1
|
Sun R, Xu Y, Liu J, Yang L, Cui G, Zhong G, Yi X. Proteomic profiling for ovarian development and azadirachtin exposure in Spodoptera litura during metamorphosis from pupae to adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113548. [PMID: 35487172 DOI: 10.1016/j.ecoenv.2022.113548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Azadirachtin is one of the most successful botanical pesticides in agricultural pest control. To build a repertoire of proteins and pathways in response to azadirachtin exposure during ovarian development, iTRAQ-based comparative proteomic was conducted. 1423 and 1686 proteins were identified as differentially accumulated proteins (DAPs) by comparing the protein abundance in adult ovary with that in pupal ovary under normal and azadirachtin exposure condition, respectively. Bioinformatics analysis indicated that pupae-to-adult transition requires proteins related to proteasome and branched chain amino acids (BCAAs) degradation for ovary development. Azadirachtin exposure strongly affected glycosylation-related pathway. And proteins related to vitamin B6 synthesis were necessary for ovary development under normal and AZA-exposure condition. RNAi assays confirmed the essential roles of DAPs related to glycosylation and vitamin B6 synthesis in moth growth and ovary development. The results enhance our understanding of the molecular regulatory network for ovary development and provide valuable resources for using AZA-responsive proteins to develop novel bio-rational insecticides.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Jin Liu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Liying Yang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
3
|
Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging. INVERTEBRATE NEUROSCIENCE 2016; 16:8. [DOI: 10.1007/s10158-016-0191-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
|
4
|
Hu J, Xu Q, Hu S, Yu X, Liang Z, Zhang W. Hemomucin, an O-glycosylated protein on embryos of the wasp Macrocentrus cingulum that protects it against encapsulation by hemocytes of the host Ostrinia furnacalis. J Innate Immun 2014; 6:663-75. [PMID: 24776378 DOI: 10.1159/000360819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
It is unclear how endoparasites passively evade their host's immune reactions in most parasite-host systems. Hemomucin from the parasitoid wasp Macrocentrus cingulum (McHEM) is a 97-kDa transmembrane protein containing 51 potential O-glycosylation sites that can be specifically recognized by Arachis hypogaea lectin. Mchem mRNA is highly expressed in M. cingulum eggs, morulae and secondary embryos, and McHEM protein is mainly located on the extraembryonic membrane of embryos. When secondary embryos of M. cingulum were transplanted into naïve larvae of their host, Ostrinia furnacalis, the embryos proliferated to generate dozens of embryos. However, more than 90% of these embryos were encapsulated by host hemocytes after blocking with anti-McHEM serum. Similarly, following knockdown of Mchem expression using double-stranded RNA encoding Mchem (dshem), many more embryos were encapsulated by host hemocytes after transplantation compared to controls (p < 0.01). Furthermore, approximately 70% of the embryos were encapsulated by host hemocytes following digestion with O-glycosidase, which specifically digests β-gal (1→3) linkages between GalNAc and Ser/Thr of proteins. Western blotting results showed that O-glycosidase digested McHEM into a smaller product. These results indicate that McHEM may protect embryos from being encapsulated by their host and that the McHEM sugar chains play an important role.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
5
|
Katoh T, Tiemeyer M. The N's and O's of Drosophila glycoprotein glycobiology. Glycoconj J 2012; 30:57-66. [PMID: 22936173 DOI: 10.1007/s10719-012-9442-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
The past 25 years have seen significant advances in understanding the diversity and functions of glycoprotein glycans in Drosophila melanogaster. Genetic screens have captured mutations that reveal important biological activities modulated by glycans, including protein folding and trafficking, as well as cell signaling, tissue morphogenesis, fertility, and viability. Many of these glycan functions have parallels in vertebrate development and disease, providing increasing opportunities to dissect pathologic mechanisms using Drosophila genetics. Advances in the sensitivity of structural analytic techniques have allowed the glycan profiles of wild-type and mutant tissues to be assessed, revealing novel glycan structures that may be functionally analogous to vertebrate glycans. This review describes a selected set of recent advances in understanding the functions of N-linked and O-linked (non-glycosaminoglycan) glycoprotein glycans in Drosophila with emphasis on their relatedness to vertebrate organisms.
Collapse
Affiliation(s)
- Toshihiko Katoh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
6
|
Caldwell GS, Pagett HE. Marine glycobiology: current status and future perspectives. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:241-252. [PMID: 20390314 DOI: 10.1007/s10126-010-9263-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/19/2010] [Indexed: 05/29/2023]
Abstract
Glycobiology, which is the study of the structure and function of carbohydrates and carbohydrate containing molecules, is fundamental to all biological systems.Progress in glycobiology has shed light on a range of complex biological processes associated with, for example,disease and immunology, molecular and cellular communication,and developmental biology. There is an established,if rather modest, tradition of glycobiology research in marine systems that has primarily focused on reproduction,biofouling, and chemical communication. The current status of marine glycobiology research is primarily descriptive with very limited progress on structural elucidation and the subsequent definition of precise functional roles beyond a small number of classical examples, e.g., induction of the acrosome reaction in echinoderms. However, with recent advances in analytical instrumentation, there is now the capacity to begin to characterize marine glycoconjugates,many of which will have potential biomedical and biotechnological applications. The analytical approach to glycoscience has developed to such an extent that it has acquired its own "-omics" identity. Glycomics is the quest to decipher the complex information conveyed by carbohydrate molecules--the carbohydrate code or glycocode. Due to the paucity of structural information available, this article will highlight the fundamental importance of glycobiology for many biological processes in marine organisms and will draw upon the best defined systems. These systems therefore may prove genuine candidates for full carbohydrate characterization.
Collapse
Affiliation(s)
- Gary S Caldwell
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne NE17RU, England, UK.
| | | |
Collapse
|
7
|
Schmidt O, Söderhäll K, Theopold U, Faye I. Role of adhesion in arthropod immune recognition. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:485-504. [PMID: 19743913 DOI: 10.1146/annurev.ento.54.110807.090618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The recognition and inactivation of toxins and pathogens are mediated by a combination of cell-free and cellular mechanisms. A number of soluble and membrane-bound pattern recognition molecules interact with elicitors to become involved in both cell-free inactivation as well as cellular uptake reactions. Here we describe the possible recognition and effector function of key arthropod immune proteins, such as peroxinectin, hemolin, and hemomucin, as an outcome of changes in adhesiveness, which drive self-assembly reactions leading to cell-free coagulation and cellular uptake reactions. The fact that some of these proteins are essential for immune and developmental functions in some species, but are not found in closely related species, may point to the existence of multiprotein assemblies, which are conserved at the mechanistic level and can function with more than one combination of protein constituents.
Collapse
Affiliation(s)
- Otto Schmidt
- Insect Molecular Biology, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | | | | | |
Collapse
|
8
|
Yoshida H, Fuwa TJ, Arima M, Hamamoto H, Sasaki N, Ichimiya T, Osawa KI, Ueda R, Nishihara S. Identification of the Drosophila core 1 1,3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes. Glycobiology 2008; 18:1094-104. [DOI: 10.1093/glycob/cwn094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
9
|
Aoki K, Porterfield M, Lee SS, Dong B, Nguyen K, McGlamry KH, Tiemeyer M. The diversity of O-linked glycans expressed during Drosophila melanogaster development reflects stage- and tissue-specific requirements for cell signaling. J Biol Chem 2008; 283:30385-400. [PMID: 18725413 DOI: 10.1074/jbc.m804925200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Appropriate glycoprotein O-glycosylation is essential for normal development and tissue function in multicellular organisms. To comprehensively assess the developmental and functional impact of altered O-glycosylation, we have extensively analyzed the non-glycosaminoglycan, O-linked glycans expressed in Drosophila embryos. Through multidimensional mass spectrometric analysis of glycans released from glycoproteins by beta-elimination, we detected novel as well as previously reported O-glycans that exhibit developmentally modulated expression. The core 1 mucin-type disaccharide (Galbeta1-3GalNAc) is the predominant glycan in the total profile. HexNAcitol, hexitol, xylosylated hexitol, and branching extension of core 1 with HexNAc (to generate core 2 glycans) were also evident following release and reduction. After Galbeta1-3GalNAc, the next most prevalent glycans were a mixture of novel, isobaric, linear, and branched forms of a glucuronyl core 1 disaccharide. Other less prevalent structures were also extended with HexA, including an O-fucose glycan. Although the expected disaccharide product of the Fringe glycosyltransferase, (GlcNAcbeta1-3)fucitol, was not detectable in whole embryos, mass spectrometry fragmentation and exoglycosidase sensitivity defined a novel glucuronyl trisaccharide as GlcNAcbeta1-3(GlcAbeta1-4)fucitol. Consistent with the spatial distribution of the Fringe function, the GlcA-extended form of the Fringe product was enriched in the dorsal portion of the wing imaginal disc. Furthermore, loss of Fringe activity reduced the prevalence of the O-Fuc trisaccharide. Therefore, O-Fuc glycans necessary for the modulation of important signaling events in Drosophila are, as in vertebrates, substrates for extension beyond the addition of a single HexNAc.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Syed ZA, Härd T, Uv A, van Dijk-Härd IF. A potential role for Drosophila mucins in development and physiology. PLoS One 2008; 3:e3041. [PMID: 18725942 PMCID: PMC2515642 DOI: 10.1371/journal.pone.0003041] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/01/2008] [Indexed: 11/18/2022] Open
Abstract
Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated threonines and serines (PTS). We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST content, more than 30 mucin-like proteins were identified, ranging from 300–23000 amino acids in length. We find that Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus revealing new potential functions for mucins as apical matrix components during organ morphogenesis.
Collapse
Affiliation(s)
- Zulfeqhar A. Syed
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Torleif Härd
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Anne Uv
- Department of Medical Genetics, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Iris F. van Dijk-Härd
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
11
|
Hu J, Yu X, Fu W, Zhang W. A Helix pomatia lectin binding protein on the extraembryonic membrane of the polyembryonic wasp Macrocentrus cingulum protects embryos from being encapsulated by hemocytes of host Ostrinia furnaclis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:356-64. [PMID: 17706774 DOI: 10.1016/j.dci.2007.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/22/2007] [Accepted: 07/03/2007] [Indexed: 05/16/2023]
Abstract
The mechanism of how endoparasitoids avoid the host's cellular immune reaction is not well known. Evidence is presented here for the existence of a Helix pomatia lectin binding protein (HpLBP) on Macrocentrus cingulum extraembryonic membrane and its involvement in the protection of embryos against encapsulation by its host Ostrinia furnaclis. HpLBP is present in eggs, embryos and larvae and is located on the outmost layer of the extraembryonic membrane. While Sephadex A-25 beads and immature Macrocentrus eggs coated with follicular cells were encapsulated, Macrocentrus embryos were not after they were transplanted separately into naive O. furnaclis larvae. Moreover, embryos became encapsulated after being coated with anti-HpLBP serum. Furthermore, encapsulation of agarose-H. pomatia lectin beads decreased significantly after the beads were coated with HpLBP. However, encapsulation of the HpLBP-coated agarose beads increased and the extent of encapsulation was enhanced significantly when the HpLBP-coated beads were pre-incubated with anti-HpLBP antibody.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | |
Collapse
|
12
|
North SJ, Koles K, Hembd C, Morris HR, Dell A, Panin VM, Haslam SM. Glycomic studies of Drosophila melanogaster embryos. Glycoconj J 2007; 23:345-54. [PMID: 16897177 DOI: 10.1007/s10719-006-6693-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/12/2005] [Accepted: 12/15/2005] [Indexed: 10/24/2022]
Abstract
With the complete genome sequence of Drosophila melanogaster defined a systematic approach towards understanding the function of glycosylation has become possible. Structural assignment of the entire Drosophila glycome during specific developmental stages could provide information that would shed further light on the specific roles of different glycans during development and pinpoint the activity of certain glycosyltransferases and other glycan biosynthetic genes that otherwise might be missed through genetic analyses. In this paper the major glycoprotein N- and O-glycans of Drosophila embryos are described as part of our initial undertaking to characterize the glycome of Drosophila melanogaster. The N-glycans are dominated by high mannose and paucimannose structures. Minor amounts of mono-, bi- and tri-antennary complex glycans were observed with GlcNAc and Galbeta1-4GlcNAc non-reducing end termini. O-glycans were restricted to the mucin-type core 1 Galbeta1-3GalNAc sequence.
Collapse
Affiliation(s)
- Simon J North
- Division of Molecular Biosciences, Faculty of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Schwientek T, Mandel U, Roth U, Müller S, Hanisch FG. A serial lectin approach to the mucin-typeO-glycoproteome ofDrosophila melanogaster S2 cells. Proteomics 2007; 7:3264-77. [PMID: 17708590 DOI: 10.1002/pmic.200600793] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of mucin-type O-glycosylated proteins with known functions in model organisms like Drosophila could provide keys to elucidate functions of the O-glycan moiety and proteomic analyses of O-glycoproteins in higher eukaryotes remain a challenge due to structural heterogeneity and a lack of efficient tools for their specific isolation. Here we report a strategy to evaluate the O-glycosylation potential of the embryonal hemocyte-like Drosophila Schneider 2 (S2) cell line by expression of recombinant glycosylation probes derived from tandem repeats of the human mucin MUC1 or of the Drosophila salivary gland protein Sgs1. We obtained evidence that mucin-type O-glycosylation in S2 cells grown under serum-free conditions is restricted to the Tn-antigen (GalNAcalpha-Ser/Thr) and the T-antigen (Galbeta1-3GalNAcalpha-Ser/Thr) and this structural homogeneity enables unique glycoproteomic strategies. We present a label-free strategy for the isolation, profiling and analysis of O-glycosylated proteins consisting of serial lectin affinity capture, 2-DE-based glycoprotein analysis by O-glycan specific mAbs and protein identification by MALDI-MS. Protein identity and O-glycosylation was confirmed by ESI-MS/MS with detection of diagnostic sugar oxonium-ion fragments. Using this strategy, we established 2-D reference maps and identified 21 secreted and intracellular mucin-type O-glycoproteins. Our results show that Drosophila S2 cells express O-glycoproteins involved in a wide range of biological functions including proteins of the extracellular matrix (Laminin gamma-chain, Peroxidasin and Glutactin), pathogen recognition proteins (Gnbp1), stress response proteins (Glycoprotein 93), secreted proteases (Matrix-metalloprotease 1 and various trypsin-like serine proteases), protease inhibitors (Serpin 27 A) and proteins of unknown function.
Collapse
Affiliation(s)
- Tilo Schwientek
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany.
| | | | | | | | | |
Collapse
|
14
|
Müller R, Hülsmeier AJ, Altmann F, Ten Hagen K, Tiemeyer M, Hennet T. Characterization of mucin-type core-1 beta1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS J 2005; 272:4295-305. [PMID: 16128800 DOI: 10.1111/j.1742-4658.2005.04838.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mucin type O-glycosylation is a widespread modification of eukaryotic proteins. The transfer of N-acetylgalactosamine to selected serine or threonine residues is catalyzed by a family of polypeptide N-acetylgalactosaminyltransferases localized in the Golgi apparatus. The most abundant elongation of O-glycans is the addition of a beta1-3 linked galactose by the core-1 beta1-3 galactosyltransferase (core-1 beta3GalT), thereby building the T-antigen or core-1 structure Gal(beta1-3)GalNAc(alpha1-O). We have isolated four Drosophila melanogaster cDNAs encoding proteins structurally similar to the human core-1 beta3GalT enzyme and expressed them as FLAG-tagged proteins in Sf9 insect cells. The identity of these D. melanogasterbeta3GalT enzymes with a core-1 beta3GalT activity was confirmed by utilization of MUC5AC mucin derived O-glycopeptide acceptors. In addition to the core-1 beta3GalT activity toward O-glycoprotein substrates, one member of this enzyme family showed a strong activity towards glycolipid acceptors, thereby building the core-1 terminated Nz6 glycosphingolipid. Transcripts of the embryonically expressed core-1 beta3GalTs were found in the maternally deposited mRNA, in salivary glands and in the amnioserosa. The presence of multiple core-1 beta3GalT genes in D. melanogaster suggests an increased complexity of core-1 O-glycan expression, which is possibly related to multiple developmental and physiological functions attributable to this class of glycans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromatography, High Pressure Liquid
- DNA, Complementary/genetics
- Drosophila melanogaster/embryology
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Galactosyltransferases/chemistry
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes, Insect
- Humans
- In Situ Hybridization
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Electrospray Ionization
- Substrate Specificity
Collapse
Affiliation(s)
- Reto Müller
- Institute of Physiology, University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Korayem AM, Fabbri M, Takahashi K, Scherfer C, Lindgren M, Schmidt O, Ueda R, Dushay MS, Theopold U. A Drosophila salivary gland mucin is also expressed in immune tissues: evidence for a function in coagulation and the entrapment of bacteria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:1297-1304. [PMID: 15544943 DOI: 10.1016/j.ibmb.2004.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/08/2004] [Accepted: 09/10/2004] [Indexed: 05/24/2023]
Abstract
Our studies on the developmental regulation of glycosylation in Drosophila melanogaster led us to identify and characterize gp150, an ecdysone-regulated mucin that is found in hemocytes, the gut (peritrophic membrane) and in the salivary glands. We are particularly interested in mucin immune functions and found that gp150 is released from larval hemocytes, becomes part of the clot and participates in the entrapment of bacteria. By RT-PCR and RNAi experiments, we identified gp150 as the previously described I71-7, an ecdysone-induced salivary glue protein. We discuss the evolutionary and biochemical implications of the dual use of salivary proteins for immune functions in insects. Further molecular characterization of such shared proteins may enable a better understanding of the properties of proteins involved in containment and elimination of microbes, as well as hemostasis and wound repair.
Collapse
Affiliation(s)
- Ahmed M Korayem
- Department of Molecular Biology and Functional Genomics, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Glatz R, Roberts HLS, Li D, Sarjan M, Theopold UH, Asgari S, Schmidt O. Lectin-induced haemocyte inactivation in insects. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:955-963. [PMID: 15518663 DOI: 10.1016/j.jinsphys.2004.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/30/2004] [Accepted: 07/06/2004] [Indexed: 05/24/2023]
Abstract
Most multimeric lectins are adhesion molecules, promoting attachment and spreading on surface glycodeterminants. In addition, some lectins have counter-adhesion properties, detaching already spread cells which then acquire round or spindle-formed cell shapes. Since lectin-mediated adhesion and detachment is observed in haemocyte-like Drosophila cells, which have haemomucin as the major lectin-binding glycoprotein, the two opposite cell behaviours may be the result of lectin-mediated receptor rearrangements on the cell surface. To investigate oligomeric lectins as a possible extracellular driving force affecting cell shape changes, we examined lectin-mediated reactions in lepidopteran haemocytes after cytochalasin D-treatment and observed that while cell-spreading was dependent on F-actin, lectin-uptake was less dependent on F-actin. We propose a model of cell shape changes involving a dynamic balance between adhesion and uptake reactions.
Collapse
Affiliation(s)
- Richard Glatz
- Insect Molecular Biology, School of Agriculture, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|