1
|
Karpova D, Rettig MP, Ritchey J, Cancilla D, Christ S, Gehrs L, Chendamarai E, Evbuomwan MO, Holt M, Zhang J, Abou-Ezzi G, Celik H, Wiercinska E, Yang W, Gao F, Eissenberg LG, Heier RF, Arnett SD, Meyers MJ, Prinsen MJ, Griggs DW, Trumpp A, Ruminski PG, Morrow DM, Bonig HB, Link DC, DiPersio JF. Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. J Clin Invest 2019; 129:2745-2759. [PMID: 31085833 DOI: 10.1172/jci124738] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Cancilla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leah Gehrs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moses O Evbuomwan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Matthew Holt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingzhu Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grazia Abou-Ezzi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eliza Wiercinska
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany
| | - Wei Yang
- Genome Technology Access Center, Washington University, St. Louis, Missouri, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda G Eissenberg
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Stacy D Arnett
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Michael J Prinsen
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - David W Griggs
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Peter G Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Halvard B Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany.,University of Washington, Department of Medicine/Hematology, Seattle, Washington, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Abstract
Circulating lymphocytes normally migrate through extravascular spaces in relatively low numbers as important members of the immunosurveillance process. That is until signals are received by endothelial cells that there is an underlying infection or inflammatory condition. These vascular surface cells in turn overexpress and present ligands to circulating lymphocyte adhesion molecules. Upon encountering this higher density of ligands, lymphocytes, which had been leisurely rolling along the vascular surface, now become more firmly attached, change shape, and migrate through tight junctions to the sites of infection or inflammation. If the initiating events are not resolved and the condition becomes chronic, there can be a sustained extravasation of lymphocytes that can exacerbate the inflammatory condition, which in turn will continue to recruit more inflammatory cells resulting in unwanted tissue destruction. It is for the attenuation of this cycle of sustained inflammatory cell recruitment that very late activating antigen-4 (VLA-4) antagonists are being developed. Most lymphocytes, except neutrophils, express VLA-4 on their surface and they interact with endothelial vascular cell adhesion molecule-1 (VCAM-1). It is this interaction that VLA-4 antagonists are intended to disrupt, thus, putting an end to the cycle of chronic inflammation, which is the hallmark of many diseases. This review will provide an update of VLA-4 antagonists that have appeared since early 2001 and will discuss some of the issues, both positive and negative, that may be encountered in their development.
Collapse
Affiliation(s)
- Ginger X Yang
- Merck Research Laboratories, Rahway, New Jersey 07090, USA.
| | | |
Collapse
|
8
|
Kudlacz E, Whitney C, Andresen C, Duplantier A, Beckius G, Chupak L, Klein A, Kraus K, Milici A. Pulmonary eosinophilia in a murine model of allergic inflammation is attenuated by small molecule alpha4beta1 antagonists. J Pharmacol Exp Ther 2002; 301:747-52. [PMID: 11961081 DOI: 10.1124/jpet.301.2.747] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition of alpha4beta1/vascular cell adhesion molecule-1 (VCAM-1) interactions have therapeutic potential in treating allergic airway disease because of the importance of these adhesion molecules in the trafficking of eosinophils, lymphocytes, and monocytes. We examined several small molecule inhibitors of alpha4beta1/VCAM-1 interactions with in vitro potencies (IC(50) values) ranging from 0.52 nM (CP-664511; 3-[3-(1-[2-[3-methoxy-4-(3-O-tolyl-ureido)phenyl]-acetylamino]-3-methyl-butyl)isoxazol-5-yl]-propionic acid) to 38.5 nM (CP-609643; 3-[3-methyl-1-[2-[4-(3-O-tolyl-ureido)-phenyl]-acetylamino]-butyl)-isoxazol-5-yl]-propionic acid). The same compounds were evaluated in vivo using a murine model of ovalbumin-induced pulmonary eosinophilia. In this model, systemic administration of antibodies against alpha4 reduced bronchoalveolar lavage (BAL) eosinophilia approximately 60%. Small molecule alpha4beta1 antagonists were administered by intratracheal instillation and demonstrated dose-dependent inhibition of BAL eosinophil numbers and achieved a maximum inhibition of approximately 60%. In general, the rank order of potency for these compounds in vitro was consistent with that observed in vivo, which confirms that their efficacy is likely via blockade of alpha4beta1/VCAM-1 interactions. The most potent compound, CP-664511, also inhibited BAL eosinophilia following s.c. administration (1-10 mg/kg, s.c.). These data support the utility of small molecule alpha4beta1 antagonists in the treatment of relevant diseases, such as asthma.
Collapse
Affiliation(s)
- E Kudlacz
- Pfizer Global Research and Development, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|