1
|
Hamdi A, Yaseen M, Ewes WA, Bhat MA, Ziedan NI, El-Shafey HW, Mohamed AAB, Elnagar MR, Haikal A, Othman DIA, Elgazar AA, Abusabaa AHA, Abdelrahman KS, Soltan OM, Elbadawi MM. Development of new thiazolidine-2,4-dione hybrids as aldose reductase inhibitors endowed with antihyperglycaemic activity: design, synthesis, biological investigations, and in silico insights. J Enzyme Inhib Med Chem 2023; 38:2231170. [PMID: 37470409 PMCID: PMC10361003 DOI: 10.1080/14756366.2023.2231170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023] Open
Abstract
This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Noha I Ziedan
- Department of physical, mathematical and Engineering science, Faculty of science, Business and Enterprise, University of Chester, Chester, UK
| | - Hamed W El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed R Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Abdullah Haikal
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dina I A Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed H A Abusabaa
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
2
|
Kashyap P, Verma S, Gupta P, Narang R, Lal S, Devgun M. Recent insights into antibacterial potential of benzothiazole derivatives. Med Chem Res 2023; 32:1-31. [PMID: 37362317 PMCID: PMC10226039 DOI: 10.1007/s00044-023-03077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Antimicrobial resistance (AMR) is a worldwide concern among infectious diseases due to increased mortality, morbidity and treatment cost. According to WHO 2019 report, among the 32 antibiotics in the clinical trials, only six were classified as innovative and containing novel moiety. The remaining antibiotics from this list contain previously known moiety (WHO AMR 2019). Therefore, the development of novel antibiotics to control resistance problems is crucial. Benzothiazole derivatives are of great interest due to their wide range of biological activities and medicinal applications. Reported data indicated that benzothiazole derivatives displayed antibacterial activity by inhibiting the dihydroorotase, DNA gyrase, uridine diphosphate-n-acetyl enol pyruvyl glucosamine reductase (MurB), peptide deformylase, aldose reductase, casdihydrofolate reductase, enoyl acyl carrier protein reductase, dialkylglycine decarboxylase, dehydrosqualene synthase, dihydropteroate synthase and tyrosine kinase. The present review analyzed the synthesis, structure-activity relationship (SAR) and mechanism of action studies of benzothiazole derivatives as antibacterial agents reported by various research groups in the last five years (2018-2022). Different patents on the antimicrobial activity of benzothiazole derivatives have also been summarized. The finding of the present review will be beneficial for the researchers in the development of novel antibacterial molecules based on benzothiazole moiety. Graphical Abstract
Collapse
Affiliation(s)
- Priyanka Kashyap
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Sangeeta Verma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Pankaj Gupta
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 India
| |
Collapse
|
3
|
Fan X, He Y, Wang Y, Xue Z, Zhang X, Wang J. A novel and practical synthesis of 2-benzoylbenzothiazoles and 2-benzylbenzothiazoles. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.12.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, Dicioccio AT, Petrova T, Mitschler A, Podjarny AD. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J Med Chem 2005; 48:3141-52. [PMID: 15857120 DOI: 10.1021/jm0492094] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent efforts to identify treatments for chronic diabetic complications have resulted in the discovery of a novel series of highly potent and selective 3-[(benzothiazol-2-yl)methyl]indole-N-alkanoic acid aldose reductase inhibitors. The lead candidate, 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat, 9) inhibits aldose reductase with an IC(50) of 5 nM, while being 5400 times less active against aldehyde reductase, a related enzyme involved in the detoxification of reactive aldehydes. It lowers nerve and lens sorbitol levels with ED(50)'s of 1.9 and 4.5 mg/kg/d po, respectively, in the 5-day STZ-induced diabetic rat model. In a 3-month diabetic intervention model (1 month of diabetes followed by 2 months of drug treatment at 5 mg/kg/d po), it normalizes polyols and reduces the motor nerve conduction velocity deficit by 59% relative to diabetic controls. It has a favorable pharmacokinetic profile (F, 82%; t(1/2), 5.6 h; Vd, 0.694 L/kg) with good drug penetration in target tissues (C(max) in sciatic nerve and eye are 2.36 and 1.45 mug equiv/g, respectively, when dosed with [(14)C]lidorestat at 10 mg/kg po).
Collapse
Affiliation(s)
- Michael C Van Zandt
- The Institute for Diabetes Discovery, LLC, 23 Business Park Drive, Branford, Connecticut 06405, USA. michael.vanzandt@ ipd-discovery.com
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ashizawa N, Yoshida M, Aotsuka T. An enzymatic assay for myo-inositol in tissue samples. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2000; 44:89-94. [PMID: 10889279 DOI: 10.1016/s0165-022x(00)00069-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An enzymatic assay for myo-inositol (MI) was modified. The method is based on the oxidation of MI by NAD(+)-dependent MI dehydrogenase, coupled to reoxidation of NADH by iodonitrotetrazolium chloride and diaphorase. The resultant formazan is measured spectrophotometrically. In order to remove interference by glucose, preliminary phosphorylation of glucose by hexokinase was employed before the above reaction. The assay is quantitative for MI in amounts ranging from 1 to 20 nmol. This method gives a negligible blank, even in the measurement of rat serum. The reduced MI content in the sciatic nerve and lens of streptozotocin-induced diabetic rats recovered in a dose-dependent manner by treatment with a novel potent aldose reductase inhibitor, GP-1447 ¿3-[(4,5, 7-trifluorobenzothiazol-2-yl)methyl]-5-methylphenylacetic acid¿.
Collapse
Affiliation(s)
- N Ashizawa
- Pharmaceutical Research Laboratory, Research Center, Research and Development Division, Grelan Pharmaceutical Co. Ltd., 3-4-3 Sakaecho, Hamura, 205-0002, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Costantino L, Rastelli G, Gamberini MC, Giovannoni MP, Dal Piaz V, Vianello P, Barlocco D. Isoxazolo-[3,4-d]-pyridazin-7-(6H)-one as a potential substrate for new aldose reductase inhibitors. J Med Chem 1999; 42:1894-900. [PMID: 10354397 DOI: 10.1021/jm981107o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isoxazolo-[3,4-d]-pyridazin-7-(6H)-one (2) and its corresponding open derivatives 5-acetyl-4-amino-(4-nitro)-6-substituted-3(2H)pyridazinones (3, 4) were used as simplified substrates for the synthesis of new aldose reductase inhibitors with respect to the previously reported 5, 6-dihydrobenzo[h]cinnolin-3(2H)one-2 acetic acids (1). Moreover, a few derivatives lacking the 5-acetyl group were prepared. Several compounds derived from 2 displayed inhibitory properties comparable to those of Sorbinil. In this class the presence at position 6 of a phenyl carrying an electron-withdrawing substituent proved to be beneficial, independently from its position on the ring (5g,j-l). Acetic acid derivatives were more effective than propionic and butyric analogues. On the contrary, all the monocyclic compounds (6-8) were either inactive or only weakly active. The 3-methyl-4-(p-chlorophenyl)isoxazolo-[3,4-d]-pyridazin-7-(6H )-one acetic acid (5g), which proved to be the most potent derivative, was also investigated in molecular modeling studies, to assess possible similarities in its interaction with the enzyme, with respect to the model 1.
Collapse
Affiliation(s)
- L Costantino
- Dipartimento di Scienze Farmaceutiche, Via G. Campi 183, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Rajeswaran WG, Labroo RB, Cohen LA, King MM. Synthesis of 5-[(Indol-2-on-3-yl)methyl]-2,2-dimethyl-1,3- dioxane-4,6-diones and Spirocyclopropyloxindole Derivatives. Potential Aldose Reductase Inhibitors. J Org Chem 1999. [DOI: 10.1021/jo981673r] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Walajapet G. Rajeswaran
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Rita B. Labroo
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Louis A. Cohen
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael M. King
- Department of Chemistry, The George Washington University, Washington, D.C. 20052
| |
Collapse
|
8
|
Costantino L, Rastelli G, Vianello P, Cignarella G, Barlocco D. Diabetes complications and their potential prevention: aldose reductase inhibition and other approaches. Med Res Rev 1999; 19:3-23. [PMID: 9918192 DOI: 10.1002/(sici)1098-1128(199901)19:1<3::aid-med2>3.0.co;2-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite recent advances both in the chemistry and molecular pharmacology of antidiabetic drugs, diabetes still remains a life-threatening disease, which tends to spread all over the world. The clinical profile of diabetic subjects is often worsened by the presence of several long-term complications, namely neuropathy, nephropathy, retinopathy, and cataract. Several attempts have been made to prevent or at least to delay them. The most relevant are reported in this review, including the development of compounds acting as aldose reductase inhibitors, anti-advanced glycation end-product drugs, free radical scavengers, vasoactive agents, essential fatty acid supplementation, and neurotropic growth factors.
Collapse
Affiliation(s)
- L Costantino
- Dipartimento di Scienze Farmaceutiche, Modena, Italy
| | | | | | | | | |
Collapse
|