1
|
Abstract
Most of the glycogen metabolism disorders that affect skeletal muscle involve enzymes in glycogenolysis (myophosphorylase (PYGM), glycogen debranching enzyme (AGL), phosphorylase b kinase (PHKB)) and glycolysis (phosphofructokinase (PFK), phosphoglycerate mutase (PGAM2), aldolase A (ALDOA), β-enolase (ENO3)); however, 3 involve glycogen synthesis (glycogenin-1 (GYG1), glycogen synthase (GSE), and branching enzyme (GBE1)). Many present with exercise-induced cramps and rhabdomyolysis with higher-intensity exercise (i.e., PYGM, PFK, PGAM2), yet others present with muscle atrophy and weakness (GYG1, AGL, GBE1). A failure of serum lactate to rise with exercise with an exaggerated ammonia response is a common, but not invariant, finding. The serum creatine kinase (CK) is often elevated in the myopathic forms and in PYGM deficiency, but can be normal and increase only with rhabdomyolysis (PGAM2, PFK, ENO3). Therapy for glycogen storage diseases that result in exercise-induced symptoms includes lifestyle adaptation and carefully titrated exercise. Immediate pre-exercise carbohydrate improves symptoms in the glycogenolytic defects (i.e., PYGM), but can exacerbate symptoms in glycolytic defects (i.e., PFK). Creatine monohydrate in low dose may provide a mild benefit in PYGM mutations.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Departments of Pediatrics and Medicine, McMaster University, Hamilton Health Sciences Centre, Rm 2H26, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
2
|
Magoulas PL, El-Hattab AW, Roy A, Bali DS, Finegold MJ, Craigen WJ. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review. Hum Pathol 2012; 43:943-51. [DOI: 10.1016/j.humpath.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/08/2011] [Accepted: 10/07/2011] [Indexed: 10/14/2022]
|
3
|
Dimauro S, Garone C. Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med 2011; 16:181-9. [PMID: 21620786 DOI: 10.1016/j.siny.2011.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two major groups of inborn errors of energy metabolism are reviewed -glycogenoses and defects of the mitochondrial respiratory chain - to see how often these disorders present in fetal life or neonatally. After some general considerations on energy metabolism in the pre- and postnatal development of the human infant, different glycogen storage diseases and mitochondrial encephalomyopathies are surveyed. General conclusions are that: (i) disorders of glycogen metabolism are more likely to cause 'fetal disease' than defects of the respiratory chain; (ii) mitochondrial encephalomyopathies, especially those due to defects of the nuclear genome, are frequent causes of neonatal or infantile diseases, typically Leigh syndrome, but usually do not cause fetal distress; (iii) notable exceptions include mutations in the complex III assembly gene BCS1L resulting in the GRACILE syndrome (growth retardation, aminoaciduria, cholestasis, iron overload, lactic acidosis, and early death), and defects of mitochondrial protein synthesis, which are the 'new frontier' in mitochondrial translational research.
Collapse
Affiliation(s)
- S Dimauro
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
4
|
Li SC, Chen CM, Goldstein JL, Wu JY, Lemyre E, Burrow TA, Kang PB, Chen YT, Bali DS. Glycogen storage disease type IV: novel mutations and molecular characterization of a heterogeneous disorder. J Inherit Metab Dis 2010; 33 Suppl 3:S83-S90. [PMID: 20058079 DOI: 10.1007/s10545-009-9026-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/24/2009] [Accepted: 11/27/2009] [Indexed: 10/20/2022]
Abstract
Glycogen storage disease type IV (GSD IV; Andersen disease) is caused by a deficiency of glycogen branching enzyme (GBE), leading to excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues. The accumulated glycogen lacks multiple branch points and thus has longer outer branches and poor solubility, causing irreversible tissue and organ damage. Although classic GSD IV presents with early onset of hepatosplenomegaly with progressive liver cirrhosis, GSD IV exhibits extensive clinical heterogeneity with respect to age at onset and variability in pattern and extent of organ and tissue involvement. With the advent of cloning and determination of the genomic structure of the human GBE gene (GBE1), molecular analysis and characterization of underlying disease-causing mutations is now possible. A variety of disease-causing mutations have been identified in the GBE1 gene in GSD IV patients, many of whom presented with diverse clinical phenotypes. Detailed biochemical and genetic analyses of three unrelated patients suspected to have GSD IV are presented here. Two novel missense mutations (p.Met495Thr and p.Pro552Leu) and a novel 1-bp deletion mutation (c.1999delA) were identified. A variety of mutations in GBE1 have been previously reported, including missense and nonsense mutations, nucleotide deletions and insertions, and donor and acceptor splice-site mutations. Mutation analysis is useful in confirming the diagnosis of GSD IV--especially when higher residual GBE enzyme activity levels are seen and enzyme analysis is not definitive--and allows for further determination of potential genotype/phenotype correlations in this disease.
Collapse
Affiliation(s)
- Sing-Chung Li
- School of Nutrition and Health Science, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lamperti C, Salani S, Lucchiari S, Bordoni A, Ripolone M, Fagiolari G, Fruguglietti ME, Crugnola V, Colombo C, Cappellini A, Prelle A, Bresolin N, Comi GP, Moggio M. Neuropathological study of skeletal muscle, heart, liver, and brain in a neonatal form of glycogen storage disease type IV associated with a new mutation in GBE1 gene. J Inherit Metab Dis 2009; 32 Suppl 1:S161-8. [PMID: 19357989 DOI: 10.1007/s10545-009-1134-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 10/20/2022]
Abstract
Glycogen storage disease type IV (GSD IV, or Andersen disease) is an autosomal recessive disorder due to the deficiency of 1,4-alpha-glucan branching enzyme (or glycogen branching enzyme, GBE1), resulting in an accumulation of amylopectin-like polysaccharide in muscle, liver, heart and central and peripheral nervous system. Typically, the presentation is in childhood with liver involvement up to cirrhosis. The neuromuscular form varies in onset (congenital, perinatal, juvenile and adult) and in severity. Congenital cases are rare, and fewer than 20 cases have been described and genetically determined so far. This form is characterized by polyhydramnios, neonatal hypotonia, and neuronal involvement; hepatopathy is uncommon, and the babies usually die between 4 weeks and 4 months of age. We report the case of an infant who presented severe hypotonia, dilatative cardiomyopathy, mild hepatopathy, and brain lateral ventricle haemorrhage, features consistent with the congenital form of GSD IV. He died at one month of life of cardiorespiratory failure. Muscle biopsy and heart and liver autoptic specimens showed many vacuoles filled with PAS-positive diastase-resistant materials. Electron-microscopic analysis showed mainly polyglucosan accumulations in all the tissues examined. Postmortem examination showed the presence of vacuolated neurons containing this abnormal polysaccharide. GBE1 biochemical activity was virtually absent in muscle and fibroblasts, and totally lacking in liver and heart as well as glycogen synthase activity. GBE1 gene sequence analysis revealed a novel homozygous nonsense mutation, p.E152X, in exon 4, correlating with the lack of enzyme activity and with the severe neonatal involvement. Our findings contribute to increasing the spectrum of mutation associated with congenital GSD IV.
Collapse
Affiliation(s)
- C Lamperti
- Fondazione Ospedale Maggiore Policlinico, Maniagalli and Regina Elena, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ban HR, Kim KM, Jang JY, Kim GH, You HW, Kim K, Yu E, Kim DY, Kim KH, Lee YJ, Lee SG, Park YN, Koh H, Chung KS. Living Donor Liver Transplantation in a Korean Child with Glycogen Storage Disease Type IV and a GBE1 Mutation. Gut Liver 2009; 3:60-3. [PMID: 20479904 DOI: 10.5009/gnl.2009.3.1.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/06/2008] [Indexed: 11/04/2022] Open
Abstract
Glycogen storage disease type IV (GSD-IV) is an autosomal recessive disease caused by a deficient glycogen branching enzyme (GBE), encoded by the GBE1 gene, resulting in the accumulation of abnormal glycogen deposits in the liver and other tissues. We treated a 20-month-old girl who presented with progressive liver cirrhosis and was diagnosed with GSD-IV, as confirmed by GBE1 gene mutation analysis, and underwent living related heterozygous donor liver transplantation. Direct sequencing of the GBE1 gene revealed that the patient was compound heterozygous for a known c.1571G>A (p.Gly264Glu) mutation a novel c.791G>A (Arg524Gln) mutation. This is the first report of a Korean patient with GSD-IV confirmed by mutation analysis, who was treated successfully by liver transplantation.
Collapse
Affiliation(s)
- Hye Ryun Ban
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nolte KW, Janecke AR, Vorgerd M, Weis J, Schröder JM. Congenital type IV glycogenosis: the spectrum of pleomorphic polyglucosan bodies in muscle, nerve, and spinal cord with two novel mutations in the GBE1 gene. Acta Neuropathol 2008; 116:491-506. [PMID: 18661138 DOI: 10.1007/s00401-008-0417-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 07/14/2008] [Accepted: 07/19/2008] [Indexed: 11/30/2022]
Abstract
A diagnosis of GSD-IV was established in three premature, floppy infants based on characteristic, however unusually pleomorphic polyglucosan bodies at the electron microscopic level, glycogen branching enzyme deficiency in two cases, and the identification of GBE1 mutations in two cases. Pleomorphic polyglucosan bodies in muscle fibers and macrophages, and less severe in Schwann cells and microglial cells were noted. Most of the inclusions were granular and membrane-bound; others had an irregular contour, were more electron dense and were not membrane bound, or homogenous ('hyaline'). A paracrystalline pattern of granules was repeatedly noted showing a periodicity of about 10 nm with an angle of about 60 degrees or 120 degrees at sites of changing linear orientation. Malteser crosses were noted under polarized light in the larger inclusions. Some inclusions were PAS positive and others were not. Severely atrophic muscle fibers without inclusions, but with depletion of myofibrils in the plane of section studied indicated the devastating myopathic nature of the disease. Schwann cells and peripheral axons were less severely affected as was the spinal cord. Two novel protein-truncating mutations (c.1077insT, p.V359fsX16; g.101517_127067del25550insCAGTACTAA, DelExon4-7) were identified in these families. The present findings extend previous studies indicating that truncating GBE1 mutations cause a spectrum of severe diseases ranging from generalized intrauterine hydrops to fatal perinatal hypotonia and fatal cardiomyopathy in the first months of life.
Collapse
Affiliation(s)
- Kay W Nolte
- Department of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | | | | | | |
Collapse
|
8
|
Massa R, Bruno C, Martorana A, de Stefano N, van Diggelen OP, Federico A. Adult polyglucosan body disease: Proton magnetic resonance spectroscopy of the brain and novel mutation in theGBE1gene. Muscle Nerve 2007; 37:530-6. [DOI: 10.1002/mus.20916] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Vucic S, Pamphlett R, Wills EJ, Yiannikas C. Polyglucosan body disease myopathy: An unusual presentation. Muscle Nerve 2007; 35:536-9. [PMID: 17221878 DOI: 10.1002/mus.20720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polyglucosan body disease (PBD) is a slowly progressive adult-onset glycogen storage disorder that typically affects upper and lower neurons. Myopathy, as a complication of PBD has been reported rarely and clinically manifests as chronic limb-girdle muscle weakness. We report an unusual case of PBD myopathy presenting as an asymmetric motor syndrome that clinically overlapped with amyotrophic lateral sclerosis, further expanding the phenotype of this disorder.
Collapse
Affiliation(s)
- Steve Vucic
- Prince of Wales Medical Research Institute and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
10
|
Burrow TA, Hopkin RJ, Bove KE, Miles L, Wong BL, Choudhary A, Bali D, Li SC, Chen YT. Non-lethal congenital hypotonia due to glycogen storage disease type IV. Am J Med Genet A 2006; 140:878-882. [PMID: 16528737 DOI: 10.1002/ajmg.a.31166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glycogen storage disease type IV (GSD-IV) is an autosomal recessive genetic disorder due to a deficiency in the activity of the glycogen branching enzyme (GBE). A deficiency in GBE activity results in the accumulation of glycogen with fewer branching points and long, unbranched outer chains. The disorder results in a variable phenotype, including musculoskeletal, cardiac, neurological, and hepatic involvement, alone or in continuum, which can be identified at any stage of life. The classic form of GSD-IV is a hepatic presentation, which presents in the first 18 months of life with failure to thrive, hepatomegaly, and cirrhosis that progresses to liver failure, resulting in death by age 5 years. A severe congenital musculoskeletal phenotype with death in the neonatal period has also been described. We report an unusual case of congenital musculoskeletal presentation of GSD-IV with stable congenital hypotonia, gross motor delay, and severe fibro-fatty replacement of the musculature, but no hepatic or cardiac involvement. Molecular analysis revealed two novel missense mutations with amino acid changes in the GBE gene (Q236H and R262C), which may account for the mild phenotype.
Collapse
Affiliation(s)
- T Andrew Burrow
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Akman HO, Karadimas C, Gyftodimou Y, Grigoriadou M, Kokotas H, Konstantinidou A, Anninos H, Patsouris E, Thaker HM, Kaplan JB, Besharat I, Hatzikonstantinou K, Fotopoulos S, Dimauro S, Petersen MB. Prenatal diagnosis of glycogen storage disease type IV. Prenat Diagn 2006; 26:951-5. [PMID: 16874838 DOI: 10.1002/pd.1533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glycogen storage disease type IV (GSD-IV) is a rare autosomal recessive disorder due to mutations in the GBE1 gene causing deficiency of the glycogen branching enzyme (GBE). Prenatal diagnosis has occasionally been performed by the measurement of the GBE activity in cultured chorionic villi (CV) cells. METHODS Two unrelated probands with severe hypotonia at birth and death during the neonatal period were diagnosed with GSD-IV on the basis of postmortem histological findings. DNA analysis revealed truncating GBE1 mutations in both families. RESULTS Prenatal diagnosis was performed in subsequent pregnancies by determination of branching enzyme activity and DNA analysis of CV or cultured amniocytes. Detailed autopsies of the affected fetuses at 14 and 24 weeks of gestation demonstrated intracellular inclusions of abnormal glycogen characteristic of GSD-IV. CONCLUSION Prenatal diagnosis of GSD-IV by DNA analysis is highly accurate in genetically confirmed cases.
Collapse
Affiliation(s)
- H Orhan Akman
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bruno C, van Diggelen OP, Cassandrini D, Gimpelev M, Giuffrè B, Donati MA, Introvini P, Alegria A, Assereto S, Morandi L, Mora M, Tonoli E, Mascelli S, Traverso M, Pasquini E, Bado M, Vilarinho L, van Noort G, Mosca F, DiMauro S, Zara F, Minetti C. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology 2005; 63:1053-8. [PMID: 15452297 DOI: 10.1212/01.wnl.0000138429.11433.0d] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glycogen storage disease type IV (GSD-IV) is a clinically heterogeneous autosomal recessive disorder due to glycogen branching enzyme (GBE) deficiency and resulting in the accumulation of an amylopectin-like polysaccharide. The typical presentation is liver disease of childhood, progressing to lethal cirrhosis. The neuromuscular form of GSD-IV varies in onset (perinatal, congenital, juvenile, or adult) and severity. OBJECTIVE To identify the molecular bases of different neuromuscular forms of GSD-IV and to establish possible genotype/phenotype correlations. METHODS Eight patients with GBE deficiency had different neuromuscular presentations: three had fetal akinesia deformation sequence (FADS), three had congenital myopathy, one had juvenile myopathy, and one had combined myopathic and hepatic features. In all patients, the promoter and the entire coding region of the GBE gene at the RNA and genomic level were sequenced. RESULTS Nine novel mutations were identified, including nonsense, missense, deletion, insertion, and splice-junction mutations. The three cases with FADS were homozygous, whereas all other cases were compound heterozygotes. CONCLUSIONS This study expands the spectrum of mutations in the GBE gene and confirms that the neuromuscular presentation of GSD-IV is clinically and genetically heterogeneous.
Collapse
Affiliation(s)
- C Bruno
- Neuromuscular Disease Unit, Department of Pediatrics, University of Genova, Istituto Giannina Gaslini, Largo G. Gaslini 5, I-16147 Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Janecke AR, Dertinger S, Ketelsen UP, Bereuter L, Simma B, Müller T, Vogel W, Offner FA. Neonatal type IV glycogen storage disease associated with "null" mutations in glycogen branching enzyme 1. J Pediatr 2004; 145:705-9. [PMID: 15520786 DOI: 10.1016/j.jpeds.2004.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fatal neonatal form of type IV glycogen storage disease (GSD IV) was diagnosed on light and electron microscopy and by analysis of GBE1 , the gene encoding glycogen branching enzyme. We report two novel truncating mutations, as well as the first genomic mutational analysis of GBE1 using denaturing high performance liquid chromatography.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Medical Biology and Human Genetics, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Type 2 diabetes is a complex disorder with diminished insulin secretion and insulin action contributing to the hyperglycemia and wide range of metabolic defects that underlie the disease. The contribution of glucose metabolic pathways per se in the pathogenesis of the disease remains unclear. The cellular fate of glucose begins with glucose transport and phosphorylation. Subsequent pathways of glucose utilization include aerobic and anaerobic glycolysis, glycogen formation, and conversion to other intermediates in the hexose phosphate or hexosamine biosynthesis pathways. Abnormalities in each pathway may occur in diabetic subjects; however, it is unclear whether perturbations in these may lead to diabetes or are a consequence of the multiple metabolic abnormalities found in the disease. This review is focused on the cellular fate of glucose and relevance to human type 2 diabetes.
Collapse
Affiliation(s)
- Clara Bouché
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
15
|
Giuffrè B, Parini R, Rizzuti T, Morandi L, van Diggelen OP, Bruno C, Giuffrè M, Corsello G, Mosca F. Severe neonatal onset of glycogenosis type IV: clinical and laboratory findings leading to diagnosis in two siblings. J Inherit Metab Dis 2004; 27:609-19. [PMID: 15669676 DOI: 10.1023/b:boli.0000042980.45692.bb] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycogenosis type IV is an autosomal recessive disease, exceptionally diagnosed at birth: only very few reports of the fatal perinatal neuromuscular form have been described. We report on two sibling male newborns who died at 10 and 4 weeks of age with clinical signs of a systemic storage disease. Prenatal history included polyhydramnios, reduced fetal movements and fetal hydrops, and Caesarean section was performed at 36 weeks of gestational age because of fetal distress. At birth, both babies showed severe hypotonia, hyporeflexia and no spontaneous breathing activity. They never showed active movements, sucking and swallowing and were respirator-dependent until death. A muscle biopsy revealed, in both patients, the presence of PAS-positive and partially diastase-resistant cytoplasmic inclusions containing granular and filamentous amylopectin-like material. This suggested that the stored material consisted of abnormal glycogen. At autopsy, ultrastructural examination of cardiac and skeletal muscle, liver, kidney and brain showed PAS-positive diastase-resistant eosinophilic cytoplasmic inclusions. Determination of branching enzyme activity, in cultured fibroblasts from the second patient, showed markedly reduced enzyme activity, confirming diagnosis of glycogenosis type IV. Our patients showed the full spectrum of both prenatal signs (hydrops, polyhydramnios) and postnatal signs (hypotonia, hyporeflexia, absence of active movements, cardiomegaly), which have been reported previously. They suffered from a very severe form of glycogenosis type IV with clinical and histological involvement of many tissues and organs. Diagnosis was accomplished on the second baby and required several biochemical and histological studies, in order to rule out both neuromuscular disorders and the most common storage diseases with neonatal onset. In our experience, the correct interpretation of the histological findings was essential in the search for the diagnosis.
Collapse
Affiliation(s)
- B Giuffrè
- Dipartimento di Neonatologia, Istituti Clinici di Perfezionamento, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
There are 11 hereditary disorders of glycogen metabolism affecting muscle alone or together with other tissues, and they cause two main clinical syndromes: episodic, recurrent exercise intolerance with cramps, myalgia, and myoglobinuria; or fixed, often progressive weakness. Great strides have been made in our understanding of the molecular bases of these disorders, all of which show remarkable genetic heterogeneity. In contrast, the pathophysiological mechanisms underlying acute muscle breakdown and chronic weakness remain unclear. Although glycogen storage diseases have been studied for decades, new biochemical defects are still being discovered, especially in the glycolytic pathway. In addition, the pathogenesis of polyglucosan deposition is being clarified both in traditional glycogenoses and in disorders such as Lafora's disease. In some conditions, combined dietary and exercise regimens may be of help, and gene therapy, including recombinant enzyme replacement, is being actively pursued.
Collapse
Affiliation(s)
- S DiMauro
- Department of Neurology, Columbia University College of Physicians and Surgeons, 4-420 College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
17
|
Ziemssen F, Sindern E, Schr�der JM, Shin YS, Zange J, Kilimann MW, Malin JP, Vorgerd M. Novel missense mutations in the glycogen-branching enzyme gene in adult polyglucosan body disease. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200004)47:4<536::aid-ana22>3.0.co;2-k] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|