1
|
El Salamouni NS, Buckley BJ, Ranson M, Kelso MJ, Yu H. Urokinase plasminogen activator as an anti-metastasis target: inhibitor design principles, recent amiloride derivatives, and issues with human/mouse species selectivity. Biophys Rev 2022; 14:277-301. [PMID: 35340592 PMCID: PMC8921380 DOI: 10.1007/s12551-021-00921-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 01/09/2023] Open
Abstract
The urokinase plasminogen activator (uPA) is a widely studied anticancer drug target with multiple classes of inhibitors reported to date. Many of these inhibitors contain amidine or guanidine groups, while others lacking these groups show improved oral bioavailability. Most of the X-ray co-crystal structures of small molecule uPA inhibitors show a key salt bridge with the side chain carboxylate of Asp189 in the S1 pocket of uPA. This review summarises the different classes of uPA inhibitors, their binding interactions and experimentally measured inhibitory potencies and highlights species selectivity issues with attention to recently described 6-substituted amiloride and 5‑N,N-(hexamethylene)amiloride (HMA) derivatives.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Benjamin J. Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Michael J. Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| |
Collapse
|
2
|
Prasad A, Bhaskara Rao T, Rambabu D, Basaveswara Rao M, Pal M. Ultrasound assisted Mizoroki–Heck coupling/C–H amination in a single pot: Direct synthesis of indole derivatives. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
3
|
El-Sharief MAMS, El-Naggar MH, Ahmed EM, El-Messery SM, Mahmoud AE, Ali MM, Salem LM, Mahrous KF, El Sayed MT. Tetrahydroindolocarbazoles (THICZs) as new class of urokinase (uPA) inhibitors: Synthesis, anticancer evaluation, DNA-damage determination, and molecular modelling study. Bioorg Chem 2018; 80:545-554. [PMID: 30014922 DOI: 10.1016/j.bioorg.2018.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 11/15/2022]
Abstract
Tetrahydroindolocarbazoles (THICZs) with versatile substituents, have been designed, synthesized, structure characterized, then investigated for their in-vitro anticancer screening, urokinase inhibition (uPA) evaluated, DNA-damage determination was further explored. Compounds 5, 8, 10 and 17 displayed the most promising antitumor activities against the breast cancer cell line as compared to the standard drug, doxorubicin with IC50 = 5.24 ± 0.37, 4.00 ± 0.52, 7.20 ± 0.90 and 9.60 ± 1.10 µg/ml (versus 3.30 ± 0.48 µg/ml for doxorubicin). Compounds 5, 8, 10 and 17 represents the most significant uPA inhibitors of our study with IC50 of 3.80, 2.70. 4.75, 10.80 (ng/ml) respectively. The expression levels of CDKN2A gene were decreased in 8, 10 and 17 cell lines as compared to those in positive control samples. Cell lines treated with 5, 8, 10 and 17 clearly observed a high score of damaged DNA cells. A deeper examination revealed that our hetroaromatics showed an extensive hydrogen bonding interactions that is required in the S pocket which is important for activity Arg 217, Gly 219, Gly 216, Lys 143 and Ser 190. So we present THICZs as promising uPA inhibitors expected as significant promise for further development as anti-invasiveness drugs.
Collapse
Affiliation(s)
- Marwa A M Sh El-Sharief
- Department of Applied Organic Chemistry, National Research Centre, 12622 Dokki, Giza, Egypt; Chemistry Department, Faculty of Sciences, King Khaled University, Saudi Arabia
| | - Mohamed H El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Entesar M Ahmed
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Abeer E Mahmoud
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki 12622, Giza, Egypt
| | - Mamdouh M Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki 12622, Giza, Egypt
| | - Lamiaa M Salem
- Cell Biology Department, National Research Centre, 12622-Dokki, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, 12622-Dokki, Egypt
| | - Mardia T El Sayed
- Department of Applied Organic Chemistry, National Research Centre, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
4
|
Omar MA, Shaker YM, Galal SA, Ali MM, Kerwin SM, Li J, Tokuda H, Ramadan RA, El Diwani HI. Synthesis and docking studies of novel antitumor benzimidazoles. Bioorg Med Chem 2012; 20:6989-7001. [PMID: 23123017 DOI: 10.1016/j.bmc.2012.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/11/2012] [Indexed: 11/27/2022]
Abstract
In this work, the benzimidazole-pyrrole conjugates 6a-h and benzimidazole-tetracycles conjugates 12-14 were prepared. The cytotoxicity of the compounds 3, 4a-h, 6a-h, 8, 10 and 12-14 was tested against lung cancer cell line A549. Compound 6b exhibited higher activity than the bis-benzoxazole natural product (UK-1), the standard. The tested 4g,h, 6a-h, 10 and 12-14 exhibited remarkable cytotoxicity activity against breast cancer cell line MCF-7 with higher activity than tamoxifen. Furthermore, compound 4h was found to be also more potent than doxurubicin. The antitumor promotion activity of synthesized compounds 4g,h, 6a-h, 10 and 12-14 has been estimated by studying their possible inhibitory effects on EBV-EA activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Among the studied compounds, the inhibitory activities of compounds 8, 13 and 14 demonstrated strong inhibitory effects on the Epstein-Barr virus early antigen (EBV-EA) activation without showing any cytotoxicity on the Raji cells and their effects being stronger than that of a representative control, oleanolic acid. Moreover, the molecular docking of the new compounds into plasminogen activator (uPA) receptor has been in correlation with the antitumor activity. All synthesized compounds 3, 4a-h, 6a-h, 8, 10 and 12-14 were docked into same groove of the binding site of the native co-crystalized (4-iodobenzo[b]thiophene-2-carboxamidine) ligand (PDB code:1c5x) for activity explaination. Compounds 4h, 6b and 13, giving the best docking results, were further studied to estimate their effect on the level of uPA using AssayMax human urokinase (uPA) ELISA kit. In case of A549 cell line, compound 6 exhibited similar activity to MMC, and for MCF-7 cell line, compound 4h exhibited similar activity to doxorubicin, in inhibiting the expression of uPA.
Collapse
Affiliation(s)
- Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, 12311 Cairo, Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sigan AL, Gusev DV, Chkanikov ND, Shmidt EY, Ivanov AV, Mihaleva AI. Hydroxyalkylation of 4,5,6,7-tetrahydroindole with polyfluorocarbonyl compounds as a route to 2-substituted indoles. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Rao RM, Reddy CH U, Alinakhi, Mulakayala N, Alvala M, Arunasree MK, Poondra RR, Iqbal J, Pal M. Sequential coupling/desilylation–coupling/cyclization in a single pot under Pd/C–Cu catalysis: Synthesis of 2-(hetero)aryl indoles. Org Biomol Chem 2011; 9:3808-16. [DOI: 10.1039/c0ob01161d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Identification of orally bioavailable, non-amidine inhibitors of Urokinase Plasminogen Activator (uPA). Bioorg Med Chem Lett 2009; 19:5712-5. [DOI: 10.1016/j.bmcl.2009.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 11/20/2022]
|
8
|
Göker H, Alp M, Ateş-Alagöz Z, Yıldız S. Synthesis and potent antifungal activity againstCandidaspecies of some novel 1H-benzimidazoles. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC. Comparative binding energy analysis for binding affinity and target selectivity prediction. Proteins 2009; 78:135-53. [DOI: 10.1002/prot.22579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
|
11
|
Zhu M, Gokhale VM, Szabo L, Munoz RM, Baek H, Bashyam S, Hurley LH, Von Hoff DD, Han H. Identification of a novel inhibitor of urokinase-type plasminogen activator. Mol Cancer Ther 2007; 6:1348-56. [PMID: 17431113 DOI: 10.1158/1535-7163.mct-06-0520] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urokinase-type plasminogen activator (uPA), a highly restricted serine protease, plays an important role in the regulation of diverse physiologic and pathologic processes. Strong clinical and experimental evidence has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients. uPA has been considered as a promising molecular target for development of anticancer drugs. Here, we report the identification of several new uPA inhibitors using a high-throughput screen from a chemical library. From these uPA inhibitors, molecular modeling and docking studies identified 4-oxazolidinone as a novel lead pharmacophore. Optimization of the 4-oxazolidinone pharmacophore resulted in a series of structurally modified compounds with improved potency and selectivity. One of the 4-oxazolidinone analogues, UK122, showed the highest inhibition of uPA activity. The IC(50) of UK122 in a cell-free indirect uPA assay is 0.2 micromol/L. This compound also showed no or little inhibition of other serine proteases such as thrombin, trypsin, plasmin, and the tissue-type plasminogen activator, indicating its high specificity against uPA. Moreover, UK122 showed little cytotoxicity against CFPAC-1 cells (IC(50) >100 micromol/L) but significantly inhibited the migration and invasion of this pancreatic cancer cell line. Our data show that UK122 could potentially be developed as a new anticancer agent that prevents the invasion and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Ming Zhu
- Division of Clinical Translational Research, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ashalatha BV, Narayana B, Kumari NS. Synthesis and Biological Activity of Novel 4-/5-/6-/7-Nitro-N ′-(4-Aryl-1,3-Thiazol-2-yl)1H-Indole-2-Carbohydrazide Derivatives. PHOSPHORUS SULFUR 2006. [DOI: 10.1080/10426500600864684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- B. V. Ashalatha
- a Department of Post-Graduate Studies and Research in Chemistry , Mangalore University , Mangalagangotri , India
| | - B. Narayana
- a Department of Post-Graduate Studies and Research in Chemistry , Mangalore University , Mangalagangotri , India
| | - N. Suchetha Kumari
- b Department of Biochemistry , K.S. Hegde Medical Academy , Deralakatte , India
| |
Collapse
|
13
|
Fear G, Komarnytsky S, Raskin I. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther 2006; 113:354-68. [PMID: 17098288 PMCID: PMC7112583 DOI: 10.1016/j.pharmthera.2006.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 09/05/2006] [Indexed: 01/28/2023]
Abstract
Precise spatial and temporal regulation of proteolytic activity is essential to human physiology. Modulation of protease activity with synthetic peptidomimetic inhibitors has proven to be clinically useful for treating human immunodeficiency virus (HIV) and hypertension and shows potential for medicinal application in cancer, obesity, cardiovascular, inflammatory, neurodegenerative diseases, and various infectious and parasitic diseases. Exploration of natural inhibitors and synthesis of peptidomimetic molecules has provided many promising compounds performing successfully in animal studies. Several protease inhibitors are undergoing further evaluation in human clinical trials. New research strategies are now focusing on the need for improved comprehension of protease-regulated cascades, along with precise selection of targets and improved inhibitor specificity. It remains to be seen which second generation agents will evolve into approved drugs or complementary therapies.
Collapse
Affiliation(s)
- Georgie Fear
- Biotech Center, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
14
|
Vijaykumar D, Rai R, Shaghafi M, Ton T, Torkelson S, Leahy EM, Riggs JR, Hu H, Sprengeler PA, Shrader WD, O'Bryan C, Cabuslay R, Sanford E, Gjerstadt E, Liu L, Sukbuntherng J, Young WB. Efforts toward oral bioavailability in factor VIIa inhibitors. Bioorg Med Chem Lett 2006; 16:3829-32. [PMID: 16650987 DOI: 10.1016/j.bmcl.2006.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
Efforts toward developing orally bioavailable factor VIIa inhibitors starting from parenteral lead compound 1 are described. SAR resulted in improved physicochemical properties, leading to enhanced oral absorption in rat.
Collapse
|
15
|
Palimkar SS, Harish Kumar P, Lahoti RJ, Srinivasan KV. Ligand-, copper-, and amine-free one-pot synthesis of 2-substituted indoles via Sonogashira coupling 5-endo-dig cyclization. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.03.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Bhongade BA, Gadad AK. Insight into the Structural Requirements of Urokinase-Type Plasminogen Activator Inhibitors Based on 3D QSAR CoMFA/CoMSIA Models. J Med Chem 2005; 49:475-89. [PMID: 16420035 DOI: 10.1021/jm050149r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Urokinase-type plasminogen activator (uPA), a trypsin-like serine protease, has been implicated in large number of malignancies, tumor cell invasion, angiogenesis and metastasis; hence, the potent and selective inhibitors of uPA may therefore be therapeutically useful drugs for treatment of various forms of cancer. A three-dimensional quantitative structure-activity relationship (3D QSAR) study was performed on five different chemical series reported as selective uPA inhibitors employing comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) techniques to investigate the structural requirements for substrates and derive a predictive model that may be used for the design of novel uPA inhibitors. ClogP has been used as an additional descriptor in the CoMFA analysis to study the effects of lipophilic parameters on activity. Inclusion of ClogP did not improve the models significantly and exhibited comparable correlation coefficients with CoMFA steric and electrostatic models. 3D QSAR models were derived for 2-pyridinylguanidines (training set N = 25, test set N = 8), 4-aminoarylguanidines and 4-aminoarylbenzamidines (training set N = 29, test set N = 8), thiophene-2-carboxamindines (training set N = 64, test set N = 19), 2-naphthamidines (training set N = 32, test set N = 8), and 1-isoquinolinylguanidines (training set N = 29, test set N = 7). The CoMFA models with steric and electrostatic fields exhibited r(2)(cv) 0.452-0.722, r(2)(ncv) 0.812-0.986, r(2)(pred) 0.597-0.870, whereas CoMFA ClogP models showed r(2)(cv) 0.420-0.707, r(2)(ncv) 0.849-0.957, r(2)(pred) 0.600-0.870. The CoMSIA models displayed r(2)(cv) 0.663-0.729, r(2)(ncv) 0.909-0.998, r(2)(pred) 0.554-0.855. 3D contour maps generated from these models were analyzed individually, which provides the regions in space where interactive fields may influence the activity. The superimposition of contour maps on the active site of serine proteases additionally helps in understanding the structural requirements of these inhibitors. Further, the predictive ability of 3D QSAR models was affirmed by predicting the activity of novel 2-naphthamidines. 3D QSAR models developed may be used in designing and predicting the uPA inhibitory activity of novel molecules.
Collapse
Affiliation(s)
- Bhoomendra A Bhongade
- Department of Medicinal Chemistry, College of Pharmacy, J. N. Medical College, Belgaum 590 010, Karnataka, India
| | | |
Collapse
|
17
|
Tang J, Yu CL, Williams SR, Springman E, Jeffery D, Sprengeler PA, Estevez A, Sampang J, Shrader W, Spencer J, Young W, McGrath M, Katz BA. Expression, crystallization, and three-dimensional structure of the catalytic domain of human plasma kallikrein. J Biol Chem 2005; 280:41077-89. [PMID: 16199530 DOI: 10.1074/jbc.m506766200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma kallikrein is a serine protease that has many important functions, including modulation of blood pressure, complement activation, and mediation and maintenance of inflammatory responses. Although plasma kallikrein has been purified for 40 years, its structure has not been elucidated. In this report, we described two systems (Pichia pastoris and baculovirus/Sf9 cells) for expression of the protease domain of plasma kallikrein, along with the purification and high resolution crystal structures of the two recombinant forms. In the Pichia pastoris system, the protease domain was expressed as a heterogeneously glycosylated zymogen that was activated by limited trypsin digestion and treated with endoglycosidase H deglycosidase to reduce heterogeneity from the glycosylation. The resulting protein was chromatographically resolved into four components, one of which was crystallized. In the baculovirus/Sf9 system, homogeneous, crystallizable, and nonglycosylated protein was expressed after mutagenizing three asparagines (the glycosylation sites) to glutamates. When assayed against the peptide substrates, pefachrome-PK and oxidized insulin B chain, both forms of the protease domain were found to have catalytic activity similar to that of the full-length protein. Crystallization and x-ray crystal structure determination of both forms have yielded the first three-dimensional views of the catalytic domain of plasma kallikrein. The structures, determined at 1.85 A for the endoglycosidase H-deglycosylated protease domain produced from P. pastoris and at 1.40 A for the mutagenically deglycosylated form produced from Sf9 cells, show that the protease domain adopts a typical chymotrypsin-like serine protease conformation. The structural information provides insights into the biochemical and enzymatic properties of plasma kallikrein and paves the way for structure-based design of protease inhibitors that are selective either for or against plasma kallikrein.
Collapse
Affiliation(s)
- Jie Tang
- Department of Structural Chemistry, Celera Genomics, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jensen CM, Lindsay KB, Andreasen P, Skrydstrup T. Synthesis of a Hydroxyethylene Isostere of the Tripeptide Arg-Gly-Leu via a Convergent Acyl-like Radical Addition Strategy. J Org Chem 2005; 70:7512-9. [PMID: 16149778 DOI: 10.1021/jo0505775] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] A hydroxyethylene isostere of the tripeptide Arg-Gly-Leu, representing an important fragment of a novel cyclic-peptide-based uPA inhibitor, was synthesized in few steps employing as the key step a samarium diiodide promoted coupling of either the 4-thiopyridyl ester of N(alpha)-Fmoc- or N(alpha)-Cbz-protected L-ornithine with the N-acryloyl derivative of L-leucine methyl ester. Epimerization under the coupling conditions at the chiral center in the alpha-position to the ketone was demonstrated not to take place. A stereoselective reduction of the Cbz-protected aminoketone obtained from this radical reaction was promoted by the same single-electron reducing agent in the presence of methanol providing the syn-amino alcohol with a diastereoselectivity of 85:15. With the use of lithium tri-tert-butoxyaluminum hydride in methanol, the corresponding anti-isomer was obtained almost exclusively. Subsequent elaboration of the ornithine moiety in the anti-isomer by introduction of the guanidine group followed by hydrolysis of the C-terminal ester bond and protection of the alcohol as its tert-butyldimethylsilyl ether provided the desired tripeptide mimic. The long reaction times required for the radical addition reactions with N(delta)-Boc-L-ornithine (up to 5 days) led to a short study where a series of 4-thiopyridyl esters of Cbz-protected amino acids were reacted with two acrylates. Whereas N(delta)-Boc-L-ornithine, alanine, phenylalanine, proline, and leucine all provided the aminoketone in 43-79% yield, valine only afforded traces of the coupling product.
Collapse
Affiliation(s)
- Christina M Jensen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
19
|
|
20
|
Barber CG, Dickinson RP, Fish PV. Selective urokinase-type plasminogen activator (uPA) inhibitors. Part 3: 1-isoquinolinylguanidines. Bioorg Med Chem Lett 2005; 14:3227-30. [PMID: 15149680 DOI: 10.1016/j.bmcl.2004.03.094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/17/2004] [Accepted: 03/30/2004] [Indexed: 11/19/2022]
Abstract
A series of 1-isoquinolinylguanidines are shown to be potent inhibitors of uPA with selectivity over tPA and plasmin. Potency is enhanced by the presence of a 4-halo and a 7-aryl substituent, particularly when substituted by a 3-carboxylic acid group. Compound 13j (UK-356,202) combines excellent potency and selectivity, and has been selected as a candidate for clinical evaluation.
Collapse
Affiliation(s)
- Christopher G Barber
- Department of Discovery Chemistry, Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, UK.
| | | | | |
Collapse
|
21
|
Gallant AJ, Patrick BO, MacLachlan MJ. Mild and Selective Reduction of Imines: Formation of an Unsymmetrical Macrocycle. J Org Chem 2004; 69:8739-44. [PMID: 15575751 DOI: 10.1021/jo049197u] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During investigations of 5, a [3 + 3] Schiff-base macrocycle with six imines, a partially reduced Schiff-base macrocycle, 6, possessing one CH(2)NH and five imine groups was obtained. Control experiments and deuterium labeling indicate that the macrocycle is reduced by a benzimidazoline generated during the reaction. Benzimidazolines may be convenient reagents for the mild and selective reduction of imines.
Collapse
Affiliation(s)
- Amanda J Gallant
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | | | | |
Collapse
|
22
|
Katz BA, Luong C, Ho JD, Somoza JR, Gjerstad E, Tang J, Williams SR, Verner E, Mackman RL, Young WB, Sprengeler PA, Chan H, Mortara K, Janc JW, McGrath ME. Dissecting and Designing Inhibitor Selectivity Determinants at the S1 Site Using an Artificial Ala190 Protease (Ala190 uPA). J Mol Biol 2004; 344:527-47. [PMID: 15522303 DOI: 10.1016/j.jmb.2004.09.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/14/2004] [Accepted: 09/15/2004] [Indexed: 11/21/2022]
Abstract
A site-directed mutant of the serine protease urokinase-type plasminogen activator (uPA), was produced to assess the contribution of the Ser190 side-chain to the affinity and selectivity of lead uPA inhibitors in the absence of other differences present in comparisons of natural proteases. Crystallography and enzymology involving WT and Ala190 uPA were used to calculate free energy binding contributions of hydrogen bonds involving the Ser190 hydroxyl group (O(gamma)(Ser190)) responsible for the remarkable selectivity of 6-halo-5-amidinoindole and 6-halo-5-amidinobenzimidazole inhibitors toward uPA and against natural Ala190 protease anti-targets. Crystal structures of uPA complexes of novel, active site-directed arylguanidine and 2-aminobenzimidazole inhibitors of WT uPA, together with associated K(i) values for WT and Ala190 uPA, also indicate a significant role of Ser190 in the binding of these classes of uPA inhibitors. Structures and associated K(i) values for a lead inhibitor (CA-11) bound to uPA and to five other proteases, as well as for other leads bound to multiple proteases, help reveal the features responsible for the potency (K(i)=11nM) and selectivity of the remarkably small inhibitor, CA-11. The 6-fluoro-5-amidinobenzimidzole, CA-11, is more than 1000-fold selective against natural Ala190 protease anti-targets, and more than 100-fold selective against other Ser190 anti-targets.
Collapse
Affiliation(s)
- Bradley A Katz
- Celera, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bhongade BA, Gadad AK. 3D-QSAR CoMFA/CoMSIA studies on Urokinase plasminogen activator (uPA) inhibitors: a strategic design in novel anticancer agents. Bioorg Med Chem 2004; 12:2797-805. [PMID: 15110861 DOI: 10.1016/j.bmc.2004.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/16/2004] [Accepted: 02/17/2004] [Indexed: 12/01/2022]
Abstract
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was performed on a series of indole/benzoimidazole-5-carboxamidines as urokinase plasminogen activator (uPA) inhibitors. The ligand molecular superimposition on template structure was performed by atom/shape-based RMS fit, multifit, and RMSD fit methods. The removal of two outliers from the initial training set of 30 molecules improved the predictivity of the models. The statistically significant model was established from 28 molecules, which were validated by evaluation of test set of nine compounds. The atom-based RMS alignment yielded best predictive CoMFA model (r2(cv) = 0.611, r2(cnv) = 0.778, F value = 43.825, r2(bs) = 0.842, r2(pred) = 0.616 with two components) while the CoMSIA model yielded (r2(cv) = 0.499, r2(cnv) = 0.976, F value=96.36, r2(bs) = 0.993, r2(pred) = 0.694 with eight components). The contour maps obtained from 3D-QSAR studies were appraised for the activity trends of the molecules analyzed. The results indicate that the steric, electrostatic, and hydrogen bond donor/acceptor substituents play significant role in uPA activity and selectivity of these compounds. The data generated from the present study can be used as putative pharmacophore in the design of novel, potent, and selective urokinase plasminogen activator inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- B A Bhongade
- Department of Medicinal Chemistry, College of Pharmacy, J. N. Medical College, Belgaum 590010, Karnataka, India
| | | |
Collapse
|
24
|
Wendt MD, Rockway TW, Geyer A, McClellan W, Weitzberg M, Zhao X, Mantei R, Nienaber VL, Stewart K, Klinghofer V, Giranda VL. Identification of Novel Binding Interactions in the Development of Potent, Selective 2-Naphthamidine Inhibitors of Urokinase. Synthesis, Structural Analysis, and SAR of N-Phenyl Amide 6-Substitution. J Med Chem 2003; 47:303-24. [PMID: 14711304 DOI: 10.1021/jm0300072] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The preparation and assessment of biological activity of 6-substituted 2-naphthamidine inhibitors of the serine protease urokinase plasminogen activator (uPA, or urokinase) is described. 2-Naphthamidine was chosen as a starting point based on synthetic considerations and on modeling of substituent vectors. Phenyl amides at the 6-position were found to improve binding; replacement of the amide with other two-atom linkers proved ineffective. The phenyl group itself is situated near the S1' subsite; substitutions off of the phenyl group accessed S1' and other distant binding regions. Three new points of interaction were defined and explored through ring substitution. A solvent-exposed salt bridge with the Asp60A carboxylate was formed using a 4-alkylamino group, improving affinity to K(i) = 40 nM. Inhibitors also accessed two hydrophobic regions. One interaction is characterized by a tight hydrophobic fit made with a small dimple largely defined by His57 and His99; a weaker, less specific interaction involves alkyl groups reaching into the broad prime-side protein binding region near Val41 and the Cys42-Cys58 disulfide, displacing water molecules and leading to small gains in activity. Many inhibitors accessed two of these three regions. Affinities range as low as K(i) = 6 nM, and many compounds had K(i) < 100 nM, while moderate to excellent selectivity was gained versus four of five members of a panel of relevant serine proteases. Also, some selectivity against trypsin was generated via the interaction with Asp60A. X-ray structures of many of these compounds were used to inform our inhibitor design and to increase our understanding of key interactions. In combination with our exploration of 8-substitution patterns, we have identified a number of novel binding interactions for uPA inhibitors.
Collapse
Affiliation(s)
- Michael D Wendt
- Cancer Research and Structural Biology, Global Pharmaceutical R & D, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6101, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Katz BA, Elrod K, Verner E, Mackman RL, Luong C, Shrader WD, Sendzik M, Spencer JR, Sprengeler PA, Kolesnikov A, Tai VWF, Hui HC, Breitenbucher JG, Allen D, Janc JW. Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors. J Mol Biol 2003; 329:93-120. [PMID: 12742021 DOI: 10.1016/s0022-2836(03)00399-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog. Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.
Collapse
Affiliation(s)
- Bradley A Katz
- Celera, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|