1
|
Samie KA, Kowalewski MP, Schuler G, Gastal GDA, Bollwein H, Scarlet D. Roles of GDF9 and BMP15 in equine follicular development: in vivo content and in vitro effects of IGF1 and cortisol on granulosa cells. BMC Vet Res 2025; 21:292. [PMID: 40289073 PMCID: PMC12034142 DOI: 10.1186/s12917-025-04744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND In horses, the mechanisms behind ovarian follicle growth and oocyte maturation remain largely unknown. In other species, oocyte-secreted factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) have been related to the acquisition of developmental competence and to interaction with granulosa cells for the regulation of follicle development. This study assessed the expression and localization of GDF9 in the equine ovary, and its possible relationship with granulosa cell function. RESULTS Using custom-made antibodies, GDF9 protein was localized in oocytes from the primary follicle stage onwards. Together with BMP15, its intrafollicular concentration was higher in small antral follicles compared to larger ones (P < 0.05). Negative correlations were observed between intrafollicular BMP15 concentration and estradiol sulfate (E2S) (r = -0.36, P = 0.048), as well as between BMP15 and E2S/P4 ratio (r = -0.37, P = 0.046). In vivo, equine granulosa cells showed increasing mRNA expression of genes involved in steroidogenesis (STAR and HSD3B2) and cell proliferation (KI67) with increasing follicle size, while expression of GDF9 and of apoptosis-related genes (BCL2 and CASP3) were not affected by follicle size. Simultaneous stimulation of granulosa cells in vitro with IGF1 and cortisol significantly increased HSD3B2 and CYP19A1 transcriptional levels, as well as E2 concentration in culture media, while IGF1-induced P4 secretion was suppressed in the presence of cortisol. Blocking the stimulatory effect of IGF1 on E2, E2S and P4 by H89 was associated with increased GDF9 mRNA levels and reduced STAR, PCNA, KI67 and BCL2 mRNA expression. Significant negative correlations of GDF9 with STAR and PCNA mRNA, respectively, were seen in vivo and in vitro. CONCLUSIONS Together, our results show GDF9 localization and expression in the equine ovary and a temporal relationship with steroidogenesis and cell proliferation within the surrounding granulosa cells. Moreover, results of the in vitro study suggest a supporting role of cortisol during follicle maturation. Our study sheds light on possible mechanisms for the regulation of ovarian function in horses using GDF9.
Collapse
Affiliation(s)
- Kosar Abbasi Samie
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Gerhard Schuler
- Veterinary Clinic for Reproductive Medicine and Neonatology, Justus-Liebig-University, Frankfurter Strasse 106, 35392, Giessen, Germany
| | - Gustavo D A Gastal
- Instituto Nacional de Investigación Agropecuaria INIA, Estacion Experimental La Estanzela, Ruta 50 km 11, Cologne, Colonia, 39173, Uruguay
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
- AgroVet-Strickhof, Vetsuisse Faculty, Eschikon, Lindau, Switzerland
| | - Dragos Scarlet
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland.
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland.
- AgroVet-Strickhof, Vetsuisse Faculty, Eschikon, Lindau, Switzerland.
| |
Collapse
|
2
|
Mlyczyńska E, Zaobidna E, Rytelewska E, Dobrzyń K, Kieżun M, Kopij G, Szymańska K, Kurowska P, Dall'Aglio C, Smolińska N, Kamiński T, Rak A. Expression and regulation of visfatin/NAMPT in the porcine corpus luteum during the estrous cycle and early pregnancy. Anim Reprod Sci 2023; 250:107212. [PMID: 36913896 DOI: 10.1016/j.anireprosci.2023.107212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Visfatin/NAMPT creates a hormonal link between energy metabolism and female reproduction. A recent study documented visfatin expression in the ovary and its action on follicular cells; however, the expression of visfatin in luteal cells is still unknown. The aim of this study, therefore, was to investigate the transcript and protein expression of visfatin as well as its immunolocalization in the corpus luteum (CL) and to examine the involvement of extracellular signal-regulated kinases (ERK1/2) in the regulation of visfatin level in response to LH, insulin, progesterone (P4), prostaglandin E2 (PGE2) and F2α (PGF2α). Corpora lutea were harvested from gilts on days 2-3, 10-12 and 14-16 of the estrous cycle and on days 10-11, 12-13, 15-16 and 27-28 of pregnancy. The current study demonstrated that visfatin expression depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Visfatin was immunolocalized to the cytoplasm of small and large luteal cells. Moreover, visfatin protein abundance was increased by P4, and decreased by both prostaglandins, while LH and insulin have modulatory effects, depending on the phase of the cycle. Interestingly, LH, P4 and PGE2 effects were abolished in response to the inhibition of ERK1/2 kinase. Thus, this study demonstrated that expression of visfatin in the porcine CL is determined by the endocrine status related to the estrous cycle and early pregnancy and by the action of LH, insulin, P4 and prostaglandins via activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Szymańska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Cecylia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
3
|
Kurowska P, Mlyczyńska E, Dawid M, Dupont J, Rak A. Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A†. Biol Reprod 2021; 102:1290-1305. [PMID: 32149334 PMCID: PMC7703729 DOI: 10.1093/biolre/ioaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Joelle Dupont
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research-INRA, Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
4
|
Li C, Liu Z, Zhou J, Meng X, Liu S, Li W, Zhang X, Zhou J, Yao W, Dong C, Cao Y, Li R, Chen B, Jiang A, Jiang Y, Ning C, Zhao F, Wei Y, Sun SC, Tao J, Wu W, Shen M, Liu H. Insulin-like growth factor-I prevents hypoxia-inducible factor-1 alpha-dependent G1/S arrest by activating cyclin E/cyclin-dependent kinase2 via the phoshatidylinositol-3 kinase/AKT/forkhead box O1/Cdkn1b pathway in porcine granulosa cells†. Biol Reprod 2021; 102:116-132. [PMID: 31435642 DOI: 10.1093/biolre/ioz162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/23/2019] [Accepted: 08/12/2019] [Indexed: 11/13/2022] Open
Abstract
As the follicle develops, the thickening of the granulosa compartment leads to progressively deficient supply of oxygen in granulosa cells (GCs) due to the growing distances from the follicular vessels. These conditions are believed to cause hypoxia in GCs during folliculogenesis. Upon hypoxic conditions, several types of mammalian cells have been reported to undergo cell cycle arrest. However, it remains unclear whether hypoxia exerts any impact on cell cycle progression of GCs. On the other hand, although the GCs may live in a hypoxic environment, their mitotic capability appears to be unaffected in growing follicles. It thus raises the question whether there are certain intraovarian factors that might overcome the inhibitory effects of hypoxia. The present study provides the first evidence suggesting that cobalt chloride (CoCl2)-mimicked hypoxia prevented G1-to-S cell cycle progression in porcine GCs. In addition, we demonstrated that the inhibitory effects of CoCl2 on GCs cell cycle are mediated through hypoxia-inducible factor-1 alpha/FOXO1/Cdkn1b pathway. Moreover, we identified insulin-like growth factor-I (IGF-I) as an intrafollicular factor required for cell cycle recovery by binding to IGF-I receptor in GCs suffering CoCl2 stimulation. Further investigations confirmed a role of IGF-I in preserving G1/S progression of CoCl2-treated GCs via activating the cyclin E/cyclin-dependent kinase2 complex through the phoshatidylinositol-3 kinase/protein kinase B (AKT)/FOXO1/Cdkn1b axis. Although the present findings were based on a hypoxia mimicking model by using CoCl2, our study might shed new light on the regulatory mechanism of GCs cell cycle upon hypoxic stimulation.
Collapse
Affiliation(s)
- Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueqin Meng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongyang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiwen Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Caibo Ning
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Pan B, Liu C, Zhan X, Li J. Protegrin-1 Regulates Porcine Granulosa Cell Proliferation via the EGFR-ERK1/2/p38 Signaling Pathway in vitro. Front Physiol 2021; 12:673777. [PMID: 34093234 PMCID: PMC8176212 DOI: 10.3389/fphys.2021.673777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are traditionally known to be essential components in host defense via their broad activities against bacteria, fungi, viruses, and protozoa. Their immunomodulatory properties have also recently received considerable attention in mammalian somatic tissues of various species. However, little is known regarding the role of AMPs in the development and maturation of ovarian follicles. Protegrin-1 (PG-1) is an antimicrobial peptide which is known to have potent antimicrobial activity against both gram positive and negative bacteria. Here we report that the PG-1 is present in the porcine ovarian follicular fluid. Treatment of granulosa cell with PG-1 enhanced granulosa cell proliferation in a dose-dependent manner. This is accompanied by increased expression of cell-cycle progression-related genes such as cyclin D1(CCND1), cyclin D2 (CCND2), and cyclin B1(CCNB1). Additionally, Western blot analysis showed that PG-1 increased phosphorylated epidermal growth factor receptor (EGFR), and the phosphorylated-/total extracellular signal-regulated kinase (ERK)1/2 ratio. Pretreatment with either U0126, a specific ERK1/2 phosphorylation inhibitor, or EGFR kinase inhibitor, AG1478, blocked the PG-1 induced proliferation. Moreover, luciferase reporter assay revealed that ETS domain-containing protein-1 (Elk1) C/EBP homologous protein (CHOP), and the transcription activators downstream of the MAPK pathway, were activated by PG-1. These data collectively suggest that PG-1 may regulate pig granulosa cell proliferation via EGFR-MAPK pathway., Hence, our finding offers insights into the role of antimicrobial peptides on follicular development regulation.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada
| | - Canying Liu
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada.,Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoshu Zhan
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada.,Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Julang Li
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Han Y, Chen Y, Yang F, Sun X, Zeng S. Mechanism underlying the stimulation by IGF-1 of LHCGR expression in porcine granulosa cells. Theriogenology 2021; 169:56-64. [PMID: 33933758 DOI: 10.1016/j.theriogenology.2021.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
IGF-1 plays important roles in mammalian fertility by promoting cell growth and increasing steroid hormone secretion. Although IGF-1 significantly upregulated luteinizing hormone/choriogonadotropin receptor (LHCGR) gene expression in granulosa cells in a previous study, the mechanism was unclear. The present experiment was designed to primarily explore the regulation of LHCGR expression by IGF-1. First, based on a porcine LHCGR double-luciferase reporter experiment, c-Fos significantly inhibited the activity of the LHCGR promoter. Second, porcine granulosa cells were cultured in vitro with IGF-1, and we observed that the expression of LHCGR was significantly increased and the expression of c-Fos mRNA significantly reduced. After c-Fos overexpression in granulosa cells, IGF-1 attenuated the inhibitory effect of c-Fos on LHCGR. Furthermore, the level of LHCGR mRNA stimulated by IGF-1 in the presence of SB203580 was markedly lower than that of IGF-1 alone action. In conclusion, IGF-1 enhanced the expression of LHCGR by regulating c-Fos in granulosa cells, which may be mediated by the p38MAPK-signaling pathway.
Collapse
Affiliation(s)
- Ying Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; College of Agronomy, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Yanhong Chen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Sun
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Faheem MS, Dessouki SM, Abdel-Rahman FES, Ghanem N. Physiological and molecular aspects of heat-treated cultured granulosa cells of Egyptian buffalo (Bubalus bubalis). Anim Reprod Sci 2020; 224:106665. [PMID: 33307488 DOI: 10.1016/j.anireprosci.2020.106665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
The physiological and molecular responses of granulosa cells (GCs) from buffalo follicles were investigated when there were in vitro heat stress conditions imposed. The cultured GCs were heat-treated at 40.5 °C for 24, 48 or 72 h while GCs of the control group were not heat-treated (37 °C). There were no differences in viability between control and heat-treated groups. There was an upward trend in increase in E2 secretion as the duration of heat stress advanced, being greater (P ≤ 0.05) for the GCs on which heat stress was imposed for 72 as compared with 24 h. In contrast, P4 release was less (P ≤ 0.05) from GCs heat-treated for 48 h than those cultured for 24 h and GCs of the control group. The relative abundance of ATP5F1A and SOD2 mRNA transcripts was consistent throughout the period when there was imposing of heat stress to sustain mitochondrial function. The relative abundance of CPT2 transcript was less in heat-treated GCs than in GCs of the control group. There was a greater relative abundance of SREBP1 and TNF-α mRNA transcripts after 48 h of heat-treatment of GCs than GCs of the control group. In conclusion, the results from the current study indicate buffalo GCs cultured when there was imposing of heat stress maintained normal viability, steroidogenesis and transcriptional profile. The stability of antioxidant status and increased transcription of genes regulating cholesterol biosynthesis and stress resistance may be defense mechanisms of buffalo GCs against heat stress.
Collapse
Affiliation(s)
- Marwa S Faheem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Cairo University Research Park (CURP) Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Sherif M Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Cairo University Research Park (CURP) Faculty of Agriculture, Cairo University, Giza, Egypt
| | | | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Cairo University Research Park (CURP) Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Liu C, Pan B, Yang L, Wang B, Li J. Beta defensin 3 enhances ovarian granulosa cell proliferation and migration via ERK1/2 pathway in vitro†. Biol Reprod 2020; 100:1057-1065. [PMID: 30445521 DOI: 10.1093/biolre/ioy246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/26/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as host defense peptides that possess bactericidal activity as well as immunomodulatory function. However, the role of AMP in the mammalian ovary is unknown. In the present study, porcine granulosa cells were utilized in a cell model to study the role of porcine beta defensin 2 (pBD2; pDEFB4B) and 3 (pBD3; pDEFB103A) during ovarian follicular development. Granulosa cells were cultured in the absence and presence of 1, 10, and 50 μg/ml of pDEFB4B or pDEFB103A. After 24 h of treatment, pDEFB103A but not pDEFB4B stimulated granulosa cell proliferation in a concentration-dependent manner (P < 0.05). This effect was dependent on the stage of follicular development. In addition, transwell cell migration assay showed that in the presence of pDEFB103A (10 μg/ml), a 2.5-fold increase in cell migration was achieved. Furthermore, further study revealed that pDEFB103A increased the mRNA levels of cyclin D1 (CCND1) and proliferating cell nuclear antigen (PCNA), both associated with cell proliferation. To study the potential pathway involved in pDEFB103A-induced cell proliferation and migration, western blots were performed. It was found that pDEFB103A significantly increased the phosphorylated-ERK1/2 to nonphosphorylated ratio. Moreover, pretreatment with the U0126, a specific ERK1/2 phosphorylation inhibitor, suppressed PDEFB103A inducing GCs ERK1/2 phosphorylation, as well as proliferation and migration, suggesting that PDEFB103A may act via activating the ERK1/2 pathway. Furthermore, using a signal transduction pathway Elk-1 trans-reporting system, the activation of ERK1/2 pathway by PDEFB103A was further confirmed. Our data suggest that AMP may play a physiological role in the mammalian ovary.
Collapse
Affiliation(s)
- Canying Liu
- Department of Life Science and Engineering, Foshan University, Foshan, China
- Department of Animal and Poultry Science, University of Guelph, Guelph, Canada
| | - Bo Pan
- Department of Animal and Poultry Science, University of Guelph, Guelph, Canada
| | - Lu Yang
- Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Bingyun Wang
- Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Canada
| |
Collapse
|
9
|
Apoptosis signal-regulating kinase (ASK1) and transcription factor tumor suppressor protein TP53 suppress rabbit ovarian granulosa cell functions. Anim Reprod Sci 2019; 204:140-151. [PMID: 30948244 DOI: 10.1016/j.anireprosci.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 11/23/2022]
Abstract
This study was conducted with the aim to understand the roles of apoptosis signal-regulating kinase (ASK1) and transcription factor tumor suppressor protein TP53, as well as the possible interrelationships, in the control of healthy ovarian cell functions. Rabbit ovarian granulosa cells were transfected with constructs encoding ASK1, TP53, or TP53 + ASK1 and cultured with or without insulin-like growth factor 1 (IGF1). The accumulation of ASK1, the cytoplasmic apoptosis regulators BAX and BCL2, and proliferating cell nuclear antigen (PCNA, a cell proliferation marker), as well as progesterone release, were evaluated by quantitative immunocytochemistry and radioimmunoassay. Results indicate both ASK1 and TP53 promoted the accumulation of BAX, but suppressed that of BCL2 and PCNA. Progesterone release was inhibited by ASK1 and promoted by TP53, while TP53 also stimulated ASK1 accumulation. Additionally, IGF1 stimulated PCNA and reduced progesterone release, but did not affect ASK1. Transfection with ASK1, TP53, or TP53 + ASK1 could modify IGF1 activity, however, there was no cumulative effect with co-transfection of TP53 and ASK1. This is the first results that indicate there is ASK1 suppression of healthy ovarian granulosa cell functions, including promoting apoptosis, inhibiting proliferation, and alter progesterone release. There was also TP53 actions in rabbit ovarian granulosa cells, where it stimulated ASK1, apoptosis, and progesterone release, thus suppressing proliferation and responses to IGF1. The similarity of ASK1 and TP53 effects on apoptosis and proliferation, lack of cumulative action of these molecules, and capacity of TP53 to promote ASK1 accumulation suggest that TP53 can suppress some ovarian granulosa cell functions through ASK1 stimulation.
Collapse
|
10
|
Cha S, Shin DH, Seok JR, Myung JK. Differential proteome expression analysis of androgen-dependent and -independent pathways in LNCaP prostate cancer cells. Exp Cell Res 2017; 359:215-225. [DOI: 10.1016/j.yexcr.2017.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
|
11
|
Caloric restriction and IGF-I administration promote rabbit fecundity: Possible interrelationships and mechanisms of action. Theriogenology 2017; 90:252-259. [DOI: 10.1016/j.theriogenology.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
|
12
|
Harrath AH, Østrup O, Rafay J, Koničková (Florkovičová) I, Laurincik J, Sirotkin AV. Metabolic state defines the response of rabbit ovarian cells to leptin. Reprod Biol 2017; 17:19-24. [DOI: 10.1016/j.repbio.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 01/31/2023]
|
13
|
Kolesarova A, Sirotkin AV, Mellen M, Roychoudhury S. Possible intracellular regulators of female sexual maturation. Physiol Res 2014; 64:379-86. [PMID: 25536325 DOI: 10.33549/physiolres.932838] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein kinases, transcription factors and other apoptosis- and proliferation-related proteins can regulate reproduction, but their involvement in sexual maturation remains to be elucidated. The general aim of the in vivo and in vitro experiments with porcine ovarian granulosa cells was to identify possible intracellular regulators of female sexual maturation. For this purpose, proliferation (expression of proliferating cell nuclear antigen - PCNA, mitogen-activated protein kinases - ERK 1,2 related MAPK and cyclin B1), apoptosis (expression of the apoptotic protein Bax and apoptosis regulator Bcl-2 protein), expression of some protein kinases (cAMP dependent protein kinase - PKA, cGMP-dependent protein kinase - PKG, tyrosine kinase - TK) and cAMP responsive element binding protein 1 (CREB-1) was examined in granulosa cells isolated from ovaries of immature and mature gilts. Expression of PCNA, ERK1,2 related MAPK, cyclin B1, Bcl-2, Bax, PKA, CREB-1, TK and PKG in porcine granulosa cells were detected by immunocytochemistry. Sexual maturation was associated with significant increase in the expression of Bcl-2, Bax, PKA, CREB-1 and TK and with decrease in the expression of ERK1,2 related MAPK, cyclin B1 and PKG in granulosa cells. No significant difference in PCNA expression was noted. The present data obtained from in vitro study indicate that sexual maturation in females is influenced by puberty-related changes in porcine ovarian signaling substances: increase in Bcl-2, Bax, PKA, CREB-1, TK and decrease in ERK1,2 related MAPK, cyclin B1 and PKG. It suggests that these signaling molecules could be potential regulators of porcine sexual maturation.
Collapse
Affiliation(s)
- A Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic.
| | | | | | | |
Collapse
|
14
|
Sirotkin AV, Chrenek P, Kolesarová A, Parillo F, Zerani M, Boiti C. Novel regulators of rabbit reproductive functions. Anim Reprod Sci 2014; 148:188-96. [DOI: 10.1016/j.anireprosci.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 05/20/2014] [Accepted: 06/01/2014] [Indexed: 11/26/2022]
|
15
|
Sirotkin AV, Bauer M. Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones. Cell Stress Chaperones 2011; 16:379-87. [PMID: 21188661 PMCID: PMC3118823 DOI: 10.1007/s12192-010-0252-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/30/2022] Open
Abstract
The present studies aimed to understand the interrelationships between stress, hormones and heat shock proteins (HSPs) in the ovary. We examined (1) whether HSP70.2, HSP72 and HSP105/110 can be produced and accumulated in porcine ovarian tissue, (2) whether these HSPs could be indicators of stress, i.e. whether two kinds of stress (high temperatures and malnutrition/serum deprivation) can affect them, and (3) whether some hormonal regulators of ovarian functions (insulin-like growth factor (IGF)-I, leptin and follicle-stimulating hormone (FSH)) can affect these HSPs and response of ovaries to HSP-related stress. We analysed the expression of HSP70.2, HSP72 and HSP105/110 mRNA (by using real-time reverse transcriptase polymerase chain reaction) in porcine ovarian granulosa cells, as well as the accumulation of HSP70 protein (by using sodium dodecyl sulphate polyacrylamide gel electrophoresis-Western) in either whole ovarian follicles and granulose cells cultured at normal (37.5°C) or high (41.5°C) temperature, with and without serum and with and without IGF-I, leptin and FSH. Expression of mRNA for HSP70.2, HSP72 and HSP105/110 in ovarian granulosa cells and accumulation of HSP70 protein in whole ovarian follicles and granulosa cells were demonstrated. In all the groups, addition of either IGF-I, leptin and FSH reduced the expression of HSP70.2, HSP72 and HSP105/110 mRNA. Both high temperature, serum deprivation and their combination resulted in increase in mRNAs for all three analysed HSPs. Additions of either IGF-I, leptin and FSH prevented the stimulatory effect of both high temperature and serum deprivation on the transcription of HSP70.2, HSP72 and HSP105/110. In contrast, high temperature reduced accumulation of peptide HSP70 in both ovarian follicles and granulosa cell. Serum deprivation promoted accumulation of HSP70 in granulosa cells, but not in ovarian follicles. Addition of IGF-I, leptin and FSH was able to alter accumulation of HSP70 in both follicles and granulosa cells. The present observations suggest (1) that HSPs can be synthesised in ovarian follicular granulosa cells; (2) that hormones (IGF-I, leptin and FSH) can inhibit, whilst stressors (both high temperature and malnutrition/serum deprivation) can stimulate transcription of HSP70.2, HSP72 and HSP105/110 genes, whilst heat stress, but not malnutrition, can promote depletion of HSP70 in ovarian cells, and (3) that hormones (IGF-I, leptin and FSH) can prevent stress-related changes in HSPs. The application of HSPs as indicators and mediators of stress and hormones on ovarian functions, as well as use of hormones and HSPs as anti-stressor molecules, are discussed.
Collapse
|
16
|
Derar DR, Taya K, Watanabe G, Miyake YI. Characterization of Immunoreactive IGF-I Pattern During the Peri-ovulatory Period of the Oestrous Cycle of Thoroughbred Mares and Its Relation to Other Hormones. Reprod Domest Anim 2011; 47:151-6. [DOI: 10.1111/j.1439-0531.2011.01819.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Sirotkin AV, Makarevich AV, Grosmann R. Protein kinases and ovarian functions. J Cell Physiol 2010; 226:37-45. [DOI: 10.1002/jcp.22364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Sirotkin AV. Effect of two types of stress (heat shock/high temperature and malnutrition/serum deprivation) on porcine ovarian cell functions and their response to hormones. ACTA ACUST UNITED AC 2010; 213:2125-30. [PMID: 20511527 DOI: 10.1242/jeb.040626] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to understand the interrelationships between stress, hormones and basic ovarian functions in the ovary. For this purpose, we compared the expression of markers of proliferation (PCNA, cyclin B1), of apoptosis (Bax, caspase-3) and secretory activity (release of progesterone, P(4), and insulin-like growth factor, IGF-I) in whole ovarian follicles and granulosa cells cultured in conditions of normal temperature (37.5 degrees C) and feeding (with serum), high temperature (41.5 degrees C, with serum) and malnutrition (37.5 degrees C, without serum), with and without hormones [IGF-I, leptin and follicle-stimulating hormone (FSH)]. The expression of proliferation and apoptosis markers was evaluated by SDS PAGE-western blotting whereas radioimmunoassay (RIA) measured the release of hormones. High temperature dramatically induced a reduction in both proliferation and apoptosis markers in both ovarian follicles and granulosa cells and induced a significant increase in P(4) and IGF-I release by ovarian granulosa cells but not in P(4) secretion by ovarian follicles. Serum deprivation increased accumulation of cyclin B1 but not other markers of proliferation (PCNA) and apoptosis (Bax, caspase-3) or P(4) release in ovarian follicles. On the contrary, it inhibited the expression of apoptotic marker (Bax), release of both P(4) and IGF-I but it did not affect proliferation marker (PCNA) in granulosa cells. Adding IGF-I, leptin and FSH affected proliferation, apoptosis and secretory activity of ovarian cell functions but also prevented an inhibitory effect of high temperature on the expression of Bax and PCNA and an inhibitory action of serum deprivation on PCNA in ovarian follicles. Furthermore, treatment with these hormones prevented an inhibitory action of thermal stress on Bax, PCNA, P(4) and IGF-I in ovarian granulosa cells. The present observations (1) confirm the involvement of hormones (IGF-I, leptin and FSH) in the control of proliferation, apoptosis and secretory activity of ovarian cells, (2) demonstrate for the first time that heat stress/increased temperature can induce a reduction in ovarian cell proliferation and apoptosis and an oversecretion of ovarian hormones, (3) show that malnutrition/serum deprivation can reduce both apoptosis and secretory activity of ovarian cells, (4) demonstrate the differences in the response of granulosa and other ovarian follicular cells to stresses, and (5) are the first demonstration that hormones (IGF-I, leptin and FSH) could be used for preventing the effect of stresses on ovarian cell functions.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Animal Production Research Centre, Hlohovecká 2, 951 41 Luzianky near Nitra, Slovakia.
| |
Collapse
|
19
|
Phosphodiesterase inhibitor 3-isobutyl-methyl-xanthine affects rabbit ovaries and oviduct. Eur J Pharmacol 2010; 643:145-51. [DOI: 10.1016/j.ejphar.2010.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 05/18/2010] [Accepted: 06/07/2010] [Indexed: 11/19/2022]
|
20
|
Sirotkin A, Chrenek P, Pivko J, Balazi A, Makarevich A. Phosphodiesterase Inhibitor 3-Isobutyl-1-Methyl-Xanthine Affects Ovarian Morphology and Stimulates Reproduction in Rabbits. EUR J INFLAMM 2010. [DOI: 10.1177/1721727x1000800306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of our study is to examine the influence of administration of 3-isobutyl-l-methyl-xanthine (IBMX), inhibitor of cAMP and cGMP phosphodiesterases on ovarian functions (folliculogenesis, atresia and luteogenesis), as well as on some reproductive parameters in rabbits whose ovarian cycle and ovulation was induced by gonadotropins. Ovarian cycle and ovulation of control rabbits were induced by PMSG followed by hCG administration. Experimental animals received 20IU/kg PMSG and 35IU/kg hCG together with IBMX (at 5, 25 or 50 μg/animal). After ovulation and mating, the animals were sacrificed. Histological slides of ovaries were prepared, and the presence of follicles and different stages of luteinisation and atresia were evaluated by light microscopy. The pronuclear stage eggs were flushed out from the oviducts and cultured up to blastocyst cell stage. Numbers of ovarian Corpora lutea, ovulated oocytes and oocyte-derived embryos reaching blastocyst stage were determined. Administration of IBMX was able to increase the proportion of luteinised follicles. Furthermore, IBMX treatment promoted occurrence of atresia in the remaining follicles after the gonadotropin treatment. Finally, IBMX increased the number of Corpora lutea, number of harvested zygotes and embryos at blastocyst stage derived from these zygotes after culture. These data demonstrate that IBMX can enhance the stimulatory effect of gonadotropins on the rabbit ovarian follicle luteinisation, atresia, ovulation, zygote and embryo yield and development. Furthermore, they confirm the involvement of cyclic nucleotide-dependent intracellular mechanisms in the control of rabbit reproductive functions and potential practical usefulness of IBMX in improvement of farm animal reproduction and fertility.
Collapse
Affiliation(s)
- A.V. Sirotkin
- Institute of Animal Genetics & Reproduction, Animal Production Research Centre Nitra, Lužianky
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra
| | - P. Chrenek
- Institute of Animal Genetics & Reproduction, Animal Production Research Centre Nitra, Lužianky
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovakia
| | - J. Pivko
- Institute of Animal Genetics & Reproduction, Animal Production Research Centre Nitra, Lužianky
| | - A. Balazi
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovakia
| | - A.V. Makarevich
- Institute of Animal Genetics & Reproduction, Animal Production Research Centre Nitra, Lužianky
| |
Collapse
|
21
|
Chrenek P, Grossmann R, Sirotkin AV. The cAMP analogue, dbcAMP affects release of steroid hormones by cultured rabbit ovarian cells and their response to FSH, IGF-I and ghrelin. Eur J Pharmacol 2010; 640:202-5. [PMID: 20417631 DOI: 10.1016/j.ejphar.2010.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/01/2010] [Accepted: 04/12/2010] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to examine possible involvement of cAMP-dependent intracellular mechanisms in control of ovarian cell steroidogenesis and its response to hormonal regulators. For this purpose, we examined the influence of administration of dbcAMP, a cAMP analogue (50 microg/animal) in vivo, on release of progesterone, testosterone and estradiol by isolated ovarian fragments, as well their response to hormonal regulators of ovarian steroidogenesis-FSH, IGF-I and ghrelin (all added at doses of 100 ng/ml). It was observed, that administration of dbcAMP resulted reduction in progesterone and testosterone, but not of estradiol release by isolated ovarian fragments. In ovarian tissue isolated from control animals, additions of hormones were able to reduce release of progesterone (FSH, IGF-I and ghrelin) and increase release of testosterone (ghrelin) but did not change estradiol output. Previous administration of dbcAMP modified action of exogenous hormones: it inverted inhibitory action of FSH, IGF-I and ghrelin on progesterone release to stimulatory action and induced stimulatory action of IGF-I on testosterone release and stimulatory effect of FSH on estradiol output. The present observations confirm involvement of peptide hormones FSH, IGF-I and ghrelin in the control of rabbit ovarian steroid hormones release and demonstrate the involvement of cAMP-dependent intracellular mechanisms in down-regulation of rabbit ovarian steroidogenesis and in modification, but not in mediating effect of FSH, IGF-I and ghrelin on ovarian steroid hormones release.
Collapse
Affiliation(s)
- Peter Chrenek
- Institute of Animal Genetics and Reproduction, Animal Production Research Centre Nitra, 951 41 Luzianky near Nitra, Slovak Republic.
| | | | | |
Collapse
|
22
|
Li CJ, Elsasser TH, Kahl S. AKT/eNOS signaling module functions as a potential feedback loop in the growth hormone signaling pathway. J Mol Signal 2009; 4:1. [PMID: 19320971 PMCID: PMC2666727 DOI: 10.1186/1750-2187-4-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 03/25/2009] [Indexed: 02/02/2023] Open
Abstract
Background While evidence suggested that the activity states of Protein kinase B (AKT/PKB) and endothelial nitric oxide synthase (eNOS) play an important role in the progression of the Growth Hormone (GH) signal cascade, the implication of the activation of AKT/PKB and eNOS in terms of their function in the signaling pathway was not clear. Results Using a specific AKT/PKB inhibitor and a functional proteomic approach, we were able to detect the activities of multiple signal transduction pathway elements, the downstream targets of the AKT/PKB pathway and the modification of those responses by treatment with GH. Inhibiting the AKT/PKB activity reduced or eliminated the activation (phosphorylation) of eNOS. We demonstrated that the progression of the GH signal cascade is influenced by the activity status of AKT and eNOS, wherein the suppression of AKT activity appears to augment the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2) and to antagonize the deactivation (phosphorylation) of cyclin-dependent kinase 2 (CDC2/Cdk1) induced by GH. Phosphorylation of GSK3a/b (glycogen synthase kinase 3), the downstream target of AKT/PKB, was inhibited by the AKT/PKB inhibitor. GH did not increase phosphorylation of ribosomal S6 kinase 1 (RSK1) in normal cells but increases phosphorylation of RSK1 in cells pre-treated with the AKT and eNOS inhibitors. Conclusion The MAP kinase and CDC2 kinase-dependent intracellular mechanisms are involved in or are the targets of the GH's action processes, and these activities are probably directly or indirectly modulated by AKT/PKB pathways. We propose that the AKT/PKB-eNOS module likely functions as a negative feedback mediator of GH actions.
Collapse
Affiliation(s)
- Cong-Jun Li
- Bovine Functional Genomics laboratory, Animal and Natural Resources Institute, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Ave,, BARC EAST, Building 200, Room 209, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
23
|
Sirotkin AV, Ovcharenko D, Benčo A, Mlynček M. Protein kinases controlling PCNA and p53 expression in human ovarian cells. Funct Integr Genomics 2008; 9:185-95. [DOI: 10.1007/s10142-008-0102-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
|
24
|
Sen A, Lv L, Bello N, Ireland JJ, Smith GW. Cocaine- and amphetamine-regulated transcript accelerates termination of follicle-stimulating hormone-induced extracellularly regulated kinase 1/2 and Akt activation by regulating the expression and degradation of specific mitogen-activated protein kinase phosphatases in bovine granulosa cells. Mol Endocrinol 2008; 22:2655-76. [PMID: 18818282 DOI: 10.1210/me.2008-0077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pleiotropic actions of cocaine- and amphetamine-regulated transcript (CART) are well described in the central nervous system and periphery, but the intracellular mechanisms mediating biological actions of CART are poorly understood. Although CART is not expressed in mouse ovaries, we have previously established CART as a novel intracellular regulator of estradiol production in bovine granulosa cells. We demonstrated that inhibitory actions of CART on estradiol production are mediated through inhibition of FSH-induced cAMP accumulation, Ca(2+) influx, and aromatase mRNA expression via a G(o/i)-dependent pathway. We also reported that FSH-induced estradiol production is dependent on Erk1/2 and Akt signaling, and CART may regulate other signaling proteins downstream of cAMP essential for estradiol production. Here, we demonstrate that CART is a potent inhibitor of FSH-stimulated Erk1/2 and Akt signaling and the mechanisms involved. Transient CART stimulation of bovine granulosa cells shortens the duration of FSH-induced Erk1/2 and Akt signaling whereas a prolonged (24 h) CART treatment blocks Erk1/2 and Akt activation in response to FSH. This CART-induced accelerated termination of Erk1/2 and Akt signaling is mediated both by induced expression and impaired ubiquitin-mediated proteasome degradation of dual specific phosphatase 5 (DUSP5) and protein phosphatase 2A. Results also support existence of a negative feedback loop in which CART via a G(o/i)-MAPK kinase dependent pathway activates Erk1/2, and the latter induces DUSP5 expression. Moreover, small interfering RNA mediated ablation of DUSP5 and/or protein phosphatase 2A prevents the CART-induced early termination of Erk1/2 and Akt signaling. Results provide novel insight into the intracellular mechanism of action of CART in regulation of FSH-induced MAPK signaling.
Collapse
Affiliation(s)
- Aritro Sen
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
25
|
Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D. Mol Cell Biol 2008; 28:2952-70. [PMID: 18299387 DOI: 10.1128/mcb.00248-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins could be involved in PKA-mediated myogenic repression. Initially, in silico analysis revealed several consensus PKA phosphoacceptor sites on MEF2, and subsequent analysis by in vitro kinase assays indicated that PKA directly and efficiently phosphorylates MEF2D. Using mass spectrometric determination of phosphorylated residues, we document that MEF2D serine 121 and serine 190 are targeted by PKA. Transcriptional reporter gene assays to assess MEF2D function revealed that PKA potently represses the transactivation properties of MEF2D. Furthermore, engineered mutation of MEF2D PKA phosphoacceptor sites (serines 121 and 190 to alanine) rendered a PKA-resistant MEF2D protein, which efficiently rescues myogenesis from PKA-mediated repression. Concomitantly, increased intracellular cAMP-mediated PKA activation also resulted in an enhanced nuclear accumulation of histone deacetylase 4 (HDAC4) and a subsequent increase in the MEF2D-HDAC4 repressor complex. Collectively, these data identify MEF2D as a primary target of PKA signaling in myoblasts that leads to inhibition of the skeletal muscle differentiation program.
Collapse
|
26
|
Sirotkin AV, Grossmann R. Effects of ghrelin and its analogues on chicken ovarian granulosa cells. Domest Anim Endocrinol 2008; 34:125-34. [PMID: 17207955 DOI: 10.1016/j.domaniend.2006.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 11/06/2006] [Accepted: 11/29/2006] [Indexed: 11/23/2022]
Abstract
The aim of these in vitro experiments was (1) to examine the effects of ghrelin on the basic functions of ovarian cells (proliferation, apoptosis, secretory activity); (2) to determine the possible involvement of the GHS-R1a receptor and PKA- and MAPK-dependent post-receptor intracellular signalling cascades; (3) to identify the active part of the 28-amino acid molecule responsible for the effects of ghrelin on ovarian cells. We compared the effect of full-length ghrelin 1-28, a synthetic activator of GHS-R1a, GHRP6, and ghrelin molecular fragments 1-18 and 1-5 on cultured chicken ovarian cells. Indices of cell apoptosis (expression of the apoptotic peptide bax and the anti-apoptotic peptide bcl-2), proliferation (expression of proliferation-associated peptide PCNA), and expression of protein kinases (PKA and MAPK) within ovarian granulosa cells were analysed by immunocytochemistry. The secretion of progesterone (P(4)), testosterone (T), estradiol (E(2)) and arginine-vasotocin (AVT) by isolated ovarian follicular fragments was evaluated by RIA/EIA. It was observed that accumulation of bax was increased by ghrelin 1-28, GHRP6 and ghrelin 1-18, but not by ghrelin 1-5. Expression of bcl-2 was suppressed by addition of ghrelin 1-28, GHRP6 and ghrelin 1-5, but promoted by ghrelin 1-18. The occurrence of PCNA was reduced by ghrelin 1-28, GHRP6, ghrelin 1-18 and ghrelin 1-5. An increase in the expression of MAPK/ERK1, 2 was observed after addition of ghrelin 1-28, GHRP6 and ghrelin 1-18, but not ghrelin 1-5. The accumulation of PKA decreased after treatment with ghrelin 1-28 and increased after treatment with GHRP6 and ghrelin 1-18 but not ghrelin 1-5. Secretion of P(4) by ovarian follicular fragments was decreased after addition of ghrelin 1-28 or ghrelin 1-5 but stimulated by GHRP6 and ghrelin 1-18. Testosterone secretion was inhibited by ghrelins 1-28 and 1-18, but not by GHRP6 or ghrelin 1-5. Estradiol secretion was reduced after treatment with ghrelin 1-28 but stimulated by ghrelins 1-18 and 1-5; GHRP6 had no effect. AVT secretion was stimulated by ghrelin 1-28, GHRP6 and ghrelin 1-18, but inhibited by ghrelin 1-5. The comparison of the effects of the four ghrelin analogues on nine parameters of ovarian cells suggest (1) a direct effect of ghrelin on basic ovarian functions-apoptosis, proliferation, steroid and peptide hormone secretion; (2) that the majority of these effects can be mediated through GHS-R1a receptors; (3) an effect of ghrelin on MAPK- and PKA-dependent intracellular mechanisms, which can potentially mediate the action of ghrelin at the post-receptor level; (4) that ghrelin residues 5-18 may be responsible for the major effects of ghrelin on the avian ovary.
Collapse
Affiliation(s)
- A V Sirotkin
- Research Institute of Animal Production, Hlohovská 2, 949 92 Nitra, Slovakia.
| | | |
Collapse
|
27
|
Sirotkin AV, Grossmann R. The role of ghrelin and some intracellular mechanisms in controlling the secretory activity of chicken ovarian cells. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:239-46. [PMID: 17293148 DOI: 10.1016/j.cbpa.2006.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 12/28/2006] [Accepted: 12/30/2006] [Indexed: 10/23/2022]
Abstract
The general aim of these in-vitro experiments was to determine whether ghrelin controls the secretory activity of chicken ovarian cells and whether its action is mediated by TK-, MAPK-, CDK- or PKA-dependent intracellular mechanisms. We postulated that particular protein kinases could be considered as mediators of ghrelin action (a) if they are controlled by ghrelin, and (b) if blockers of these kinases modify the action of ghrelin. In our in-vitro experiments we investigated whether ghrelin altered the accumulation of TK, MAPK, CDK and PKA in chicken ovarian cells and whether ghrelin, with or without blockers of MAPK, CDK and PKA, affected the secretion of progesterone (P4), testosterone (T), estradiol (E2) or arginine-vasotocin (AVT). In the first series of experiments, the influence of a ghrelin 1-18 analogue (1, 10 or 100 ng/mL) was studied on the expression of TK, MAPK and PKA in cultured chicken ovarian granulosa cells. The percentage of cells containing TK/phosphotyrosine MAPK/ERK1, 2 and PKA was determined using immunocytochemistry. Ghrelin increased the expression of both TK and MAPK. The low concentration of ghrelin (1 ng/mL) increased the accumulation of PKA in ovarian cells whilst the high concentration (100 ng/mL) decreased it. The 10 ng/mL concentration had no effect. In the second series of experiments, the effects of the ghrelin analogue combined with an MAPK blocker (PD98059; 100 ng/mL), a CDK blocker (olomoucine; 1 microg/mL), or a PKA blocker (KT5720; 100 ng/mL), were tested for their effects on the secretion of hormones by cultured fragments of chicken ovarian follicular wall. P4, T, E2 and AVT secretions were measured using RIA and EIA. Ghrelin increased T and decreased E2, but did not affect P4 or AVT secretion. The PKA blocker promoted P4 secretion and suppressed E2 and AVT, but did not affect T secretion. It prevented or even reversed the effect of ghrelin on T and E2, but did not modify its effect on AVT secretion. The MAPK blocker enhanced P4 and T and reduced AVT, but did not affect E2 secretion. It was able to prevent or reverse the effect of ghrelin on T and E, and it induced a stimulatory effect of ghrelin on AVT secretion. The CDK blocker reduced the secretion of AVT, but had no effect on steroid hormone secretion. It induced the stimulatory influence of ghrelin on the secretion of P4 and AVT, but did not modify the effect of ghrelin on other hormones. These observations clearly demonstrate that ghrelin is a potent regulator of the secretory activity of ovarian cells and of TK, MAPK and PKA. Furthermore, they suggest that MAPK-, CDK- and PKA-dependent intracellular mechanisms are involved in the control of ovarian secretion and that they mediate the effects of ghrelin on these processes.
Collapse
Affiliation(s)
- A V Sirotkin
- Research Institute of Animal Production, Hlohovská 2, 949 92 Nitra, Slovakia.
| | | |
Collapse
|
28
|
MacLean JA, Rao MK, Doyle KMH, Richards JS, Wilkinson MF. Regulation of the Rhox5 Homeobox Gene in Primary Granulosa Cells: Preovulatory Expression and Dependence on SP1/SP3 and GABP1. Biol Reprod 2005; 73:1126-34. [PMID: 16093360 DOI: 10.1095/biolreprod.105.042747] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homeobox genes encode transcription factors that regulate embryonic development and postnatal events. Rhox5 (previously called Pem), the founding member of a homeobox gene cluster that we recently identified on the X chromosome, is selectively expressed in granulosa cells in the ovary and other somatic-cell types in other reproductive organs. In this report, we investigate its regulation in granulosa cells in the rat ovary. We found that Rhox5 expression in the ovary is governed by the Rhox5 distal promoter and is expressed at least as early as Day 5 postpartum. Rhox5 mRNA levels are regulated during the ovarian cycle, peaking before ovulation. Deletion analysis revealed a 25-nt element essential for distal promoter transcription in primary granulosa cells. This distal promoter element contains two ETS and one SP1 transcription-factor family binding sites that mutagenesis analysis indicated were essential for high-level transcription. This element was both necessary and sufficient for transcription, because it activated transcription when placed upstream of a heterologous minimal promoter. Cold competition and electrophoretic mobility shift assay studies demonstrated that SP1, SP3, and the ETS family transcription factor GABP bound this element. Dominant-negative forms of GABP and SP3 repressed distal promoter expression in primary rat granulosa, showing that these factors are crucial for Rhox5 expression. Cotransfection of dominant-negative mutants indicated that Rhox5 expression in granulosa cells is regulated by the c-Jun N-terminal protein kinase (JNK, MAPK8) and RAS pathways, which are known to be upstream of ETS family transcription factors. The discovery that Rhox5 expression in granulosa cells is regulated by MAPK pathways and ETS and SP1 family members provides an opportunity to understand how these regulatory pathways and factors collaborate to regulate gene expression during the ovarian cycle.
Collapse
Affiliation(s)
- James A MacLean
- Department of Immunology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Sirotkin AV, Grossmann R. The role of protein kinase A and cyclin-dependent (CDC2) kinase in the control of basal and IGF-II-induced proliferation and secretory activity of chicken ovarian cells. Anim Reprod Sci 2005; 92:169-81. [PMID: 16029936 DOI: 10.1016/j.anireprosci.2005.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/19/2022]
Abstract
The aim of these experiments was to study the role of protein kinase A (PKA), cyclin-dependent kinase 2 (CDC2) and insulin-like growth factor II (IGF-II) in the control of ovarian function in domestic fowl, as well as the role of PKA and CDC2 in mediating the effects of IGF-II on the ovary. For this purpose, we studied the influence of an inhibitor of PKA (KT5720; 50 ng/ml), a CDC2 blocker (olomoucine; 1 microg/ml), IGF-II (0, 1, 10 or 100 ng/ml) and their combinations on cultured fragments of chicken ovarian follicular wall. Accumulation of PKA and CDC2 and secretion of progesterone (P4), testosterone (T), estradiol (E2) and arginine-vasotocin (AVT) were evaluated by using SDS-PAGE-Western blotting and RIA/EIA. IGF-II addition to culture medium stimulated T, E2 and AVT secretion and inhibited P4 secretion. These changes were associated with an increase in PKA and a decrease in CDC2 accumulation. The PKA blocker KT5720, when given alone, increased accumulation of PKA and secretion of T and E2, but not AVT and inhibited P4 secretion. The PKA blocker also prevented and even reversed the effects of IGF-II on PKA and steroid hormones secretion, but enhanced the action of IGF-II on AVT. The inhibitor of CDC2, olomoucine, when given alone, suppressed the expression of CDC2 and the secretion of P4 and AVT (but not T and E2). When given together with IGF-II, it augmented IGF-II-induced suppression of CDC2 and reversed the effects of IGF-II on P4 (but not on T, E2 or AVT). These observations demonstrate the involvement of PKA, CDC2 and IGF-II in regulating the secretory activity of avian ovarian cells. Our data also suggest the involvement of PKA in the mediation of IGF-II effects on P4, T, E2 and AVT secretion. CDC2 can mediate the effects of IGF-II on ovarian P4 secretion but not on other hormones.
Collapse
Affiliation(s)
- A V Sirotkin
- Research Institute of Animal Production, Hlohovská 2, 949 92 Nitra, Slovakia.
| | | |
Collapse
|
30
|
Makarevich AV, Sirotkin AV, Genieser HG. Action of protein kinase A regulators on secretory activity of porcine granulosa cells in vitro. Anim Reprod Sci 2004; 81:125-36. [PMID: 14749054 DOI: 10.1016/j.anireprosci.2003.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To understand the role of protein kinase A (PKA) in the control of ovarian secretory activity, we examined effects of stimulators (db-cAMP, 6-Phe-cAMP, Sp-cDBIMPS) or inhibitors (Rp-cAMPS, KT5720) of PKA on the release of insulin-like growth factor I (IGF-I), progesterone (P) and estradiol (E) by cultured porcine granulosa cells using RIA. All the PKA stimulators db-cAMP (10-10000 ng/ml), 6-Phe-cAMP (10-10000 pmol) or Sp-cDBIMPS (1-10000 pmol) increased IGF-I almost at all doses tested. P release was stimulated by db-cAMP (at doses 100-10000 ng/ml), Sp-cDBIMPS (at 10-1000 pmol) and 6-Phe-cAMP (at 1000 and 10000 pmol). The release of E was stimulated by Sp-cDBIMPS (1-100 pmol), db-cAMP (1000 and 10000 ng/ml) and 6-Phe-cAMP (1000 and 10000 pmol). Since Sp-cDBIMPS, which activates preferentially PKA isozyme type II, showed stimulating effects at doses lower than those of 6-Phe-cAMP, a preferential activator of both, type I and II of PKA, it is assumed that PKA type II is more important for the control of ovarian steroidogenesis than type I. A PKA inhibitor Rp-cAMPS inhibited release of IGF-I (10000 pmol), P (1000 pmol) and E (1000 and 10000 pmol), whereas Rp-cAMPS, at doses higher than 1000 pmol, tended to reverse this inhibitory effect. Other PKA inhibitor KT5720 suppressed P (at 10-1000 ng/ml), but not IGF-I or E release.The stimulation of growth factor and sex steroid release by PKA activators, and suppression of the secretion some of these substances by PKA inhibitors may indicate the implication of PKA (probably site B) in up- and down-regulation of ovarian IGF-I and steroid release.
Collapse
Affiliation(s)
- A V Makarevich
- Department of Genetics and Animal Reproduction, Research Institute of Animal Production, Hlohovska 2, SK-94992 Nitra, Slovak Republic.
| | | | | |
Collapse
|
31
|
Sirotkin AV, Grossmann R. Role of tyrosine kinase- and MAP kinase-dependent intracellular mechanisms in control of ovarian functions in the domestic fowl (Gallus domesticus) and in mediating effects of IGF-II. J Reprod Dev 2004; 49:99-106. [PMID: 14967954 DOI: 10.1262/jrd.49.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of our study was to examine the involvement of IGF-II, tyrosine kinases (TK)- and MAP kinases (MAPK)-dependent intracellular mechanisms in the control of ovarian functions in the domestic fowl, as well as the role of these kinases in mediating the IGF-II effect on this process. For this purpose, we studied the influence of IGF-II (0,1,10 or 100 ng/ml), inhibitors of TK (AG1024, 1 microg/ml), MAPK (PD98059, 5 microg/ml), and their combinations, on proliferation (expression of proliferation-related substances PCNA), apoptosis (apoptosis-associated protein bax), TK (phosphotyrosine), MAPK (ERK1,2), cyclin-dependent protein kinase 2 (p34/cdc2) and transcription factor CREB-1, as well as on the release of progesterone (P), testosterone (T), estradiol (E) and arginine-vasotocin (AVT) in cultured fragments of ovarian follicles. The presence of substances within ovarian cells was evaluated by SDS PAGE-Western immunoblotting, and release of the substances was measured by using RIA/EIA of ovarian fragments-conditioned medium. It was found, that the addition of IGF-II to the culture medium (1-100 ng/ml) substantially increased expression of PCNA, MAPK and CREB, and decreased the level of p34/cdc2 and bax, but not TK. Furthermore, exogenous IGF-II inhibited P (at a concentration of 100 ng IGF-II/ml medium), and stimulated T (1,10,100 ng/ml), E (10,100 ng/ml) and AVT (1 ng/ml) release by cultured ovarian cells. Inhibitor of TK, when given alone, increased MAPK and E, inhibited p34/cdc2 and AVT, and did not affect accumulation of TK, P or T. Furthermore, TK blocker prevented effects of IGF-II on T, E and AVT, but not on TK, MAPK, p34/cdc2 and P. MAPK blocker augmented PCNA, MAPK, T and AVT expression, but not P or E, and suppressed expression of p34/cdc2 and bax. Furthermore, MAPK inhibitor, given together with IGF-II, prevented or even reversed the action of IGF-II on PCNA, P, T and AVT, but not on MAPK, p34/cdc2, CREB, bax or E. These observations suggest the involvement of IGF-II, TK and MAPK in the control of proliferation, apoptosis, steroid and peptide hormones by avian ovarian cells, as well as of the involvement of these kinases in mediation of some IGF-II effects on ovarian cells.
Collapse
|
32
|
Sirotkin AV, Florkovicova I, Makarevich AV, Schaeffer HJ, Kotwica J, Marnet PG, Sanislo P. Oxytocin mediates some effects of insulin-like growth factor-I on porcine ovarian follicles. J Reprod Dev 2004; 49:141-9. [PMID: 14967939 DOI: 10.1262/jrd.49.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aims of the present study were (1) to investigate the influence of insulin-like growth factor-I (IGF-I) on follicular size, on the secretion of oxytocin (OT), progesterone (P), estradiol (E), IGF binding protein-3 (IGFBP-3), inhibin A, inhibin B and cAMP and on the expression of proliferation-associated peptide PCNA, ERK-related mitogen activated protein kinase (MAPK/ERK1, 2) and protein kinase A (PKA) in cultured porcine ovarian follicles; (2) to examine the effects of OT on IGF-I and on these functions; and (3) to determine whether the effects of IGF-I can be mediated by OT. To define the involvement of OT in mediating IGF-I action, we compared responses of porcine ovarian follicles to IGF-I and OT and examined whether blockade of endogenous OT by specific antiserum can affect IGF-I action. It was observed that IGF-I (1, 10 or 100 ng/ml) was able to prevent a decrease in the size of ovarian follicles during culture and caused an increase in the diameter of some follicles. It also stimulated the secretion of OT, P, IGFBP-3, inhibin A and cAMP, decreased the secretion of E and inhibin B (RIA/EIA/ELISA), and induced the expression of PCNA, PKA, MAPK/ERK1, but not MAPK/ERK2 (Western blotting). Like IGF-1, OT (100 ng/ml) prevented decrease in follicular size and increased the diameter of some follicles. It also stimulated the secretion of P and IGF-I, but not E. Antiserum against OT (1%), when given alone, did not affect the reduction of follicular size but slightly increased the percentage of follicles increasing their diameter during culture. The antiserum also inhibited secretion of OT and cAMP but not the secretion of P, E, IGFBP-3 or the expression of PKA, MAPK/ERK1 or 2. When given together with IGF-I, the antiserum prevented the stimulatory action of IGF-I on the proportion of enlarged follicles and on OT, IGFBP-3 and MAPK/ERK1. It augmented the effect of IGF-I on P, but not the effect on E, cAMP, PKA or MAPK/ERK2. These observations demonstrate the involvement of IGF-I and OT in the control of ovarian follicular size and follicular cell proliferation, progestagen, estrogen, IGFBP-3, inhibin A and B secretion and in cAMP/PKA- and MAPK/ERK1-dependent intracellular mechanisms. Furthermore, the reciprocal stimulation of IGF-I and OT and the similarity of some their effects, together with the prevention or augmentation of some IGF-I effects after OT blockade, suggest that IGF-I action can be mediated by OT.
Collapse
|
33
|
Rybczynski R, Bell SC, Gilbert LI. Activation of an extracellular signal-regulated kinase (ERK) by the insect prothoracicotropic hormone. Mol Cell Endocrinol 2001; 184:1-11. [PMID: 11694336 DOI: 10.1016/s0303-7207(01)00664-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ecdysteroid hormones are crucial in controlling the growth, molting and metamorphosis of insects. The predominant source of ecdysteroids in pre-adult insects is the prothoracic gland, which is under the acute control of the neuropeptide hormone prothoracicotropic hormone (PTTH). Previous studies using the tobacco hornworm, Manduca sexta, have shown that PTTH stimulates ecdysteroid synthesis via a series of events, including the activation of protein kinase A and the 70 kDa S6 kinase (p70(S6k)). In this study, PTTH was shown to stimulate also mitogen-activated protein kinase (MAPK) phosphorylation and activity in the Manduca prothoracic gland. The MAPK involved appears to be an extracellular signal-regulated kinase (ERK) homologue. The ERK phosphorylation inhibitors PD 98059 and UO 126 blocked basal and PTTH-stimulated ERK phosphorylation and ecdysteroid synthesis. PTTH-stimulated ERK activity may be important for both rapid regulation of ecdysteroid synthesis and for longer-term changes in the size and function of prothoracic gland cells.
Collapse
Affiliation(s)
- R Rybczynski
- Department of Biology, Coker Hall CB# 3280, University of North Carolina at Chapel Hill, 27599-3280, USA.
| | | | | |
Collapse
|