DOI: 10.1134/s1070363208040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Köfinger J, Dellago C. Biasing the center of charge in molecular dynamics simulations with empirical valence bond models: free energetics of an excess proton in a water droplet. J Phys Chem B 2008; 112:2349-56. [PMID: 18247589 DOI: 10.1021/jp0736185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multistate empirical valence bond (EVB) models provide an accurate description of the energetics of proton transfer and solvation in complex molecular systems and can be efficiently used in molecular dynamics computer simulations. Within such models, the location of the moving protonic charge can be specified by the so-called center of charge, defined as a weighted average over the diabatic states of the EVB model. In this paper, we use first-order perturbation theory to calculate the molecular forces that arise if a bias potential is applied to the center of charge. Such bias potentials are often necessary when molecular dynamics simulations are used to determine free energies related to proton transfer and not all relevant proton positions are sampled with sufficient frequency during the available computing time. The force expressions we derive are easy to evaluate and do not create any significant computational cost compared with unbiased EVB simulations. As an illustration of the method, we study proton transfer in a small liquid water droplet consisting of 128 water molecules plus an excess proton. Contrary to predictions of continuum electrostatics, but in agreement with previous computer simulations of similar systems, we observe that the excess proton is predominantly located at the surface of the droplet. Using the formalism developed in this paper, we calculate the reversible work required to carry the protonic charge from the droplet surface to its core, finding a value of roughly 4 k(B)T.
Collapse
Affiliation(s)
- Jürgen Köfinger
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | |
Collapse
|
37
|
Cailliez F, Trzpit M, Soulard M, Demachy I, Boutin A, Patarin J, Fuchs AH. Thermodynamics of water intrusion in nanoporous hydrophobic solids. Phys Chem Chem Phys 2008; 10:4817-26. [DOI: 10.1039/b807471b] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
39
|
Trzpit M, Soulard M, Patarin J, Desbiens N, Cailliez F, Boutin A, Demachy I, Fuchs AH. The effect of local defects on water adsorption in silicalite-1 zeolite: a joint experimental and molecular simulation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10131-9. [PMID: 17715950 DOI: 10.1021/la7011205] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report a joint experimental and molecular simulation study of water condensation in silicalite-1 zeolite. A sample was synthesized using the fluoride route and was found to contain essentially no defects. A second sample synthesized using the hydroxide route was found to contain a small amount of silanol groups. The thermodynamics of water condensation was studied in these two samples, as well as in a commercial sample, in order to understand the effect of local defects on water adsorption. The molecular simulation study enabled us to qualitatively reproduce the experimentally observed condensation thermodynamics features. A shift and a rounding of the condensation transition was observed with an increasing hydrophilicity of the local defect, but the condensation transition was still observed above the water saturation vapor pressure P0. Both experiments and simulations agree on the fact that a small water uptake can be observed at very low pressure, but that the bulk liquid does not form from the gas phase below P0. The picture that emerges from the observed water condensation mechanism is the existence of a heterogeneous internal surface that is overall hydrophobic, despite the existence of hydrophilic "patches". This heterogeneous surface configuration is thermodynamically stable in a wide range of reduced pressures (from P/P0 = 0.2 to a few thousands), until the condensation transition takes place.
Collapse
Affiliation(s)
- M Trzpit
- Laboratoire des Matériaux à Porosité Contrôlée, CNRS, Ecole Nationale Supérieure de Chimie de Mulhouse and Université de Haute-Alsace, 68093 Mulhouse, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Tuukkanen A, Kaila VRI, Laakkonen L, Hummer G, Wikström M. Dynamics of the glutamic acid 242 side chain in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1102-6. [PMID: 17706938 DOI: 10.1016/j.bbabio.2007.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
In many cytochrome c oxidases glutamic acid 242 is required for proton transfer to the binuclear heme a(3)/Cu(B) site, and for proton pumping. When present, the side chain of Glu-242 is orientated "down" towards the proton-transferring D-pathway in all available crystal structures. A nonpolar cavity "above" Glu-242 is empty in these structures. Yet, proton transfer from Glu-242 to the binuclear site, and for proton-pumping, is well established, and the cavity has been proposed to at least transiently contain water molecules that would mediate proton transfer. Such proton transfer has been proposed to require isomerisation of the Glu-242 side chain into an "up" position pointing towards the cavity. Here, we have explored the molecular dynamics of the protonated Glu-242 side chain. We find that the "up" position is preferred energetically when the cavity contains four water molecules, but the "down" position is favoured with less water. We conclude that the cavity might be deficient in water in the crystal structures, possibly reflecting the "resting" state of the enzyme, and that the "up/down" equilibrium of Glu-242 may be coupled to the presence of active-site water molecules produced by O(2) reduction.
Collapse
Affiliation(s)
- Anne Tuukkanen
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
42
|
Roy A, Taraphder S. Identification of Proton-Transfer Pathways in Human Carbonic Anhydrase II. J Phys Chem B 2007; 111:10563-76. [PMID: 17691838 DOI: 10.1021/jp073499t] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the probable proton-transfer pathways from the surface of human carbonic anhydrase II into the active site cavity through His-64 that has been widely implicated as a key residue along the proton-transfer path. A recursive analysis of hydrogen-bonded clusters in the static crystallographic structure shows that there is no complete path through His-64 in either of its experimentally detected conformations. Side chain conformational fluctuation of His-64 from its outward conformation toward the active site is found to provide a crucial dynamic connectivity needed to complete the path coupled to local reorganization of the protein structure and hydration. The energy and free energy barriers along the detected pathway have been estimated to derive the mechanism of His-64 rotation toward the active site. We also investigate a dynamical connectivity map that highlights networks of disordered water molecules that may promote a direct (and probably transient) access of the solvent to the active site. Our studies reveal how such solvent access channels may be related to the putative proton shuttle mediated by His-64. The paths thus identified can be potentially used as reaction coordinates for further studies on the molecular mechanism of enzyme action.
Collapse
Affiliation(s)
- Arijit Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
43
|
Wikström M, Verkhovsky MI. Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1200-14. [PMID: 17689487 DOI: 10.1016/j.bbabio.2007.06.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
Recent time-resolved optical and electrometric experiments have provided a sequence of events for the proton-translocating mechanism of cytochrome c oxidase. These data also set limits for the mechanistic, kinetic, and thermodynamic parameters of the proton pump, which are analysed here in some detail. The analysis yields limit values for the pK of the "pump site", its modulation during the proton-pumping process, and suggests its identity in the structure. Special emphasis is made on side-reactions that may short-circuit the pump, and the means by which these may be avoided. We will also discuss the most prominent proton pumping mechanisms proposed to date in relation to these data.
Collapse
Affiliation(s)
- Mårten Wikström
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
44
|
Popović DM, Quenneville J, Stuchebrukhov AA. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase. J Phys Chem B 2007; 109:3616-26. [PMID: 16851400 DOI: 10.1021/jp046535m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using classical electrostatic calculations, earlier we examined the dependence of the protonation state of bovine cytochrome c oxidase (CcO) on its redox state. Based on these calculations, we have proposed a model of CcO proton pumping that involves His291, one of the Cu(B) histidine ligands, which was found to respond to redox changes of the enzyme Fe(a)(3)-Cu(B) catalytic center. In this work, we employ combined density functional and continuum electrostatic calculations to evaluate the pK(a)() values of His291 and Glu242, two key residues of the model. The pK(a) values are calculated for different redox states of the enzyme, and the influence of different factors on the pK(a)'s is analyzed in detail. The calculated pK(a)() values of Glu242 are between 9.4 and 12.0, depending on the redox state of the protein, which is in excellent agreement with recent experimental measurements. Assuming the reduced state of heme a(3), His291 of the oxidized Cu(B) center possesses a pK(a)() between 2.1 and 4.0, while His291 of the reduced Cu(B) center has a pK(a) above 17. The obtained results support the proposal that the His291 ligand of the Cu(B) center in CcO is a proton pump element.
Collapse
Affiliation(s)
- Dragan M Popović
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
45
|
Riccardi D, Schaefer P, Cui Q. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. J Phys Chem B 2007; 109:17715-33. [PMID: 16853267 DOI: 10.1021/jp0517192] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accuracy of biological simulations depends, in large part, on the treatment of electrostatics. Due to the availability of accurate experimental values, calculation of pKa provides stringent evaluation of computational methods. The generalized solvent boundary potential (GSBP) and Ewald summation electrostatic treatments were recently implemented for combined quantum mechanical and molecular mechanics (QM/MM) simulations by our group. These approaches were tested by calculating pKa shifts due to differences in electronic structure and electrostatic environment; the shifts were determined for a series of small molecules in solution, using various electrostatic treatments, and two residues (His 31, Lys 102) in the M102K T4-lysozyme mutant with large pKa shifts, using the GSBP approach. The calculations utilized a free energy perturbation scheme with the QM/MM potential function involving the self-consistent charge density functional tight binding (SCC-DFTB) and CHARMM as the QM and MM methods, respectively. The study of small molecules demonstrated that inconsistent electrostatic models produced results that were difficult to correct in a robust manner; by contrast, extended electrostatics, GSBP, and Ewald simulations produced consistent results once a bulk solvation contribution was carefully chosen. In addition to the electrostatic treatment, the pKa shifts were also sensitive to the level of the QM method and the scheme of treating QM/MM Coulombic interactions; however, simple perturbative corrections based on SCC-DFTB/CHARMM trajectories and higher level single point energy calculations were found to give satisfactory results. Combining all factors gave a root-mean-square difference of 0.7 pKa units for the relative pKa values of the small molecules compared to experiment. For the residues in the lysozyme, an accurate pKa shift was obtained for His 31 with multiple nanosecond simulations. For Lys 102, however, the pKa shift was estimated to be too large, even after more than 10 nanosecond simulations for each lambda window; the difficulty was due to the significant, but slow, reorganization of the protein and water structure when Lys 102 was protonated. The simulations support that Lys 102 is deprotonated in the X-ray structure and the protein is highly destabilized when this residue is protonated.
Collapse
Affiliation(s)
- Demian Riccardi
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
46
|
König PH, Hoffmann M, Frauenheim T, Cui Q. A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J Phys Chem B 2007; 109:9082-95. [PMID: 16852081 DOI: 10.1021/jp0442347] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The performance of different link atom based frontier treatments in QM/MM simulations was evaluated critically with SCC-DFTB as the QM method. In addition to the analysis of gas-phase molecules as in previous studies, an important element of the present work is that chemical reactions in realistic enzyme systems were also examined. The schemes tested include all options available in the program CHARMM for SCC-DFTB/MM simulation, which treat electrostatic interactions due to the MM atoms close to the QM/MM boundary in different ways. In addition, a new approach, the divided frontier charge (DIV), has been implemented in which the partial charge associated with the frontier MM atom ("link host") is evenly distributed to the other MM atoms in the same group. The performance of these schemes was evaluated based on properties including proton affinities, deprotonation energies, dipole moments, and energetics of proton transfer reactions. Similar to previous work, it was found that calculated proton affinities and deprotonation energies of alcohols, carbonic acids, amino acids, and model DNA bases are very sensitive to the link atom scheme; the commonly used single link atom approach often gives error on the order of 15 to 20 kcal/mol. Other schemes give better and, on average, mutually comparable results. For proton transfer reactions, encouragingly, both activation barriers and reaction energies are fairly insensitive (within a typical range of 2-4 kcal/mol) to the link atom scheme due to error cancellation, and this was observed for both gas-phase and enzyme systems. Therefore, the effect of using different link atom schemes in QM/MM simulations is rather small for chemical reactions that conserve the total charge. Although the current study used an approximate DFT method as the QM level, the observed trends are expected to be applicable to QM/MM methods with use of other QM approaches. This observation does not mean to encourage QM/MM simulations without careful benchmark in the study of specific systems, rather it emphasizes that other technical details, such as the treatment of long-range electrostatics, tend to play a more important role and need to be handled carefully.
Collapse
Affiliation(s)
- P H König
- Theoretische Physik, Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | | | | | | |
Collapse
|
47
|
Isaev AN. The wave nature of the protonic conductivity mechanism in the active site of carboanhydrase. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2007. [DOI: 10.1134/s0036024407060155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
De Vivo M, Ensing B, Dal Peraro M, Gomez GA, Christianson DW, Klein ML. Proton shuttles and phosphatase activity in soluble epoxide hydrolase. J Am Chem Soc 2007; 129:387-94. [PMID: 17212419 PMCID: PMC2533064 DOI: 10.1021/ja066150c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, a novel metal Mg2+-dependent phosphatase activity has been discovered in the N-terminal domain of the soluble epoxide hydrolase (sEH), opening a new branch of fatty acid metabolism and providing an additional site for drug targeting. Importantly, the sEH N-terminal fold belongs to the haloacid dehalogenase (HAD) superfamily, which comprises a vast majority of phosphotransferases. Herein, we present the results of a computational study of the sEH phosphatase activity, which includes classical molecular dynamics (MD) simulations and mixed quantum mechanical/molecular mechanics (QM/MM) calculations. On the basis of experimental results, a two-step mechanism has been proposed and herein investigated: (1) phosphoenzyme intermediate formation and (2) phosphoenzyme intermediate hydrolysis. Building on our earlier work, we now provide a detailed description of the reaction mechanism for the whole catalytic cycle along with its free energy profile. The present computations suggest metaphosphate-like transition states for these phosphoryl transfers. They also reveal that the enzyme promotes water deprotonation and facilitates shuttling of protons via a metal-ligand connecting water bridge (WB). These WB-mediated proton shuttles are crucial for the activation of the solvent nucleophile and for the stabilization of the leaving group. Moreover, due to the conservation of structural features in the N-terminal catalytic site of sEH and other members of the HAD superfamily, we suggest a generalization of our findings to these other metal-dependent phosphatases.
Collapse
Affiliation(s)
- Marco De Vivo
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Stuchebrukhov AA. Toward Ab Initio Theory of Longdistance Electron Tunneling in Proteins: Tunneling Currents Approach. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141786.ch1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
|