1
|
Salah M, Tahoun M, Rudzitis-Auth J, Stotz L, van Koppen CJ, Laschke MW, Abdelsamie AS, Frotscher M. Potent Dual Inhibitors of Steroid Sulfatase and 17β-Hydroxysteroid Dehydrogenase Type 1 with a Suitable Pharmacokinetic Profile for In Vivo Proof-of-Principle Studies in an Endometriosis Mouse Model. J Med Chem 2023. [PMID: 37369108 DOI: 10.1021/acs.jmedchem.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Treating estrogen-dependent diseases like endometriosis with drugs suppressing local estrogen activation may be superior to existing endocrine therapies. Steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) are key enzymes of local estrogen activation. We describe the rational design, synthesis, and biological profilation of furan-based compounds as a novel class of dual STS/17β-HSD1 inhibitors (DSHIs). In T47D cells, compound 5 showed irreversible inhibition of STS and potent, reversible inhibition of 17β-HSD1. It was selective over 17β-HSD2 and displayed high metabolic stabilities in human and mouse liver S9 fractions. No effect on cell viability was detected up to 31 μM (HEK293) and 23 μM (HepG2), respectively, and there was no activation of the aryl hydrocarbon receptor (AhR) up to 3.16 μM. Single daily application to mice revealed steady-state plasma levels high enough to make this compound eligible for an in vivo proof-of-principle study in a mouse endometriosis model.
Collapse
Affiliation(s)
- Mohamed Salah
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, 66123 Saarbrücken, Germany
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, km 22 Cairo-Alexandria Desert Road, 12577 Cairo, Egypt
| | - Mariam Tahoun
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, 66123 Saarbrücken, Germany
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jeannette Rudzitis-Auth
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Lisa Stotz
- Department of Obstetrics & Gynecology, Saarland University Hospital, 66421 Homburg, Germany
| | | | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622 Cairo, Egypt
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E81, 66123 Saarbrücken, Germany
| | - Martin Frotscher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Mohamed A, Salah M, Tahoun M, Hawner M, Abdelsamie AS, Frotscher M. Dual Targeting of Steroid Sulfatase and 17β-Hydroxysteroid Dehydrogenase Type 1 by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis. J Med Chem 2022; 65:11726-11744. [PMID: 35993890 DOI: 10.1021/acs.jmedchem.2c00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach for the dual inhibition of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β HSD1) by a single drug was explored, starting from in-house 17β HSD1 inhibitors via masking their phenolic OH group with a sulfamate ester. The sulfamates were intentionally designed as drugs for the inhibition of STS and, at the same time, prodrugs for 17β-HSD1 inhibition ("drug-prodrug approach"). The most promising sulfamates 13, 16, 18-20, 22-24, 36, and 37 showed nanomolar IC50 values for STS inhibition in a cellular assay and their corresponding phenols displayed potent 17β-HSD1 inhibition in cell-free and cellular assays, high selectivity over 17β-HSD2, reasonable metabolic stability, and low estrogen receptor α affinity. A close relationship was found between the liberation of the phenolic compound by sulfamate hydrolysis and 17β-HSD1 inactivation. These results showed that the envisaged drug-prodrug concept was successfully implemented. The novel compounds constitute a promising class of therapeutics for the treatment of endometriosis and other estrogen-dependent diseases.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Pharmaceutical Organic Chemistry Department, Assiut University, Assiut 71526, Egypt
| | - Mohamed Salah
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Mariam Tahoun
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Manuel Hawner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622 Cairo 12451, Egypt.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E81, Saarbrücken 66123, Germany
| | - Martin Frotscher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| |
Collapse
|
3
|
Sulfamates in drug design and discovery: Pre-clinical and clinical investigations. Eur J Med Chem 2019; 179:257-271. [PMID: 31255926 DOI: 10.1016/j.ejmech.2019.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
In the present article, we reviewed the sulfamate-containing compounds reported as bioactive molecules. The possible molecular targets of sulfamate derivatives include steroid sulfatase enzyme, carbonic anhydrases, acyl transferase, and others. Sulfamate derivatives can help treat hormone-dependent tumors including breast, prostate, and endometrial cancers, Binge eating disorder, migraine, glaucoma, weight loss, and epilepsy. Sulfamate derivatives can act also as calcium sensing receptor agonists and can aid in osteoporosis. Furthermore, acyl sulfamate derivatives can act as antibacterial agents against Gram-positive bacteria. A recent study revealed a new side effect of topiramate, a sulfamate-containing compound, which is sialolithiasis. The structural and biological characteristics of the reviewed compounds are presented in detail.
Collapse
|
4
|
Shah R, Singh J, Singh D, Jaggi AS, Singh N. Sulfatase inhibitors for recidivist breast cancer treatment: A chemical review. Eur J Med Chem 2016; 114:170-90. [PMID: 26974384 DOI: 10.1016/j.ejmech.2016.02.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Steroid sulfatase (STS) plays a momentous role in the conversion of sulfated steroids, which are biologically inactive, into biologically active un-sulfated steroid hormones, which support the development and growth of a number of hormone-dependent cancers, including breast cancer. Therefore, inhibitors of STS are supposed to be potential drugs for the treatment of breast and other steroid-dependent cancers. The present review concentrates on broad chemical classification of steroid sulfatase inhibitors. The inhibitors reviewed are classified into four main categories: Steroid sulfamate based inhibitors; Steroid non-sulfamate based inhibitors; Non-steroidal sulfamate based inhibitors; Non-steroidal non-sulfamate based inhibitors. A succinct overview of current treatment of cancer, estradiol precursors, STS enzyme and its role in breast cancer is herein described.
Collapse
Affiliation(s)
- Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| |
Collapse
|
5
|
Maltais R, Poirier D. Steroid sulfatase inhibitors: a review covering the promising 2000-2010 decade. Steroids 2011; 76:929-48. [PMID: 21458474 DOI: 10.1016/j.steroids.2011.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/20/2022]
Abstract
The steroid sulfatase (STS) plays a major role in the regulation of steroid hormone concentrations in several human tissues and target organs and therefore, represents an interesting target to regulate estrogen and androgen levels implicated in different diseases. In this review article, the emphasis is put on STS inhibitors reported in the fruitful 2000-2010 decade, which consolidated the first ones that were previously developed (1990-1999). The inhibitors reviewed are divided into four categories according to the fact that they are sulfamoylated or not or that they have a steroid nucleus or not. Other topics such as function, localization, structure and mechanism as well as applications of STS inhibitors are also briefly discussed to complement the information on this crucial steroidogenic enzyme and its inhibitors.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, CHUQ (CHUL)-Research Center (Endocrinology and Genomic Unit) and Laval University (Faculty of Medicine), Québec, Canada
| | | |
Collapse
|
6
|
|
7
|
Winum JY, Scozzafava A, Montero JL, Supuran CT. Therapeutic applications of sulfamates. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.9.1273] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Hanson SR, Best MD, Wong CH. Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility. Angew Chem Int Ed Engl 2004; 43:5736-63. [PMID: 15493058 DOI: 10.1002/anie.200300632] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell-surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone-dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition.
Collapse
Affiliation(s)
- Sarah R Hanson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 357, La Jolla, California 92037, USA
| | | | | |
Collapse
|
9
|
Hanson SR, Best MD, Wong CH. Sulfatasen: Struktur, Mechanismus, biologische Aktivität, Inhibition, Anwendung in Synthesen. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300632] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Winum JY, Scozzafava A, Montero JL, Supuran CT. Sulfamates and their therapeutic potential. Med Res Rev 2004; 25:186-228. [PMID: 15478125 DOI: 10.1002/med.20021] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Starting from the very simple molecule sulfamic acid, O-substituted-, N-substituted-, or di-/tri-substituted sulfamates may be obtained, which show specific biological activities which were or started to be exploited for the design of many types of therapeutic agents. Among them, sulfamate inhibitors of aminoacyl-tRNA synthetases (aaRSs) were recently reported, constituting completely new classes of antibiotics, useful in the fight of drug-resistant infections. Anti-viral agents incorporating sulfamate moieties have also been obtained, with at least two types of such derivatives investigated: the nucleoside/nucleotide human immunodeficiency virus (HIV) reverse transcriptase inhibitors, and the HIV protease inhibitors (PIs). In the increasing armamentarium of anti-cancer drugs, the sulfamates occupy a special position, with at least two important targets evidenced so far: the steroid sulfatases (STSs) and the carbonic anhydrases (CAs). An impressing number of inhibitors of STSs of the sulfamate type have been reported in the last years, with several compounds, such as 667COUMATE among others, progressing to clinical trials for the treatment of hormone-dependent tumors (breast and prostate cancers). This field is rapidly evolving, with many types of new inhibitors being constantly reported and designed in such a way as to increase their anti-tumor properties, and decrease undesired features (for example, estrogenicity, a problem encountered with the first generation such inhibitors, such as EMATE). Among the many isozymes of CAs, at least two, CA IX and CA XII, are highly overexpressed in tumors, being generally absent in the normal tissues. Inhibition of tumor-associated CAs was hypothesized to lead to novel therapeutic approaches for the treatment of cancer. Many sulfamates act as very potent (low nanomolar) CA inhibitors. The X-ray crystal structure of the best-studied isozyme, CA II, with three sulfamates (sulfamic acid, topiramate, and EMATE) has recently been reported, which allowed for a rationale drug design of new inhibitors. Indeed, low nanomolar CA IX inhibitors of the sulfamate type have been reported, although such compounds also act as efficient inhibitors of isozymes CA I and II, which are not associated with tumors. A large number of anti-convulsant sulfamates have been described, with one such compound, topiramate, being widely used clinically as anti-epileptic drug. By taking into consideration a side effect of topiramate, an anti-epileptic drug leading to weight loss in some patients, it has recently been proposed to use this drug and related sulfamates for the treatment of obesity. The rationale of this use is based on the inhibition of the mitochondrial CA isozyme, CA V, involved in lipogenesis. Some sulfamates were also shown to possess potent inhibitory activity against acyl coenzyme A:cholesterol acyltransferase, an enzyme involved in cholesterol metabolism. One such agent, avasimibe, is in advanced clinical trials for the treatment of hyperlipidemia and atherosclerosis. Thus, the sulfamate moiety offers very attractive possibilities for the drug design of various pharmacological agents, which are on one hand due to the relative ease with which such compounds are synthesized, and on the other one, due to the fact that biological activity of most of them is impressive.
Collapse
Affiliation(s)
- Jean-Yves Winum
- Laboratoire de Chimie Biomoléculaire, Université Montpellier II, UMR 5032, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France.
| | | | | | | |
Collapse
|
11
|
Patel CK, Owen CP, Ahmed S. The design, synthesis, and in vitro biochemical evaluation of a series of esters of 4-[(aminosulfonyl)oxy]benzoate as novel and highly potent inhibitors of estrone sulfatase. Biochem Biophys Res Commun 2003; 307:778-81. [PMID: 12878177 DOI: 10.1016/s0006-291x(03)01258-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report the initial results of our study into the use of a potential transition-state (TS) of the reaction catalysed by the enzyme estrone sulfatase (ES) in the design of a series of cyclic esters of 4-[(aminosulfonyl)oxy]benzoate as novel inhibitors of ES. The results of the study show that these compounds are some of the most potent inhibitors known todate, possessing greater inhibitory activity than the three standard compounds: 4-methylcoumarin-7-O-sulfamate (COUMATE); the tricyclic derivative of COUMATE, namely 667-COUMATE (which is in Phase I of clinical trials) and; the steroidal inhibitor estrone-3-O-sulfamate (EMATE).
Collapse
Affiliation(s)
- Chirag K Patel
- Department of Pharmacy, School of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | | | | |
Collapse
|
12
|
Ahmed S, James K, Owen CP. Design, synthesis and biochemical evaluation of AC ring mimics as novel inhibitors of the enzyme estrone sulfatase (ES). J Steroid Biochem Mol Biol 2002; 82:425-35. [PMID: 12589950 DOI: 10.1016/s0960-0760(02)00228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the results of our study into a series of 4'-O-sulfamoyl-4-biphenyl based compounds as novel inhibitors of the enzyme estrone sulfatase (ES). From the results of the molecular modeling design process, it was suggested that these compounds would be able to mimic both the A and C rings of the steroid backbone, and thus possess inhibitory activity against ES. The results of the biochemical evaluation study show that these compounds are indeed good inhibitors, possessing greater inhibitory activity than COUMATE, but weaker inhibitory activity than EMATE or the tricyclic derivative of COUMATE, namely 667-COUMATE. Furthermore, the compounds are observed to be irreversible inhibitors.
Collapse
Affiliation(s)
- Sabbir Ahmed
- School of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | | | | |
Collapse
|
13
|
Ahmed S, James K, Owen CP. Inhibition of estrone sulfatase (ES) by derivatives of 4-[(aminosulfonyl)oxy] benzoic acid. Bioorg Med Chem Lett 2002; 12:2391-4. [PMID: 12161140 DOI: 10.1016/s0960-894x(02)00383-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In our search for potent inhibitors of the enzyme estrone sulfatase (ES), we have undertaken the synthesis and biochemical evaluation of a range of straight chain alkyl esters of 4-[(aminosulfonyl)oxy] benzoic acid. The results of the study show that the synthesised compounds possess greater inhibitory activity when compared to COUMATE, although they were all found to possess lower inhibitory activity with respect to EMATE. Furthermore, the data suggest a strong correlation between logP and IC(50) and therefore adds further support to our previous report where we suggested a link between inhibitory activity and hydrophobicity.
Collapse
Affiliation(s)
- Sabbir Ahmed
- School of Chemical and Pharmaceutical Sciences, Kingston University, Kingston upon Thames, Surrey, UK.
| | | | | |
Collapse
|
14
|
Nussbaumer P, Bilban M, Billich A. 4,4'-Benzophenone-O,O'-disulfamate: a potent inhibitor of steroid sulfatase. Bioorg Med Chem Lett 2002; 12:2093-5. [PMID: 12127511 DOI: 10.1016/s0960-894x(02)00381-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated whether the benzophenone moiety can be used as core element of steroid sulfatase (STS) inhibitors. While 4- and 3-benzophenone-O-sulfamates inhibit STS with IC(50) values between 5 and 7 microM irrespective of additional hydroxy and methoxy substituents at the second phenyl ring, benzophenone-O,O'-disulfamates show increased activity. With an IC(50) value of 190 nM the 4,4'-derivative is the first small monocyclic STS inhibitor coming close to the potency of the steroidal standard estrone sulfamate.
Collapse
Affiliation(s)
- Peter Nussbaumer
- NOVARTIS Research Institute, Brunnerstrasse 59, A-1235, Vienna, Austria.
| | | | | |
Collapse
|
15
|
Ahmed S, James K, Owen CP. The design, synthesis, and biochemical evaluation of derivatives of biphenyl sulfamate-based compounds as novel inhibitors of estrone sulfatase. Biochem Biophys Res Commun 2002; 294:180-3. [PMID: 12054760 DOI: 10.1016/s0006-291x(02)00444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the initial results of our study into the use of a potential transition state (TS) of the reaction catalyzed by the enzyme estrone sulfatase (ES) in the design of a series of simple 4'-O-sulfamoyl-4-biphenyl-based compounds as novel inhibitors of ES. The results of the study show that these compounds are: potent inhibitors, possessing greater inhibitory activity than 4-methylcoumarin-7-O-sulfamate (COUMATE); weaker inhibitors than the tricyclic derivative of COUMATE, namely 667-COUMATE and the steroidal inhibitor estrone-3-O-sulfamate (EMATE), and irreversible inhibitors of ES.
Collapse
Affiliation(s)
- Sabbir Ahmed
- School of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | | | | |
Collapse
|
16
|
Ahmed S, James K, Owen CP, Patel CK. Design, synthesis and biochemical evaluation of AC ring mimics as novel inhibitors of the enzyme estrone sulfatase (ES). Bioorg Med Chem Lett 2002; 12:1343-6. [PMID: 11992773 DOI: 10.1016/s0960-894x(02)00170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report the initial results of our study into a series of simple 4'-O-sulfamoyl-4-biphenyl based compounds as novel inhibitors of the enzyme estrone sulfatase (ES). The results of the study show that these compounds are potent inhibitors, possessing greater inhibitory activity than COUMATE, but weaker inhibitory activity than EMATE or the tricyclic derivative of COUMATE, namely 667-COUMATE. Furthermore, the compounds are observed to be irreversible inhibitors.
Collapse
Affiliation(s)
- Sabbir Ahmed
- School of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, Surrey, UK.
| | | | | | | |
Collapse
|
17
|
Jütten P, Schumann W, Härtl A, Heinisch L, Gräfe U, Werner W, Ulbricht H. A novel type of nonsteroidal estrone sulfatase inhibitors. Bioorg Med Chem Lett 2002; 12:1339-42. [PMID: 11992772 DOI: 10.1016/s0960-894x(02)00171-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Madurahydroxylactone (MHL) is a secondary metabolite produced by the soil bacterium Nonomuria rubra and belongs to the family of benzo[a]naphthacenequinones. We report the initial results and structure-activity relationships of our study into a series of thiosemicarbazone derivatives of madurahydroxylactone as potential nonsteroidal inhibitors of the enzyme estrone sulfatase. The most active compound, the cyclohexylthiosemicarbazone, was shown to be a non-competitive inhibitor with a K(i) of 0.35microM. This compound is devoid of estrogenic properties and showed low acute toxicity in the hen's fertile egg screening test.
Collapse
Affiliation(s)
- Peter Jütten
- Hans-Knöll Institute of Natural Products Research, Beutenbergstrasse 1, 07745, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Ahmed S, James K, Owen CP, Patel CK, Sampson L. The mechanism of the irreversible inhibition of estrone sulfatase (ES) through the consideration of a range of methane- and amino-sulfonate-based compounds. Bioorg Med Chem Lett 2002; 12:1279-82. [PMID: 11965370 DOI: 10.1016/s0960-894x(02)00137-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report the results of our study into a series of simple phenyl and alkyl sulfamates and alkyl methanesulfonates as potential inhibitors of the enzyme estrone sulfatase (ES). The results of the study show that the substituted phenyl sulfamates are good irreversible inhibitors; the alkyl sulfamate compounds were found to lack inhibitory activity; whilst the large alkyl chain containing methanesulfonate-based compounds were found to possess weak reversible inhibitory activity. Using the results of the inhibition study, we postulate the probable mechanism for ES and suggest that an attack by the gem-diol is a major requirement prior to the hydrolysis of the sulfamate group, following which, attack on the active site C=O occurs and which therefore leads to the production of an imine type functionality, resulting in irreversible inhibition.
Collapse
Affiliation(s)
- Sabbir Ahmed
- School of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Surrey, KT1 2EE, Kingston upon Thames, UK.
| | | | | | | | | |
Collapse
|