1
|
Diketene a Privileged Synthon in the Synthesis of Heterocycles. Part 2: Six-Membered Ring Heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1016/bs.aihch.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Tukun FL, Olberg DE, Riss PJ, Haraldsen I, Kaass A, Klaveness J. Recent Development of Non-Peptide GnRH Antagonists. Molecules 2017; 22:molecules22122188. [PMID: 29232843 PMCID: PMC6149776 DOI: 10.3390/molecules22122188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
The decapeptide gonadotropin-releasing hormone, also referred to as luteinizing hormone-releasing hormone with the sequence (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) plays an important role in regulating the reproductive system. It stimulates differential release of the gonadotropins FSH and LH from pituitary tissue. To date, treatment of hormone-dependent diseases targeting the GnRH receptor, including peptide GnRH agonist and antagonists are now available on the market. The inherited issues associate with peptide agonists and antagonists have however, led to significant interest in developing orally active, small molecule, non-peptide antagonists. In this review, we will summarize all developed small molecule GnRH antagonists along with the most recent clinical data and therapeutic applications.
Collapse
Affiliation(s)
| | - Dag Erlend Olberg
- School of Pharmacy, University of Oslo, 0316 Oslo, Norway.
- Norsk Medisinsk Syklotronsenter AS, Postboks 4950 Nydalen, 0424 Oslo, Norway.
| | - Patrick J Riss
- Norsk Medisinsk Syklotronsenter AS, Postboks 4950 Nydalen, 0424 Oslo, Norway.
- Realomics SFI, Department of Chemistry, University of Oslo, 0316 Oslo, Norway.
- Department of neuropsychiatry and psychosomatic medicine, Oslo University Hospital, 4950 Oslo, Norway.
| | - Ira Haraldsen
- Department of neuropsychiatry and psychosomatic medicine, Oslo University Hospital, 4950 Oslo, Norway.
| | | | - Jo Klaveness
- School of Pharmacy, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
3
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1914] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
4
|
Miwa K, Hitaka T, Imada T, Sasaki S, Yoshimatsu M, Kusaka M, Tanaka A, Nakata D, Furuya S, Endo S, Hamamura K, Kitazaki T. Discovery of 1-{4-[1-(2,6-difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (TAK-385) as a potent, orally active, non-peptide antagonist of the human gonadotropin-releasing hormone receptor. J Med Chem 2011; 54:4998-5012. [PMID: 21657270 DOI: 10.1021/jm200216q] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously discovered an orally active human gonadotropin-releasing hormone (GnRH) receptor antagonist, thieno[2,3-d]pyrimidine-2,4-dione derivative 1 (sufugolix). To reduce the cytochrome P450 (CYP) inhibitory activity and improve in vivo GnRH antagonistic activity, further optimization of this scaffold was carried out. We focused our synthetic efforts on chemical modification at the 5 and 3 positions of the thieno[2,3-d]pyrimidine-2,4-dione ring based on computational modeling, which resulted in the discovery of 1-{4-[1-(2,6-difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (16b) as a highly potent and orally active GnRH antagonist. Compound 16b showed potent in vitro GnRH antagonistic activity in the presence of fetal bovine serum (FBS) without CYP inhibition. Oral administration of 16b maintained the suppressive effect of the plasma luteinizing hormone levels in castrated cynomolgus monkeys at a 3 mg/kg dose for more than 24 h. Compound 16b is currently under clinical development with the code name of TAK-385.
Collapse
Affiliation(s)
- Kazuhiro Miwa
- CMC Center, Takeda Pharmaceutical Company, Ltd., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bardagí JI, Rossi RA. Advances in the Synthesis of 5- and 6-Substituted Uracil Derivatives. ORG PREP PROCED INT 2009. [DOI: 10.1080/00304940903378776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Javier I. Bardagí
- a INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba, Ciudad Universitaria , 5000 Córdoba, Argentina
| | - Roberto A. Rossi
- a INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba, Ciudad Universitaria , 5000 Córdoba, Argentina
| |
Collapse
|
6
|
Heitman LH, Ijzerman AP. G protein-coupled receptors of the hypothalamic-pituitary-gonadal axis: a case for Gnrh, LH, FSH, and GPR54 receptor ligands. Med Res Rev 2008; 28:975-1011. [PMID: 18561294 DOI: 10.1002/med.20129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis, important in reproduction and sex hormone-dependent diseases, is regulated by a number of G protein-coupled receptors. The recently "deorphanized" GPR54 receptor activated by the peptide metastin is thought to be the key regulator of the axis, mainly by releasing gonadotropin-releasing hormone (GnRH) from the hypothalamus. The latter decapeptide, through the activation of the GnRH receptor in the anterior pituitary, causes the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which subsequently activate their respective receptors on the gonadotrope cells. In this review we will discuss the small molecule agonists and antagonists that are currently being developed to intervene with the action of these four receptors. For GnRH receptors, 14 different chemical classes of non-peptidic antagonists have been reported, while for the LH receptor three classes of agonists have been described. Both agonists and antagonists have been introduced for the FSH receptor. Recently, the first non-peptidic agonist for GPR54 was reported.
Collapse
Affiliation(s)
- Laura H Heitman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
7
|
Betz SF, Zhu YF, Chen C, Struthers RS. Non-Peptide Gonadotropin-Releasing Hormone Receptor Antagonists. J Med Chem 2008; 51:3331-48. [DOI: 10.1021/jm701249f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen F. Betz
- Endocrinology & Metabolism, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130
| | - Yun-Fei Zhu
- Endocrinology & Metabolism, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130
| | - Chen Chen
- Endocrinology & Metabolism, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130
| | - R. Scott Struthers
- Endocrinology & Metabolism, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130
| |
Collapse
|
8
|
Arnould JC, Delouvrié B, Boutron P, Dossetter AG, Foote KM, Hamon A, Hancox U, Harris CS, Hutton M, Lamorlette M, Matusiak Z. Synthesis and structure–activity relationships of thieno[2,3-b]pyrroles as antagonists of the GnRH receptor. Bioorg Med Chem Lett 2007; 17:6448-54. [DOI: 10.1016/j.bmcl.2007.09.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 09/28/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
|
9
|
Sarma PKS, Tiwari A, Kondaskar A, Cliffe IA. Peptidomimetic GnRH receptor antagonists for the treatment of reproductive and proliferative diseases. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.6.733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Zhu YF, Chen C. Recent advances in small molecule gonadotrophin-releasing hormone receptor antagonists. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.2.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Guo Z, Wu D, Zhu YF, Tucci FC, Pontillo J, Saunders J, Xie Q, Struthers RS, Chen C. A convenient one-pot synthesis of asymmetric 1,3,5-triazine-2,4,6-triones and its application towards a novel class of gonadotropin-releasing hormone receptor antagonists. Bioorg Med Chem Lett 2005; 15:693-8. [PMID: 15664839 DOI: 10.1016/j.bmcl.2004.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/24/2022]
Abstract
A convenient one-pot synthetic route was developed for the preparation of asymmetric 1,3-dialkyl-1,3,5-triazine-2,4,6-triones from readily available alkyl- or aryl-isocyanates, primary amines and N-chlorocarbonyl isocyanate in excellent yields. Subsequent alkylation with N-protected amino alcohols afforded the desired 1,3,5-triazine-2,4,6-triones in good yields. This methodology was applied to the synthesis of a chemical library acting as antagonists of the hGnRH receptor.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rowbottom MW, Tucci FC, Connors PJ, Gross TD, Zhu YF, Guo Z, Moorjani M, Acevedo O, Carter L, Sullivan SK, Xie Q, Fisher A, Struthers RS, Saunders J, Chen C. Synthesis and structure–activity relationships of uracil derived human GnRH receptor antagonists: (R)-3-[2-(2-amino)phenethyl]-1-(2,6-difluorobenzyl)-6-methyluracils containing a substituted thiophene or thiazole at C-5. Bioorg Med Chem Lett 2004; 14:4967-73. [PMID: 15341961 DOI: 10.1016/j.bmcl.2004.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 07/10/2004] [Indexed: 11/27/2022]
Abstract
The synthesis of a series of (R)-3-[2-(2-amino)phenethyl]-1-(2,6-difluorobenzyl)-6-methyluracils containing a substituted thiophene or thiazole at C-5 is described. SAR around C-5 of the uracil led to the discovery that a 2-thienyl or (2-phenyl)thiazol-4-yl group is required for optimal receptor binding. The best compound from the series had a binding affinity of 2 nM (K(i)) for the human GnRH receptor. A novel and convenient preparation of N-1-(2,6-difluorobenzyl)-6-methyluracil is also described.
Collapse
Affiliation(s)
- Martin W Rowbottom
- Department of Medicinal Chemistry, Neurocrine Biosciences Inc., 12790 El Camino Real, San Diego, CA 92130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reinhart GJ, Xie Q, Liu XJ, Zhu YF, Fan J, Chen C, Struthers RS. Species selectivity of nonpeptide antagonists of the gonadotropin-releasing hormone receptor is determined by residues in extracellular loops II and III and the amino terminus. J Biol Chem 2004; 279:34115-22. [PMID: 15155770 DOI: 10.1074/jbc.m404474200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efforts to develop orally available gonadotropin-releasing hormone (GnRH) receptor antagonists have led to the discovery of several classes of potent nonpeptide antagonists. Here we investigated molecular interactions of three classes of nonpeptide antagonists with human, rat, and macaque GnRH receptors. Although all are high affinity ligands of the human receptor (K(i) <5 nm), these compounds show reduced affinity for the macaque receptor and bind only weakly (K(i) >1 microm) to the rat receptor. To identify residues responsible for this selectivity, a series of chimeric receptors and mutant receptors was constructed and evaluated for nonpeptide binding. Surprisingly, 4 key residues located in the amino terminus (Met-24) and extracellular loops II (Ser-203, Gln-208) and III (Leu-300) of the GnRH receptor appear to be primarily responsible for species-selective binding. Comparisons of reciprocal mutations suggest that these may not be direct contacts but rather may be involved in organizing extracellular portions of the receptor. These data are novel because most previous reports of residues involved in binding of nonpeptide ligands to peptide-activated G protein-coupled receptors, including the GnRH receptor as well as mono-amine receptors, have identified binding sites in the transmembrane regions.
Collapse
Affiliation(s)
- Greg J Reinhart
- Department of Endocrinology, Neurocrine Biosciences Inc., 10555 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rowbottom MW, Tucci FC, Zhu YF, Guo Z, Gross TD, Reinhart GJ, Xie Q, Struthers RS, Saunders J, Chen C. Synthesis and structure–activity relationships of ( R )-1-alkyl-3-[2-(2-amino)phenethyl]-5-(2-fluorophenyl)-6-methyluracils as human GnRH receptor antagonists. Bioorg Med Chem Lett 2004; 14:2269-74. [PMID: 15081023 DOI: 10.1016/j.bmcl.2004.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
The synthesis of a series of (R)-1-alkyl-3-[2-(2-amino)phenethyl]-5-(2-fluorophenyl)-6-methyluracils is discussed. SAR around N-1 of the uracil was explored, which led to the discovery that an electron-deficient 2,6-disubstituted benzyl group is required for optimal receptor binding. The best compound from the series had binding affinity of 0.7 nM (K(i) for the human GnRH receptor, which was 8-fold better than the 2,6-difluorobenzyl analog.
Collapse
Affiliation(s)
- Martin W Rowbottom
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc, 10555 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nonpeptide Gonadotropin Releasing Hormone Antagonists. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2004. [DOI: 10.1016/s0065-7743(04)39008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|