1
|
Poggio F, Brofiga M, Callegari F, Tedesco M, Massobrio P. Developmental conditions and culture medium influence the neuromodulated response of in vitro cortical networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083479 DOI: 10.1109/embc40787.2023.10340933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Goal of this work is to show how the developmental conditions of in vitro neuronal networks influence the effect of drug delivery. The proposed experimental neuronal model consists of dissociated cortical neurons plated to Micro-Electrode Arrays (MEAs) and grown according to different conditions (i.e., by varying both the adopted culture medium and the number of days needed to let the network grow before performing the chemical modulation). We delivered rising amount of bicuculline (BIC), a competitive antagonist of GABAA receptors, and we computed the firing rate dose-response curve for each culture. We found that networks matured in BrainPhys for 18 days in vitro exhibited a decreasing firing trend as a function of the BIC concentration, quantified by an average IC50 (i.e., half maximal inhibitory concentration) of 4.64 ± 4.02 µM. On the other hand, both cultures grown in the same medium for 11 days, and ones matured in Neurobasal for 18 days displayed an increasing firing rate when rising amounts of BIC were delivered, characterized by average EC50 values (i.e., half maximal excitatory concentration) of 0.24 ± 0.05 µM and 0.59 ± 0.46 µM, respectively.Clinical Relevance- This research proves the relevance of the experimental factors that can influence the network development as key variables when developing a neuronal model to conduct drug delivery in vitro, simulating the in vivo environment. Our findings suggest that not considering the consequences of the chosen growing conditions when performing in vitro pharmacological studies could lead to incomplete predictions of the chemically induced alterations.
Collapse
|
2
|
Brofiga M, Poggio F, Callegari F, Tedesco M, Massobrio P. Modularity and neuronal heterogeneity: Two properties that influence in vitro neuropharmacological experiments. Front Cell Neurosci 2023; 17:1147381. [PMID: 37020847 PMCID: PMC10067731 DOI: 10.3389/fncel.2023.1147381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction The goal of this work is to prove the relevance of the experimental model (in vitro neuronal networks in this study) when drug-delivery testing is performed. Methods We used dissociated cortical and hippocampal neurons coupled to Micro-Electrode Arrays (MEAs) arranged in different configurations characterized by modularity (i.e., the presence of interconnected sub-networks) and heterogeneity (i.e., the co-existence of neurons coming from brain districts). We delivered increasing concentrations of bicuculline (BIC), a neuromodulator acting on the GABAergic system, and we extracted the IC50 values (i.e., the effective concentration yielding a reduction in the response by 50%) of the mean firing rate for each configuration. Results We found significant lower values of the IC50 computed for modular cortical-hippocampal ensembles than isolated cortical or hippocampal ones. Discussion Although tested with a specific neuromodulator, this work aims at proving the relevance of ad hoc experimental models to perform neuropharmacological experiments to avoid errors of overestimation/underestimation leading to biased information in the characterization of the effects of a drug on neuronal networks.
Collapse
Affiliation(s)
- Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- ScreenNeuroPharm S.r.l., Sanremo, Italy
| | - Fabio Poggio
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Francesca Callegari
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | | | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- National Institute for Nuclear Physics (INFN), Genova, Italy
- MNESYS Extended Partnership Neuroscience and Neuropharmacology, Genova, Italy
- *Correspondence: Paolo Massobrio,
| |
Collapse
|
3
|
Kersting L, Kuhn L, Anokhin M, Schuster F, Häberli C, Sambyal S, Sampath Kumar HM, Keiser J, Alabugin I, Tsogoeva SB. Visible Light‐driven Metal‐free C–H Functionalization: Access to New Bioactive Tetrahydroisoquinoline‐Butenolide Hybrids via Domino Amine Oxidation/Vinylogous Mannich Reaction. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lena Kersting
- Friedrich-Alexander University Erlangen-Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Leah Kuhn
- Florida State University Department of Chemistry and Biochemistry UNITED STATES
| | - Maksim Anokhin
- Friedrich-Alexander University Erlangen-Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Florian Schuster
- Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Cécile Häberli
- University of Basel: Universitat Basel Swiss Tropical and Public Health Institute SWITZERLAND
| | - Shainy Sambyal
- IICT CSIR: Indian Institute of Chemical Technology Organic Synthesis and Process Chemistry Divison INDIA
| | - Halmuthur M. Sampath Kumar
- IICT CSIR: Indian Institute of Chemical Technology Organic Synthesis and Process Chemistry Division INDIA
| | - Jennifer Keiser
- University of Basel: Universitat Basel Swiss Tropical and Public Health Institute SWAZILAND
| | - Igor Alabugin
- Florida State University Department of Chemistry and Biochemistry UNITED STATES
| | - Svetlana B. Tsogoeva
- Institut für Organische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg Department Chemie und Pharmazie Henkestrasse 42 91054 Erlangen GERMANY
| |
Collapse
|
4
|
Kudryavtsev DS, Shelukhina IV, Son LV, Ojomoko LO, Kryukova EV, Lyukmanova EN, Zhmak MN, Dolgikh DA, Ivanov IA, Kasheverov IE, Starkov VG, Ramerstorfer J, Sieghart W, Tsetlin VI, Utkin YN. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J Biol Chem 2015; 290:22747-22758. [PMID: 26221036 PMCID: PMC4566246 DOI: 10.1074/jbc.m115.648824] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/20/2015] [Indexed: 12/16/2022] Open
Abstract
Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Irina V Shelukhina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Lina V Son
- the Moscow Institute of Physics and Technology, Institutsky Per. 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Lucy O Ojomoko
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena V Kryukova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ekaterina N Lyukmanova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia, the Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Maxim N Zhmak
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia, the Syneuro OOO, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Dmitry A Dolgikh
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia, the Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Igor A Ivanov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Igor E Kasheverov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Vladislav G Starkov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Joachim Ramerstorfer
- the Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, A-1090 Vienna, Austria
| | - Werner Sieghart
- the Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, A-1090 Vienna, Austria
| | - Victor I Tsetlin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Yuri N Utkin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia,
| |
Collapse
|
5
|
Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. The Vinylogous Aldol and Related Addition Reactions: Ten Years of Progress. Chem Rev 2011; 111:3076-154. [DOI: 10.1021/cr100304n] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni Casiraghi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| | - Lucia Battistini
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| | - Claudio Curti
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| | - Gloria Rassu
- Istituto di Chimica Biomolecolare del CNR, Traversa La Crucca 3, I-07100 Li Punti, Sassari, Italy
| | - Franca Zanardi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| |
Collapse
|
6
|
Soriano MDPC, Shankaraiah N, Santos LS. Short synthesis of noscapine, bicuculline, egenine, capnoidine, and corytensine alkaloids through the addition of 1-siloxy-isobenzofurans to imines. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.01.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Araújo AC, Nicotra F, Costa B, Giagnoni G, Cipolla L. Fructose-fused γ-butyrolactones and lactams, synthesis and biological evaluation as GABA receptor ligands. Carbohydr Res 2008; 343:1840-8. [DOI: 10.1016/j.carres.2008.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/07/2008] [Accepted: 03/09/2008] [Indexed: 01/17/2023]
|
8
|
Cadotte AJ, DeMarse TB. Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays. J Neural Eng 2005; 2:114-22. [PMID: 16317235 DOI: 10.1088/1741-2560/2/4/007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Delivery of pharmacological agents in vitro can often be a difficult, time consuming and costly process. In this paper, we describe an economical method for in vitro delivery using a hydrogel of poly hydroxyethyl methacrylate (PHEMA) that can absorb up to 50% of its weight of any water-solubilized pharmacological agent. This agent will then passively diffuse into surrounding media upon application in vitro. An in vitro test of PHEMA as a drug delivery device was conducted using dissociated rat-cortical neurons cultured on micro-electrode arrays. These micro-electrode arrays permit the real-time measurement of neural activity at 60 different sites across a network of neurons. Neural activity was compared during the application of PHEMA saturated with cell culture media and PHEMA saturated with bicuculline, a widely used pharmacological agent with stereotypical effects on neural activity patterns. Application of PHEMA saturated with bicuculline produced a gradual increase in concentration in vitro. When the minimum effective concentration of bicuculline was reached, which was found to be 0.59 microM using the diffusion properties of PHEMA, it produced the rapid almost periodic synchronized bursting characteristically associated with this agent. In contrast, the application of PHEMA saturated in culture media alone had no effect on neural activity reinforcing its inherent inert properties. Since PHEMA is nontoxic, can be molded into a variety of shapes, quickly manufactured in any laboratory and is inexpensive to produce, the material represents a promising alternative to drug delivery systems on the market today.
Collapse
Affiliation(s)
- Alex J Cadotte
- Department of Biomedical Engineering, University of Florida, 147 Biomedical Engineering Building, Box 116131, Gainesville, FL, USA
| | | |
Collapse
|
9
|
|
10
|
Toffano M, Dudot B, Zaparucha A, Royer J, Sevrin M, George P, Chiaroni A. Asymmetric routes towards polyfunctionalized pyrrolidines: application to the synthesis of alkaloid analogues. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00592-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
El Hadri A, Abouabdellah A, Thomet U, Baur R, Furtmüller R, Sigel E, Sieghart W, Dodd RH. N-Substituted 4-amino-3,3-dipropyl-2(3H)-furanones: new positive allosteric modulators of the GABA(A) receptor sharing electrophysiological properties with the anticonvulsant loreclezole. J Med Chem 2002; 45:2824-31. [PMID: 12061884 DOI: 10.1021/jm011082k] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,4-Addition of benzylamine to 2(5H)-furanone followed by dialkylation of the 3-position with allylbromide gave (+/-)-4-benzyl-3,3-diallyl-2(3H)-furanone (8), which served as the intermediate for the synthesis of various N-substituted 4-amino-3,3-dipropyl-2(3H)-furanones (+/-)-9a-l. The compounds were evaluated for their capacity to potentiate or inhibit GABA-evoked currents in Xenopus laevis oocytes expressing recombinant alpha1beta2gamma2 GABA(A) receptors. The benzyl, ethyl, and allyl carbamates ((R)-9a (100 microM), (+/-)-9b (100 microM), (+/-)-9c (200 microM)) stimulated GABA currents by 279 +/- 47%, 426 +/- 8%. and 765 +/- 61%, respectively, while the phenylcarboxamide (+/-)-9f (200 microM) stimulated currents by 420 +/- 33%. Concentration-response studies showed that compound 9c was approximately twice as potent in stimulating GABA currents as alpha-EMTBL (2), the most potent 3,3-dialkylbutyrolactone known to date. On the other hand, the N-sulfonyl analogues were much less active or even inhibited GABA-evoked currents. In vitro radioligand displacement studies on rat brain membranes showed that these compounds did not bind to the benzodiazepine or GABA recognition sites of the GABA(A) receptor. However, these compounds generally weakly displaced [(35)S]-TBPS (approximately 50% displacement at 100 microM), though potencies did not correlate with GABA current potentiation. Results obtained with alpha1beta1 and mutant alpha1beta2N265S receptors, which compared to alpha1beta2 receptors are both much less sensitive to current stimulation produced by the anticonvulsant loreclezole, suggest that at least some of these aminobutyrolactones, (e.g., 9a, 9c), and interestingly also alpha-EMTBL, share stimulatory properties with loreclezole.
Collapse
Affiliation(s)
- Ahmed El Hadri
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lukevics E, Abele E. Recent Advances in the Synthesis and Transformations of Heterocycles Mediated by Fluoride Ion Activated Organosilicon Compounds. HETEROCYCLES 2002. [DOI: 10.3987/rev-01-545] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Sigel E, Baur R, Furtmueller R, Razet R, Dodd RH, Sieghart W. Differential Cross Talk of ROD Compounds with the Benzodiazepine Binding Site. Mol Pharmacol 2001; 59:1470-7. [PMID: 11353808 DOI: 10.1124/mol.59.6.1470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently identified a novel class of allosteric modulators of GABA(A) receptors, the ROD compounds that are structurally related to bicuculline. Here, the relationship of their site of action relative to other known modulatory sites of this receptor was investigated. Two types of ROD compounds, R1 (ROD164A, ROD185) and R2 (ROD222 and ROD259) could be differentiated. R1 compounds competitively inhibited binding of benzodiazepines in alpha1beta2gamma2 receptors, and their functional effects were partially inhibited by the benzodiazepine antagonist Ro15-1788 in a noncompetitive manner. The enhancement by an R1 compound was not additive with that by diazepam. R2 compounds in contrast failed to inhibit binding of benzodiazepines; the R2 compounds' functional effects were not inhibited by the benzodiazepine antagonist. The enhancement by an R2 compound was additive with that by diazepam. In contrast to benzodiazepines, both R1 and R2 type compounds were still able to enhance alpha1beta2 receptors. ROD164A in alpha1beta2gamma2 receptors was found to be partially antagonized by Ro15-1788 in a noncompetitive way. ROD178B did not affect gamma-aminobutyric acid induced currents, but was able to inhibit both enhancement by R1 and R2 type compounds as well as enhancement by diazepam. R1 and R2 type compounds as well as diazepam enhanced pentobarbital-induced currents in a Ro15-1788-sensitive way. We conclude that R1 type compounds act at the benzodiazepine binding site and additionally at a different R1 site, and that the R1, but not the R2 site is allosterically coupled to the benzodiazepine binding site. ROD178B is a competitive antagonist at the R1 site in that it shows allosteric interaction with the benzodiazepine binding site and displacement of benzodiazepines, and a negative allosteric modulator at the R2 site.
Collapse
Affiliation(s)
- E Sigel
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|