1
|
Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmun Rev 2023; 22:103308. [PMID: 36822387 DOI: 10.1016/j.autrev.2023.103308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
We investigated the relationship between oxidative stress and inflammatory myopathies. We searched in the current literature the role of mitochondria and respiratory chain defects as sources of oxidative stress and reactive oxygen species production that led to muscle weakness and fatigue. Different molecules and pathways contribute to redox milieu, reactive oxygen species generation, accumulation of misfolded and carbonylated proteins that lose their ability to fulfil cellular activities. Small peptides and physical techniques proved, in mice models, to reduce oxidative stress. We focused on inclusion body myositis, as a major expression of myopathy related to oxidative stress, where mitochondrial abnormalities are causative agents as well. We described the effect of physical exercise in inclusion body myositis that showed to increase strength and to reduce beta amyloid accumulation with subsequent improvement of the mitochondrial functions. We illustrated the influence of epigenetic control on the immune system by non-coding genetic material in the interaction between oxidative stress and inflammatory myopathies.
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW To describe recent developments in the genetics of sporadic inclusion body myositis (sIBM). RECENT FINDINGS Genes located within major histocompatibility complex regions remain the strongest genetic association with sIBM. The rs10527454 polymorphism in the TOMM40 gene seems to have a disease modifying effect on sIBM by delaying the onset of symptoms, and this effect may be enhanced by the APOE ε3/ε3 genotype. Rare variants in the VCP and SQSTM1 genes have been identified in sIBM patients in two studies using targeted next-generation sequencing and whole-exome sequencing. Two studies have confirmed the correlation between the amount of cytochrome c oxidase -deficient fibres and the proportion of mitochondrial DNA (mtDNA) deletions in sIBM. Some rare variants in mtDNA-related nuclear genes have also been reported. SUMMARY There have been advances in the genetics of sIBM over the past 2 years facilitated by the use of next-generation sequencing. Genes that cause hereditary IBM, which has clinical or pathological features resembling sIBM, have provided clues to the genetic basis of sIBM. To date, genes located in major histocompatibility complex regions and genes involved in protein homeostasis or mtDNA maintenance have been implicated in sIBM. Whole-exome sequencing-association studies, RNA sequencing, and whole-genome sequencing in large sIBM cohorts will be key tools to unravel the genetics of sIBM and its contribution to disease aetiopathogenesis.
Collapse
|
3
|
Gang Q, Bettencourt C, Machado P, Hanna MG, Houlden H. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J Rare Dis 2014; 9:88. [PMID: 24948216 PMCID: PMC4071018 DOI: 10.1186/1750-1172-9-88] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest idiopathic inflammatory muscle disease in people over 50 years old. It is characterized by slowly progressive muscle weakness and atrophy, with typical pathological changes of inflammation, degeneration and mitochondrial abnormality in affected muscle fibres. The cause(s) of sIBM are still unknown, but are considered complex, with the contribution of multiple factors such as environmental triggers, ageing and genetic susceptibility. This review summarizes the current understanding of the genetic contributions to sIBM and provides some insights for future research in this mysterious disease with the advantage of the rapid development of advanced genetic technology. An international sIBM genetic study is ongoing and whole-exome sequencing will be applied in a large cohort of sIBM patients with the aim of unravelling important genetic risk factors for sIBM.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|
4
|
Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromuscul Disord 2013; 23:969-74. [DOI: 10.1016/j.nmd.2013.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
5
|
Abstract
OBJECTIVE To understand belief in a specific scientific claim by studying the pattern of citations among papers stating it. DESIGN A complete citation network was constructed from all PubMed indexed English literature papers addressing the belief that beta amyloid, a protein accumulated in the brain in Alzheimer's disease, is produced by and injures skeletal muscle of patients with inclusion body myositis. Social network theory and graph theory were used to analyse this network. MAIN OUTCOME MEASURES Citation bias, amplification, and invention, and their effects on determining authority. RESULTS The network contained 242 papers and 675 citations addressing the belief, with 220,553 citation paths supporting it. Unfounded authority was established by citation bias against papers that refuted or weakened the belief; amplification, the marked expansion of the belief system by papers presenting no data addressing it; and forms of invention such as the conversion of hypothesis into fact through citation alone. Extension of this network into text within grants funded by the National Institutes of Health and obtained through the Freedom of Information Act showed the same phenomena present and sometimes used to justify requests for funding. CONCLUSION Citation is both an impartial scholarly method and a powerful form of social communication. Through distortions in its social use that include bias, amplification, and invention, citation can be used to generate information cascades resulting in unfounded authority of claims. Construction and analysis of a claim specific citation network may clarify the nature of a published belief system and expose distorted methods of social citation.
Collapse
Affiliation(s)
- Steven A Greenberg
- Children's Hospital Informatics Program and Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Needham M, Mastaglia FL. Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 2007; 6:620-31. [PMID: 17582362 DOI: 10.1016/s1474-4422(07)70171-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inclusion body myositis is the most common acquired muscle disease in older individuals, and its prevalence varies among countries and ethnic groups. The aetiology and pathogenesis of sporadic inclusion body myositis are still poorly understood; however genetic factors, ageing, and environmental triggers might all have a role. Unlike other inflammatory myopathies, sporadic inclusion body myositis causes slowly progressing muscular weakness and atrophy, it has a distinctive pattern of muscle involvement, and is unresponsive to conventional forms of immunotherapy. This review covers the clinical presentation, diagnosis, treatment, and the latest information on genetic susceptibility and pathogenesis of sporadic inclusion body myositis.
Collapse
Affiliation(s)
- Merrilee Needham
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | | |
Collapse
|
7
|
Abstract
Sporadic inclusion-body myositis (sIBM) is the most common acquired muscle disease in Caucasians over the age of 50 years. Pathologically it is marked by inflammatory, degenerative, and mitochondrial changes that interact in a yet-unknown way to cause progressive muscle degeneration and weakness. The cause of the disease is unknown, but it is thought to involve a complex interplay between environmental factors, genetic susceptibility, and aging. The strongest evidence for genetic susceptibility comes from studies of the major histocompatibility complex (MHC), where different combinations of alleles have been associated with sIBM in different ethnic groups. The rare occurrence of familial cases of inclusion-body myositis (fIBM) adds additional evidence for genetic susceptibility. Other candidate genes such as those encoding some of the proteins accumulating in muscle fibers have been investigated, with negative results. The increased understanding of related disorders, the hereditary inclusion-body myopathies (hIBM), may also provide clues to the underlying pathogenesis of sIBM, but to date there is no indication that the genes responsible for these conditions are involved in sIBM. This review summarizes current understanding of the contribution of genetic susceptibility factors to the development of sIBM.
Collapse
Affiliation(s)
- M Needham
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Level 4, A Block, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia.
| | | | | |
Collapse
|
8
|
|
9
|
|
10
|
Grazina M, Pratas J, Silva F, Oliveira S, Santana I, Oliveira C. Genetic basis of Alzheimer's dementia: role of mtDNA mutations. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:92-107. [PMID: 16681804 DOI: 10.1111/j.1601-183x.2006.00225.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder associated to dementia in late adulthood. Amyloid precursor protein, presenilin 1 and presenilin 2 genes have been identified as causative genes for familial AD, whereas apolipoprotein E epsilon4 allele has been associated to the risk for late onset AD. However, mutations on these genes do not explain the majority of cases. Mitochondrial respiratory chain (MRC) impairment has been detected in brain, muscle, fibroblasts and platelets of Alzheimer's patients, indicating a possible involvement of mitochondrial DNA (mtDNA) in the aetiology of the disease. Several reports have identified mtDNA mutations in Alzheimer's patients, suggesting the existence of related causal factors probably of mtDNA origin, thus pointing to the involvement of mtDNA in the risk contributing to dementia, but there is no consensual opinion in finding the cause for impairment. However, mtDNA mutations might modify age of onset, contributing to the neurodegenerative process, probably due to an impairment of MRC and/or translation mechanisms.
Collapse
Affiliation(s)
- M Grazina
- Biochemistry Institute, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
11
|
van der Walt JM, Scott WK, Slifer S, Gaskell PC, Martin ER, Welsh-Bohmer K, Creason M, Crunk A, Fuzzell D, McFarland L, Kroner CC, Jackson CE, Haines JL, Pericak-Vance MA. Maternal lineages and Alzheimer disease risk in the Old Order Amish. Hum Genet 2005; 118:115-22. [PMID: 16078048 DOI: 10.1007/s00439-005-0032-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
Old Order Amish, founded by a small number of Swiss immigrants, exist in culturally isolated communities across rural North America. The consequences of genetic isolation and inbreeding within this group are evident by increased frequencies of many monogenic diseases and several complex disorders. Conversely, the prevalence of Alzheimer disease (AD), the most common form of dementia, is lower in the Amish than in the general American population. Since mitochondrial dysfunction has been proposed as an underlying cause of AD and a specific haplogroup was found to affect AD susceptibility in Caucasians, we investigated whether inherited mitochondrial haplogroups affect risk of developing AD dementia in Ohio and Indiana Amish communities. Ninety-five independent matrilines were observed across six large pedigrees and three small pedigrees then classified into seven major European haplogroups. Haplogroup T is the most frequent haplogroup represented overall in these maternal lines (35.4%) while observed in only 10.6% in outbred American and European populations. Furthermore, haplogroups J and K are less frequent (1.0%) than in the outbred data set (9.4-11.2%). Affected case matrilines and unaffected control lines were chosen from pedigrees to test whether specific haplogroups and their defining SNPs confer risk of AD. We did not observe frequency differences between AD cases compared to controls overall or when stratified by sex. Therefore, we suggest that the genetic effect responsible for AD dementia in the affected Amish pedigrees is unlikely to be of mitochondrial origin and may be caused by nuclear genetic factors.
Collapse
Affiliation(s)
- Joelle M van der Walt
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mastaglia FL, Garlepp MJ, Phillips BA, Zilko PJ. Inflammatory myopathies: clinical, diagnostic and therapeutic aspects. Muscle Nerve 2003; 27:407-25. [PMID: 12661042 DOI: 10.1002/mus.10313] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The three major forms of immune-mediated inflammatory myopathy are dermatomyositis (DM), polymyositis (PM), and inclusion-body myositis (IBM). They each have distinctive clinical and histopathologic features that allow the clinician to reach a specific diagnosis in most cases. Magnetic resonance imaging is sometimes helpful, particularly if the diagnosis of IBM is suspected but has not been formally evaluated. Myositis-specific antibodies are not helpful diagnostically but may be of prognostic value; most antibodies have low sensitivity. Muscle biopsy is mandatory to confirm the diagnosis of an inflammatory myopathy and to allow unusual varieties such as eosinophilic, granulomatous, and parasitic myositis, and macrophagic myofasciitis, to be recognized. The treatment of the inflammatory myopathies remains largely empirical and relies upon the use of corticosteroids, immunosuppressive agents, and intravenous immunoglobulin, all of which have nonselective effects on the immune system. Further controlled clinical trials are required to evaluate the relative efficacy of the available therapeutic modalities particularly in combinations, and of newer immunosuppressive agents (mycophenolate mofetil and tacrolimus) and cytokine-based therapies for the treatment of resistant cases of DM, PM, and IBM. Improved understanding of the molecular mechanisms of muscle injury in the inflammatory myopathies should lead to the development of more specific forms of immunotherapy for these conditions.
Collapse
Affiliation(s)
- Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, Australia.
| | | | | | | |
Collapse
|
13
|
Oldfors A, Fyhr IM. Inclusion body myositis: genetic factors, aberrant protein expression, and autoimmunity. Curr Opin Rheumatol 2001; 13:469-75. [PMID: 11698722 DOI: 10.1097/00002281-200111000-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sporadic inclusion body myositis (s-IBM) is an inflammatory myopathy mainly affecting elderly individuals. It has a chronic progressive course leading to severe disability. Immunosuppressive treatment is in most instances ineffective. S-IBM is morphologically characterized by mononuclear cell infiltrates and vacuolated muscle fibers with pathologic accumulation of a large number of different proteins. Recent research has focused on the expression of various factors that may contribute to the inflammatory reaction and the typical inclusions. This review summarizes the new information on genetic factors, abnormal protein expression and inflammation, which provides a basis for linking the different typical morphologic features of s-IBM to a cascade of pathogenic events.
Collapse
Affiliation(s)
- A Oldfors
- Göteborg Neuromuscular Center, Department of Pathology, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | |
Collapse
|