1
|
Leipart V, Halskau Ø, Amdam GV. How Honey Bee Vitellogenin Holds Lipid Cargo: A Role for the C-Terminal. Front Mol Biosci 2022; 9:865194. [PMID: 35755821 PMCID: PMC9219001 DOI: 10.3389/fmolb.2022.865194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Vitellogenin (Vg) is a phylogenetically broad glycolipophosphoprotein. A major function of this protein is holding lipid cargo for storage and transportation. Vg has been extensively studied in honey bees (Apis mellifera) due to additional functions in social traits. Using AlphaFold and EM contour mapping, we recently described the protein structure of honey bee Vg. The full-length protein structure reveals a large hydrophobic lipid binding site and a well-defined fold at the C-terminal region. Now, we outline a shielding mechanism that allows the C-terminal region of Vg to cover a large hydrophobic area exposed in the all-atom model. We propose that this C-terminal movement influences lipid molecules' uptake, transport, and delivery. The mechanism requires elasticity in the Vg lipid core as described for homologous proteins in the large lipid transfer protein (LLTP) superfamily to which Vg belongs. Honey bee Vg has, additionally, several structural arrangements that we interpret as beneficial for the functional flexibility of the C-terminal region. The mechanism proposed here may be relevant for the Vg molecules of many species.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Cabrera-Wrooman A, Ortega-Peña S, Salgado RM, Sandoval-Cuevas B, Krötzsch E. Antiseptic Effects and Biosafety of a Controlled-Flow Electrolyzed Acid Solution Involve Electrochemical Properties, Rather than Free Radical Presence. Microorganisms 2022; 10:microorganisms10040745. [PMID: 35456795 PMCID: PMC9032035 DOI: 10.3390/microorganisms10040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Electrolyzed acid solutions produced by different methods have antiseptic properties due to the presence of chlorine and reactive oxygen species. Our aim was to determine whether a controlled-flow electrolyzed acid solution (CFEAS) has the ability to improve wound healing due to its antiseptic and antibiofilm properties. First, we demonstrated in vitro that Gram-negative and Gram-positive bacteria were susceptible to CFEAS, and the effect was partially sustained for 24 h, evidencing antibiofilm activity (p < 0.05, CFEAS-treated vs. controls). The partial cytotoxicity of CFEAS was mainly observed in macrophages after 6 h of treatment; meanwhile, fibroblasts resisted short-lived free radicals (p < 0.05, CFEAS treated vs. controls), perhaps through redox-regulating mechanisms. In addition, we observed that a single 24 h CFEAS treatment of subacute and chronic human wounds diminished the CFU/g of tissue by ten times (p < 0.05, before vs. after) and removed the biofilm that was adhered to the wound, as we observed via histology from transversal sections of biopsies obtained before and after CFEAS treatment. In conclusion, the electrolyzed acid solution, produced by a novel method that involves a controlled flow, preserves the antiseptic and antibiofilm properties observed in other, similar formulas, with the advantage of being safe for eukaryotic cells; meanwhile, the antibiofilm activity is sustained for 24 h, both in vitro and in vivo.
Collapse
Affiliation(s)
- Alejandro Cabrera-Wrooman
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico; (A.C.-W.); (S.O.-P.); (R.M.S.)
| | - Silvestre Ortega-Peña
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico; (A.C.-W.); (S.O.-P.); (R.M.S.)
| | - Rosa M. Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico; (A.C.-W.); (S.O.-P.); (R.M.S.)
| | - Belinda Sandoval-Cuevas
- Wound Care Clinic, Hospital General Regional Number 2, Instituto Mexicano del Seguro Social, Calzada de las Bombas 117, Coapa, Girasoles I, Tlalpan, Mexico City 14310, Mexico;
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico; (A.C.-W.); (S.O.-P.); (R.M.S.)
- Correspondence: ; Tel.: +52-1-552106-6140
| |
Collapse
|
3
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Unlocking Survival Mechanisms for Metal and Oxidative Stress in the Extremely Acidophilic, Halotolerant Acidihalobacter Genus. Genes (Basel) 2020; 11:genes11121392. [PMID: 33255299 PMCID: PMC7760498 DOI: 10.3390/genes11121392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022] Open
Abstract
Microorganisms used for the biohydrometallurgical extraction of metals from minerals must be able to survive high levels of metal and oxidative stress found in bioleaching environments. The Acidihalobacter genus consists of four species of halotolerant, iron–sulfur-oxidizing acidophiles that are unique in their ability to tolerate chloride and acid stress while simultaneously bioleaching minerals. This paper uses bioinformatic tools to predict the genes and mechanisms used by Acidihalobacter members in their defense against a wide range of metals and oxidative stress. Analysis revealed the presence of multiple conserved mechanisms of metal tolerance. Ac. yilgarnensis F5T, the only member of this genus that oxidizes the mineral chalcopyrite, contained a 39.9 Kb gene cluster consisting of 40 genes encoding mobile elements and an array of proteins with direct functions in copper resistance. The analysis also revealed multiple strategies that the Acidihalobacter members can use to tolerate high levels of oxidative stress. Three of the Acidihalobacter genomes were found to contain genes encoding catalases, which are not common to acidophilic microorganisms. Of particular interest was a rubrerythrin genomic cluster containing genes that have a polyphyletic origin of stress-related functions.
Collapse
|
5
|
Xu J, Tang S, Song E, Yin B, Bao E. Inhibition of heat shock protein 70 intensifies heat-stressed damage and apoptosis of chicken primary myocardial cells in vitro. Mol Med Rep 2017; 15:2881-2889. [DOI: 10.3892/mmr.2017.6337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
|
6
|
Norambuena J, Flores R, Cárdenas JP, Quatrini R, Chávez R, Levicán G. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum. PLoS One 2012; 7:e44576. [PMID: 22970253 PMCID: PMC3435265 DOI: 10.1371/journal.pone.0044576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/09/2012] [Indexed: 11/22/2022] Open
Abstract
Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR), periplasmic thiol oxidation system (DsbA/DsbB) and a c-type cytochrome maturation system (DsbD/DsbE). Upon exposure of L. ferriphilum to reactive oxygen species (ROS)-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.
Collapse
Affiliation(s)
- Javiera Norambuena
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Flores
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan P. Cárdenas
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia y Vida, Santiago, Chile
| | - Raquel Quatrini
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia y Vida, Santiago, Chile
| | - Renato Chávez
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Gloria Levicán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
7
|
Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity. FEBS Lett 2011; 585:664-70. [PMID: 21266175 DOI: 10.1016/j.febslet.2011.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/23/2022]
Abstract
Heat shock protein 33 (Hsp33) from Escherichia coli is a redox-regulated molecular chaperone that protects cells from oxidative stress. To understand the molecular basis for the monomer-dimer switch in the functional regulation of E. coli Hsp33, we generated a constitutively monomeric Hsp33 by introducing the Q151E mutation in the dimeric interface and determined its crystal structure. The overall scaffold of the monomeric Hsp33(1-235) (Q151E) mutant is virtually the same as that of the dimeric form, except that there is no domain swapping. The measurement of chaperone activity to thermally denatured luciferase showed that the constitutively monomeric Hsp33 mutant still retains chaperone activity similar to that of wild-type Hsp33(1-235), suggesting that a Hsp33 monomer is sufficient to interact with slowly unfolded substrate.
Collapse
|
8
|
Addepalli B, Limbach PA, Hunt AG. A disulfide linkage in a CCCH zinc finger motif of an Arabidopsis CPSF30 ortholog. FEBS Lett 2010; 584:4408-12. [PMID: 20888817 DOI: 10.1016/j.febslet.2010.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
The Arabidopsis ortholog of the 30kDa subunit of the cleavage and polyadenylation factor (AtCPSF30) is an RNA binding endonuclease, and the endonuclease activity is inhibited by reducing agents. Here, we report the presence of a disulfide linkage in the endonuclease motif based on comparative mass spectrometry (MS) analysis of reduced and non-reduced but carbamidomethylated protein. This analysis reveals that this disulfide bond involves a CCCH zinc finger motif, one that is associated with the endonuclease activity of AtCPSF30. This finding raises the possibility that redox regulation of AtCPSF30 may occur through oxidation and reduction of the disulfide linkage.
Collapse
|
9
|
Fang CY, Chen HY, Wang M, Chen PL, Chang CF, Chen LS, Shen CH, Ou WC, Tsai MD, Hsu PH, Chang D. Global analysis of modifications of the human BK virus structural proteins by LC-MS/MS. Virology 2010; 402:164-76. [PMID: 20381826 DOI: 10.1016/j.virol.2010.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/03/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
BK virus, a human polyomavirus, may cause nephritis and urological disorders in patients who have undergone renal transplantation. Little is known about the characteristics of the BK viral proteins. In the current study, BK viral proteins were characterized by immunoblotting and LC-MS/MS. The results revealed that BK virus is composed of three structural proteins, VP1, VP2, and VP3 and four cellular histones, H2A, H2B, H3, and H4. The major structural protein, VP1, can be divided into 16 subspecies by two-dimensional gel electrophoresis. Modifications of VP1, VP2, and VP3 were comprehensively identified by LC-MS/MS. The presence of acetylation, cysteinylation, carboxymethylation, carboxyethylation, formylation, methylation, methylthiolation, oxidation, dioxidation, and phosphorylation could be identified. This is the first report providing an analysis of the global modifications present on polyomavirus structural proteins. The identification of these modifications of VP1, VP2, and VP3 should facilitate an understanding of the physiology of BKV during its life cycle.
Collapse
Affiliation(s)
- Chiung-Yao Fang
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Patil DP, Atanur S, Dhotre DP, Anantharam D, Mahajan VS, Walujkar SA, Chandode RK, Kulkarni GJ, Ghate PS, Srivastav A, Dayananda KM, Gupta N, Bhagwat B, Joshi RR, Mourya DT, Patole MS, Shouche YS. Generation, annotation, and analysis of ESTs from midgut tissue of adult female Anopheles stephensi mosquitoes. BMC Genomics 2009; 10:386. [PMID: 19695102 PMCID: PMC2743715 DOI: 10.1186/1471-2164-10-386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 08/20/2009] [Indexed: 11/23/2022] Open
Abstract
Background Malaria is a tropical disease caused by protozoan parasite, Plasmodium, which is transmitted to humans by various species of female anopheline mosquitoes. Anopheles stephensi is one such major malaria vector in urban parts of the Indian subcontinent. Unlike Anopheles gambiae, an African malaria vector, transcriptome of A. stephensi midgut tissue is less explored. We have therefore carried out generation, annotation, and analysis of expressed sequence tags from sugar-fed and Plasmodium yoelii infected blood-fed (post 24 h) adult female A. stephensi midgut tissue. Results We obtained 7061 and 8306 ESTs from the sugar-fed and P. yoelii infected mosquito midgut tissue libraries, respectively. ESTs from the combined dataset formed 1319 contigs and 2627 singlets, totaling to 3946 unique transcripts. Putative functions were assigned to 1615 (40.9%) transcripts using BLASTX against UniProtKB database. Amongst unannotated transcripts, we identified 1513 putative novel transcripts and 818 potential untranslated regions (UTRs). Statistical comparison of annotated and unannotated ESTs from the two libraries identified 119 differentially regulated genes. Out of 3946 unique transcripts, only 1387 transcripts were mapped on the A. gambiae genome. These also included 189 novel transcripts, which were mapped to the unannotated regions of the genome. The EST data is available as ESTDB at . Conclusion 3946 unique transcripts were successfully identified from the adult female A. stephensi midgut tissue. These data can be used for microarray development for better understanding of vector-parasite relationship and to study differences or similarities with other malaria vectors. Mapping of putative novel transcripts from A. stephensi on the A. gambiae genome proved fruitful in identification and annotation of several genes. Failure of some novel transcripts to map on the A. gambiae genome indicates existence of substantial genomic dissimilarities between these two potent malaria vectors.
Collapse
Affiliation(s)
- Deepak P Patil
- Lab 3, National Center for Cell Science, Pune - 411007, India.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Akide-Ndunge OB, Tambini E, Giribaldi G, McMillan PJ, Müller S, Arese P, Turrini F. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar J 2009; 8:113. [PMID: 19480682 PMCID: PMC2696464 DOI: 10.1186/1475-2875-8-113] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 05/29/2009] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum-parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Methods Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. Results In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of antioxidant enzymes was also increased in oxidatively-stressed trophozoites. Conclusion Results indicated that mRNA expression of parasite antioxidant enzymes and HSPs was co-ordinated and stage-dependent. Secondly, both systems were redox-responsive and showed remarkably increased and co-ordinated expression in oxidatively-stressed parasites and in parasites growing in antioxidant blunted G6PD-deficient RBCs. Lastly, as important anti-malarials either increase oxidant stress or impair antioxidant defense, results may encourage the inclusion of anti-HSP molecules in anti-malarial combined drugs.
Collapse
Affiliation(s)
- Oscar Bate Akide-Ndunge
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 2009; 61:310-8. [PMID: 19248813 DOI: 10.1016/j.addr.2009.02.003] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/14/2009] [Indexed: 10/21/2022]
Abstract
Heat shock proteins (Hsps) have been studied for many years and there is now a large body of evidence that demonstrates the role of Hsp upregulation in tissue and cell protection in a wide variety of stress conditions. Oxidative stress is known to be involved in a number of pathological conditions, including neurodegeneration, cardiovascular disease and stroke, and even plays a role in natural aging. In this review we summarize the current understanding of the role of Hsps and the heat shock response (HSR) in these pathological conditions and discuss the therapeutic potential of an Hsp therapy for these disorders. However, although an Hsp based therapy appears to be a promising approach for the treatment of diseases that involve oxidative damage, there are some significant hurdles that must be overcome before this approach can be successful. For example, to be effective an Hsp based therapy will need to ensure that the upregulation of Hsps occurs in the right place (i.e. be cell specific), at the right time and to a level and specificity that ensures that all the important binding partners, namely the co-chaperones, are also present at the appropriate levels. It is therefore unlikely that strategies that involve genetic modifications that result in overexpression of specific Hsps will achieve such sophisticated and coordinated effects. Similarly, it is likely that some pharmaceutical inducers of Hsps may be too generic to achieve the desired specific effects on Hsp expression, or may simply fail to reach their target cells due to delivery problems. However, if these difficulties can be overcome, it is clear that an effective Hsp based therapy would be of great benefit to the wide range of depilating conditions in which oxidative stress plays a critical role.
Collapse
Affiliation(s)
- Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
13
|
Luque-Almagro VM, Huertas MJ, Roldán MD, Moreno-Vivián C, Martínez-Luque M, Blasco R, Castillo F. The cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344 responds to cyanide by defence mechanisms against iron deprivation, oxidative damage and nitrogen stress. Environ Microbiol 2007; 9:1541-9. [PMID: 17504491 DOI: 10.1111/j.1462-2920.2007.01274.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2-D) electrophoresis approach has been used to test protein expression changes in response to cyanide in the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344. This is a cyanide-assimilating strain which also grows in media containing cyanide-enriched effluent from the jewellery industry. The bacterium efficiently uses this residue as the sole nitrogen source for aerobic growth under alkaline pH with negligible nitrogen losses as HCN. Cell-free extracts isolated from P. pseudoalcaligenes grown with a jewellery residue, free cyanide or ammonium chloride as nitrogen source were subjected to 2-D electrophoresis and the spot patterns were examined to determine differential protein expression. Electrophoretic plates exhibiting an average of 1000 spots showed significant differences in the expression of about 44 proteins depending on the nitrogen source. Some of these protein spots were analysed by Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Characterization of five of these proteins reveals that cyanide shock induces proteins related to iron acquisition, regulation of nitrogen assimilation pathways and oxidative stress repairing and protection.
Collapse
Affiliation(s)
- Victor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell 2006; 21:123-33. [PMID: 16387659 DOI: 10.1016/j.molcel.2005.11.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 10/20/2005] [Accepted: 11/04/2005] [Indexed: 11/20/2022]
Abstract
Import of proteins into mitochondria occurs by coordinated actions of preprotein translocases in the outer and inner membranes. Tim9 and Tim10 are translocase components of the intermembrane space, related to deafness-dystonia peptide 1 (DDP1). They coassemble into a hexamer, TIM9.10, which captures and chaperones precursors of inner membrane metabolite carriers as they exit the TOM channel in the outer membrane. The crystal structure of TIM9.10 reveals a previously undescribed alpha-propeller topology in which helical "blades" radiate from a narrow central pore lined with polar residues. The propeller blades are reminiscent of "tentacles" in chaperones Skp and prefoldin. In each TIM9.10 subunit, a signature "twin CX3C" motif forms two intramolecular disulfides. There is no obvious binding pocket for precursors, which we suggest employ the chaperone-like tentacles of TIM9.10 as surrogate lipid contacts. The first reported crystal structure of a mitochondrial translocase assembly provides insights into selectivity and regulation of precursor import.
Collapse
Affiliation(s)
- Chaille T Webb
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
15
|
Callahan MK, Chaillot D, Jacquin C, Clark PR, Ménoret A. Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions. J Biol Chem 2002; 277:33604-9. [PMID: 12114509 DOI: 10.1074/jbc.m202890200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp70 and Hsc70 are two chaperones of high homology expressed under contrasting situations. Hsc70 is constitutively expressed and poorly stress-inducible, whereas Hsp70 is unabundant in normal physiological situations and strongly induced under oxidative stress. In the present study we show that the chaperoning activity of purified Hsp70 and Hsc70 is minimal under reducing conditions and increases in environments that mimic oxidative stress. Association with peptides is more pronounced for Hsp70 than for Hsc70 in every condition tested and is accompanied with a gradual change in secondary structure during oxidation. The binding of peptides to Hsp70 and Hsc70 under oxidative conditions is not reversible by treatment with a reducing agent, confirming that other chaperone-associated factors are required for substrate release. These findings support the idea that formation of HSP70-peptide complexes and possibly their immunogenicity is enhanced in conditions of stress.
Collapse
Affiliation(s)
- Margaret K Callahan
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
| | | | | | | | | |
Collapse
|
16
|
Power JHT, Shannon JM, Blumbergs PC, Gai WP. Nonselenium glutathione peroxidase in human brain : elevated levels in Parkinson's disease and dementia with lewy bodies. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:885-94. [PMID: 12213717 PMCID: PMC1867235 DOI: 10.1016/s0002-9440(10)64249-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonselenium glutathione peroxidase (NSGP) is a new member of the antioxidant family. Using antibodies to recombinant NSGP we have examined the distribution of this enzyme in normal, Parkinson's disease (PD), and dementia with Lewy body disease (DLB) brains. We have also co-localized this enzyme with alpha-synuclein as a marker for Lewy bodies. In normal brains there was a very low level of NSGP staining in astrocytes. In PD and DLB there were increases in the number and staining intensity of NSGP-positive astrocytes in both gray and white matter. Cell counting of NSGP cells in PD and DLB frontal and cingulated cortices indicated there was 10 to 15 times more positive cells in gray matter and three times more positive cells in white matter than in control cortices. Some neurons were positive for both alpha-synuclein and NSGP in PD and DLB, and double staining indicated that NSGP neurons contained either diffuse cytoplasmic alpha-synuclein deposits or Lewy bodies. In concentric Lewy bodies, alpha-synuclein staining was peripheral whereas NSGP staining was confined to the central core. Immunoprecipitation indicated there was direct interaction between alpha-synuclein and NSGP. These results suggest oxidative stress conditions exist in PD and DLB and that certain cells have responded by up-regulating this novel antioxidant enzyme.
Collapse
Affiliation(s)
- John H T Power
- Department of Human Physiology, School of Medicine, Flinders University, Bedford Park, Australia.
| | | | | | | |
Collapse
|
17
|
Graumann J, Lilie H, Tang X, Tucker KA, Hoffmann JH, Vijayalakshmi J, Saper M, Bardwell JC, Jakob U. Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism. Structure 2001; 9:377-87. [PMID: 11377198 DOI: 10.1016/s0969-2126(01)00599-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hsp33 is a novel redox-regulated molecular chaperone. Hsp33 is present in the reducing environment of the cytosol and is, under normal conditions, inactive. The four highly conserved cysteines found in Hsp33 constitute a novel zinc binding motif. Upon exposure to oxidative stress, Hsp33's chaperone activity is turned on. This activation process is initiated by the formation of two intramolecular disulfide bonds. Recently, the 2.2 A crystal structure of Hsp33 has been solved, revealing that Hsp33 is present as a dimer in the structure (Vijayalakshmi et al., this issue, 367-375 [1]). RESULTS We show here that oxidized, highly active Hsp33 is a dimer in solution. In contrast, reduced and inactive Hsp33 is monomeric. The incubation of reduced Hsp33 in H(2)O(2) leads to the simultaneous formation of two intramolecular disulfide bonds and the concomitant release of zinc. This concentration-independent step is followed by a concentration-dependent association reaction. The dimerization of Hsp33 requires highly temperature-sensitive structural rearrangements. This allows Hsp33's activation process to be greatly accelerated at heat shock temperatures. CONCLUSIONS The regulation of Hsp33's chaperone function is highly sophisticated. On a transcriptional level, Hsp33 is under heat shock control. This increases the concentration of Hsp33 under heat and oxidative stress, a process that favors dimerization, a critical step in Hsp33's activation reaction. On a posttranslational level, Hsp33 is redox regulated. Dimerization of disulfide-bonded Hsp33 monomers leads to the formation of two extended, putative substrate binding sites. These sites might explain Hsp33's high and promiscuous affinity for unstructured protein folding intermediates.
Collapse
Affiliation(s)
- J Graumann
- Department of Biology, University of Michigan, 48109, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Raman B, Siva Kumar LV, Ramakrishna T, Mohan Rao C. Redox-regulated chaperone function and conformational changes of Escherichia coli Hsp33. FEBS Lett 2001; 489:19-24. [PMID: 11231006 DOI: 10.1016/s0014-5793(01)02074-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the chaperone activity and conformation of Escherichia coli heat shock protein (Hsp)33, whose activity is known to be switched on by oxidative conditions. While oxidized Hsp33 completely prevents the heat-induced aggregation of zeta-crystallin at 42 degrees C at a ratio of 1:1 (w/w), the reduced form exhibits only a marginal effect on the aggregation. Far UV-circular dichroism (CD) spectra show that reduced Hsp33 contains a significant alpha-helical component. Oxidation results in significant changes in the far UV-CD spectrum. Near UV-CD spectra show changes in tertiary structural packing upon oxidation. Polarity-sensitive fluorescent probes report enhanced hydrophobic surfaces in the oxidized Hsp33. Our studies show that the oxidative activation of the chaperone function of Hsp33 involves observable conformational changes accompanying increased exposure of hydrophobic pockets.
Collapse
Affiliation(s)
- B Raman
- Centre for Cellular and Molecular Biology, 500 007, Hyderabad, India
| | | | | | | |
Collapse
|
19
|
Abstract
The chaperone activity of the heat shock protein Hsp33 is regulated by reversible disulfide bond formation. Oxidized Hsp33 is active, and reduced Hsp33 is inactive. We show that zinc binding is essential for the function of this redox switch. Our results reveal that Hps33 contains a new, high affinity (K(a) > 10(17) m(-)(1)), zinc-binding motif in the form Cys-X-Cys-X(27-32)-Cys-X-X-Cys. All four conserved cysteines within this motif act to coordinate a single zinc atom. Experiments where reduced wild type Hsp33 is reconstituted with cobalt or cadmium demonstrate that the metal-coordinating cysteines are present as highly reactive thiolate anions. This ionization may allow for the fast and successful activation of the chaperone function of Hsp33 upon incubation in oxidizing agents.
Collapse
Affiliation(s)
- U Jakob
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | | | |
Collapse
|
20
|
Barbirz S, Jakob U, Glocker MO. Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone. J Biol Chem 2000; 275:18759-66. [PMID: 10764757 DOI: 10.1074/jbc.m001089200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock protein Hsp33 is a very potent molecular chaperone with a distinctive mode of functional regulation; its activity is redox-regulated. In its reduced form all six cysteinyl residues of Hsp33 are present as thiols, and Hsp33 displays no folding helper activity. Exposure of Hsp33 to oxidizing conditions like H(2)O(2), however, rapidly converts Hsp33 into an efficient molecular chaperone. Activated Hsp33 binds tightly to refolding intermediates of chemically denatured luciferase and suppresses efficiently their aggregation in vitro. Matrix-assisted laser desorption/ionization-mass spectrometry peptide mapping in combination with in vitro and on target protein chemical modification showed that this activation process of Hsp33 is accompanied by the formation of two intramolecular disulfide bonds within Hsp33: Cys(232)-S-S-Cys(234) and Cys(265)-S-S-Cys(268). Cys(141), although not involved in disulfide bond formation, was found highly reactive toward chemical modifications. In contrast, Cys(239) is readily accessible under reducing conditions but becomes poorly accessible though still reduced when Hsp33 is in its active state. This indicates a significant conformational change during the activation process of Hsp33. Mass spectrometry, thus, unraveled a novel molecular mechanism by which alteration of the disulfide bond structure, as a result of changes in the cellular redox potential, results in the activation of a molecular chaperone.
Collapse
Affiliation(s)
- S Barbirz
- Faculty of Chemistry, University of Konstanz, Box M732, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
21
|
Köhler S, Ouahrani-Bettache S, Layssac M, Teyssier J, Liautard JP. Constitutive and inducible expression of green fluorescent protein in Brucella suis. Infect Immun 1999; 67:6695-7. [PMID: 10569794 PMCID: PMC97086 DOI: 10.1128/iai.67.12.6695-6697.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene fusion system based on plasmid pBBR1MCS and the expression of green fluorescent protein was developed for Brucella suis, allowing isolation of constitutive and inducible genes. Bacteria containing promoter fusions of chromosomal DNA to gfp were visualized by fluorescence microscopy and examined by flow cytometry. Twelve clones containing gene fragments induced inside J774 murine macrophages were isolated and further characterized.
Collapse
Affiliation(s)
- S Köhler
- Institut National de la Santé et de la Recherche Médicale U-431, Université Montpellier II, F-34095 Montpellier, France.
| | | | | | | | | |
Collapse
|