1
|
Moescheid MF, Lu Z, Soria CD, Quack T, Puckelwaldt O, Holroyd N, Holzaepfel P, Haeberlein S, Rinaldi G, Berriman M, Grevelding CG. The retinoic acid family-like nuclear receptor SmRAR identified by single-cell transcriptomics of ovarian cells controls oocyte differentiation in Schistosoma mansoni. Nucleic Acids Res 2025; 53:gkae1228. [PMID: 39676663 PMCID: PMC11879061 DOI: 10.1093/nar/gkae1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Studies on transcription regulation in platyhelminth development are scarce, especially for parasitic flatworms. Here, we employed single-cell transcriptomics to identify genes involved in reproductive development in the trematode model Schistosoma mansoni. This parasite causes schistosomiasis, a major neglected infectious disease affecting >240 million people worldwide. The pathology of schistosomiasis is closely associated with schistosome eggs deposited in host organs including the liver. Unlike other trematodes, schistosomes exhibit distinct sexes, with egg production reliant on the pairing-dependent maturation of female reproductive organs. Despite this significance, the molecular mechanisms underlying ovary development and oocyte differentiation remain largely unexplored. Utilizing an organ isolation approach for S. mansoni, we extracted ovaries of paired females followed by single-cell RNA sequencing (RNA-seq) with disassociated oocytes. A total of 1967 oocytes expressing 7872 genes passed quality control (QC) filtering. Unsupervised clustering revealed four distinct cell clusters: somatic, germ cells and progeny, intermediate and late germ cells. Among distinct marker genes for each cluster, we identified a hitherto uncharacterized transcription factor of the retinoic acid receptor family, SmRAR. Functional analyses of SmRAR and associated genes like Smmeiob (meiosis-specific, oligonucleotide/oligosaccharide binding motif (OB) domain-containing) demonstrated their pairing-dependent and ovary-preferential expression and their decisive roles in oocyte differentiation of S. mansoni.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Carmen Diaz Soria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Pauline Holzaepfel
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Christoph G Grevelding
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
2
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
3
|
Hatalová T, Erhart J, Kopáček P, Perner J. On the haem auxotrophy of the soft tick Ornithodoros moubata. Ticks Tick Borne Dis 2023; 14:102170. [PMID: 36958097 DOI: 10.1016/j.ttbdis.2023.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Genomes of ticks display reductions, to various extents, in genetic coding for enzymes of the haem biosynthetic pathway. Here, we mined available transcriptomes of soft tick species and identified transcripts encoding only half of the enzymes involved in haem biosynthesis. Transcripts identified across most species examined were those coding for porphobilinogen synthase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, and ferrochelatase. Genomic retention of porphobilinogen synthase seems to be soft tick-restricted as no such homologue has been identified in any hard tick species. Bioinformatic mining is thus strongly indicative of the lack of biochemical capacity for de novo haem biosynthesis, suggesting a requirement for dietary haem. In the hard tick Ixodes ricinus, depletion of dietary haem, i.e. serum feeding, leads to oviposition of haem-free eggs, with no apparent embryogenesis and larvae formation. In this work, we show that serum-fed Ornithodoros moubata females, unlike those of I. ricinus, laid haem-containing eggs similarly to blood-fed controls, but only by a small proportion of the serum-fed females. To enhance the effect of dietary haem depletion, O. moubata ticks were serum-fed consecutively as last nymphal instars and females. These females laid eggs with profoundly reduced haem deposits, confirming the host origin of the haem. These data confirm the ability of soft ticks to take up and allocate host haem to their eggs in order to drive reproduction of the ticks.
Collapse
Affiliation(s)
- Tereza Hatalová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jan Erhart
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
4
|
Vieira PH, Benjamim CF, Atella G, Ramos I. VPS38/UVRAG and ATG14, the variant regulatory subunits of the ATG6/Beclin1-PI3K complexes, are crucial for the biogenesis of the yolk organelles and are transcriptionally regulated in the oocytes of the vector Rhodnius prolixus. PLoS Negl Trop Dis 2021; 15:e0009760. [PMID: 34492013 PMCID: PMC8448300 DOI: 10.1371/journal.pntd.0009760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
In insects the reserve proteins are stored in the oocytes into endocytic-originated vesicles named yolk organelles. VPS38/UVRAG and ATG14 are the variant regulatory subunits of two class-III ATG6/Beclin1 PI3K complexes that regulate the recruitment of the endocytic (complex II) and autophagic (complex I) machineries. In a previous work from our group, we found that the silencing of ATG6/Beclin1 resulted in the formation of yolk-deficient oocytes due to defects in the endocytosis of the yolk proteins. Because ATG6/Beclin1 is present in the two above-described PI3K complexes, we could not identify the contributions of each complex to the yolk defective phenotypes. To address this, here we investigated the role of the variant subunits VPS38/UVRAG (complex II, endocytosis) and ATG14 (complex I, autophagy) in the biogenesis of the yolk organelles in the insect vector of Chagas Disease Rhodnius prolixus. Interestingly, the silencing of both genes phenocopied the silencing of ATG6/Beclin1, generating 1) accumulation of yolk proteins in the hemolymph; 2) white, smaller, and yolk-deficient oocytes; 3) abnormal yolk organelles in the oocyte cortex; and 4) unviable F1 embryos. However, we found that the similar phenotypes were the result of a specific cross-silencing effect among the PI3K subunits where the silencing of VPS38/UVRAG and ATG6/Beclin1 resulted in the specific silencing of each other, whereas the silencing of ATG14 triggered the silencing of all three PI3K components. Because the silencing of VPS38/UVRAG and ATG6/Beclin1 reproduced the yolk-deficiency phenotypes without the cross silencing of ATG14, we concluded that the VPS38/UVRAG PI3K complex II was the major contributor to the previously observed phenotypes in silenced insects. Altogether, we found that class-III ATG6/Beclin1 PI3K complex II (VPS38/UVRAG) is essential for the yolk endocytosis and that the subunits of both complexes are under an unknown transcriptional regulatory system.
Collapse
Affiliation(s)
- Priscila H Vieira
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Brazil
| | - Georgia Atella
- Laboratório de de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq. Rio de Janeiro, Brazil
| | - Isabela Ramos
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq. Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Hu B, Li Q, Yu H, Du S. Identification and characterization of key haem pathway genes associated with the synthesis of porphyrin in Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110595. [PMID: 33753220 DOI: 10.1016/j.cbpb.2021.110595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Molluscs exhibit diverse shell colors. The molecular regulation of shell coloration is however not well understood. To investigate the connection of shell coloration with pigment synthesis, we analyzed the distribution of porphyrins, a widespread group of pigments in nature, in four Pacific oyster strains of different shell colors including black, orange, golden, and white. The porphyrin distribution was analyzed in oyster mantles and shells by fluorescence imaging and UV spectrophotometer. The results showed that red fluorescence emitted by porphyrins under the UV light was detected only on the nacre of the orange-shell strain and mantles of orange, black and white-shell strains. Extracts from newly deposit shell, nacre and mantle tissue from orange-shell specimens showed peaks in UV-vis spectra that are characteristic of porphyrins, but these were not observed for the other shell-color strains. In addition, genes of the haem synthetic pathway were isolated and characterized. Phylogenetic analysis of CgALAS, CgALAD, CgPBGD, CgUROS, and CgUROD provide further evidence for a conserved genetic pathway of haem synthesis during evolution. Differential expression of the haem genes expressed in mantle tissues support these findings and are consistent with porphyrins being produced by the orange strain only. Tissue in situ hybridization demonstrated the expression of these candidate genes at the outer fold of C. gigas mantles where shell is deposited. Our studies provide a better understanding of shell pigmentation in C. gigas and candidate genes for future mechanistic analysis of shell color formation in molluscs.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Pascual A, Vilardo ES, Taibo C, Sabio Y García J, Pomar RR. Bicaudal C is required for the function of the follicular epithelium during oogenesis in Rhodnius prolixus. Dev Genes Evol 2021; 231:33-45. [PMID: 33704576 DOI: 10.1007/s00427-021-00673-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022]
Abstract
The morphology and physiology of the oogenesis have been well studied in the vector of Chagas disease Rhodnius prolixus. However, the molecular interactions that regulate the process of egg formation, key for the reproductive cycle of the vector, is still largely unknown. In order to understand the molecular and cellular basis of the oogenesis, we examined the function of the gene Bicaudal C (BicC) during oogenesis and early development of R. prolixus. We show that R. prolixus BicC (Rp-BicC) gene is expressed in the germarium, with cytoplasmic distribution, as well as in the follicular epithelium of the developing oocytes. RNAi silencing of Rp-BicC resulted in sterile females that lay few, small, non-viable eggs. The ovaries are reduced in size and show a disarray of the follicular epithelium. This indicates that Rp-BicC has a central role in the regulation of oogenesis. Although the follicular cells are able to form the chorion, the uptake of vitelline by the oocytes is compromised. We show evidence that the polarity of the follicular epithelium and the endocytic pathway, which are crucial for the proper yolk deposition, are affected. This study provides insights into the molecular mechanisms underlying oocyte development and show that Rp-BicC is important for de developmental of the egg and, therefore, a key player in the reproduction of this insect.
Collapse
Affiliation(s)
- Agustina Pascual
- Centro de Bioinvestigaciones (UNNOBA-CICBA), CITNOBA (UNNOBA-CONICET), 2700, Pergamino, Buenos Aires, Argentina.
| | - Emiliano S Vilardo
- Centro Regional de Estudios Genómicos (Facultad de Ciencias Exactas, CREG-UNLP), 1900, La Plata, Buenos Aires, Argentina
| | - Catalina Taibo
- Laboratorio de Microscopia Integral (LIM), (CICVyA, INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Julia Sabio Y García
- Laboratorio de Microscopia Integral (LIM), (CICVyA, INTA), 1686, Hurlingham, Buenos Aires, Argentina
| | - Rolando Rivera Pomar
- Centro de Bioinvestigaciones (UNNOBA-CICBA), CITNOBA (UNNOBA-CONICET), 2700, Pergamino, Buenos Aires, Argentina.
- Centro Regional de Estudios Genómicos (Facultad de Ciencias Exactas, CREG-UNLP), 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Spencer CS, Yunta C, de Lima GPG, Hemmings K, Lian LY, Lycett G, Paine MJI. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:25-33. [PMID: 29729387 DOI: 10.1016/j.ibmb.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/23/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme. Heme degradation by heme oxygenase (HO) is a common protective mechanism, and a gene for HO exists in the An. gambiae genome HO (AgHO), although it has yet to be functionally examined. Here, we have cloned and expressed An. gambiae HO (AgHO) in E. coli. Purified recombinant AgHO bound hemin stoichiometrically to form a hemin-enzyme complex similar to other HOs, with a KD of 3.9 ± 0.6 μM; comparable to mammalian and bacterial HOs, but 7-fold lower than that of Drosophila melanogaster HO. AgHO also degraded hemin to biliverdin and released CO and iron in the presence of NADPH cytochrome P450 oxidoreductase (CPR). Optimal AgHO activity was observed at 27.5 °C and pH 7.5. To investigate effects of AgHO inhibition, adult female A. gambiae were fed heme analogues Sn- and Zn-protoporphyrins (SnPP and ZnPP), known to inhibit HO. These led to a dose dependent decrease in oviposition. Cu-protoporphyrin (CuPP), which does not inhibit HO had no effect. These results demonstrate that AgHO is a catalytically active HO and that it may play a key role in egg production in mosquitoes. It also presents a potential target for the development of compounds aimed at sterilising mosquitoes for vector control.
Collapse
Affiliation(s)
| | - Cristina Yunta
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Kay Hemmings
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lu-Yun Lian
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gareth Lycett
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
8
|
Walter-Nuno AB, Taracena ML, Mesquita RD, Oliveira PL, Paiva-Silva GO. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front Genet 2018; 9:19. [PMID: 29456553 PMCID: PMC5801409 DOI: 10.3389/fgene.2018.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP), Heme Oxygenase (HO) and the heme exporter Feline Leukemia Virus C Receptor (FLVCR), components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM), where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of these key proteins after a blood- meal can be extremely deleterious to the insects in their various stages of development.
Collapse
Affiliation(s)
- Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mabel L Taracena
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rafael D Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Nunes-da-Fonseca R, Berni M, Tobias-Santos V, Pane A, Araujo HM. Rhodnius prolixus: From classical physiology to modern developmental biology. Genesis 2017; 55. [DOI: 10.1002/dvg.22995] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Mateus Berni
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Institute of Molecular Entomology; INCT-EM
| | - Attilio Pane
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Helena Marcolla Araujo
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
10
|
Al-Wathiqui N, Dopman EB, Lewis SM. Postmating transcriptional changes in the female reproductive tract of the European corn borer moth. INSECT MOLECULAR BIOLOGY 2016; 25:629-645. [PMID: 27329655 DOI: 10.1111/imb.12249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mating triggers a cascade of physiological and behavioural responses in females that persist after copulation. In insects, seminal fluid proteins contained within male ejaculates are known to initiate some responses, but our understanding of how females mediate these reactions remains limited. Few studies have examined postmating transcriptional changes within ejaculate-receiving organs within females or how these changes might depend on the identity of the male. Furthermore, whereas males of many insects transfer packaged ejaculates, transcriptional dynamics have mainly been examined in dipterans, in which males transfer a free ejaculate. To identify genes that may be important in mediating female physiological responses in a spermatophore-producing species, we sequenced the transcriptomes of the ejaculate-receiving organs and examined postmating gene expression within and between pheromone strains of the European corn borer (ECB) moth, Ostrinia nubilalis. After within-strain mating, significant differential expression of 978 transcripts occurred in the female bursa or its associated bursal gland, including peptidases, transmembrane transporters, and hormone processing genes; such genes may potentially play a role in postmating male-female interactions. We also identified 14 transcripts from the bursal gland that were differentially expressed after females mated with cross-strain males, representing candidates for previously observed postmating reproductive isolation between ECB strains.
Collapse
Affiliation(s)
- N Al-Wathiqui
- Department of Biology, Tufts University, Medford, MA, USA
| | - E B Dopman
- Department of Biology, Tufts University, Medford, MA, USA
| | - S M Lewis
- Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
11
|
Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Junior JLDSGV, Da Silva ML, Araujo RN, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo ACA, Tanaka AS, Balczun C, Oliveira JHM, Gonçalves RLS, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GRC, Oliveira PL. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 2014; 8:e2594. [PMID: 24416461 PMCID: PMC3886914 DOI: 10.1371/journal.pntd.0002594] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fernando A. Genta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Logullo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael D. Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Medeiros
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo Koerich
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Walter R. Terra
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André C. Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M. Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C. Leite
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle M. P. Diniz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Lídio da S. G. V. Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Manuela L. Da Silva
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sébastien Brosson
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | - Didier Salmon
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina Bousbata
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Polycarpo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel J. Vionette-Amaral
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Fampa
- Instituto de Biologia, DBA, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Ana Claudia A. Melo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aparecida S. Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Bochum, Germany
| | - José Henrique M. Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata L. S. Gonçalves
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Rolando Rivera-Pomar
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | - Elói S. Garcia
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória R. C. Braz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Walter-Nuno AB, Oliveira MP, Oliveira MF, Gonçalves RL, Ramos IB, Koerich LB, Oliveira PL, Paiva-Silva GO. Silencing of maternal heme-binding protein causes embryonic mitochondrial dysfunction and impairs embryogenesis in the blood sucking insect Rhodnius prolixus. J Biol Chem 2013; 288:29323-32. [PMID: 23986441 DOI: 10.1074/jbc.m113.504985] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme molecule is the prosthetic group of many hemeproteins involved in essential physiological processes, such as electron transfer, transport of gases, signal transduction, and gene expression modulation. However, heme is a pro-oxidant molecule capable of propagating reactions leading to the generation of reactive oxygen species. The blood-feeding insect Rhodnius prolixus releases enormous amounts of heme during host blood digestion in the midgut lumen when it is exposed to a physiological oxidative challenge. Additionally, this organism produces a hemolymphatic heme-binding protein (RHBP) that transports heme to pericardial cells for detoxification and to growing oocytes for yolk granules and as a source of heme for embryo development. Here, we show that silencing of RHBP expression in female fat bodies reduced total RHBP circulating in the hemolymph, promoting oxidative damage to hemolymphatic proteins. Moreover, RHBP knockdown did not cause reduction in oviposition but led to the production of heme-depleted eggs (white eggs). A lack of RHBP did not alter oocyte fecundation. However, produced white eggs were nonviable. Embryo development cellularization and vitellin yolk protein degradation, processes that normally occur in early stages of embryogenesis, were compromised in white eggs. Total cytochrome c content, cytochrome c oxidase activity, citrate synthase activity, and oxygen consumption, parameters that indicate mitochondrial function, were significantly reduced in white eggs compared with normal dark red eggs. Our results showed that reduction of heme transport from females to growing oocytes by RHBP leads to embryonic mitochondrial dysfunction and impaired embryogenesis.
Collapse
|
13
|
Toh SQ, Glanfield A, Gobert GN, Jones MK. Heme and blood-feeding parasites: friends or foes? Parasit Vectors 2010; 3:108. [PMID: 21087517 PMCID: PMC2999593 DOI: 10.1186/1756-3305-3-108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/18/2010] [Indexed: 12/01/2022] Open
Abstract
Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.
Collapse
Affiliation(s)
- Shu Qin Toh
- Queensland Institute of Medical Research, Herston, Queensland, 4006, Australia.
| | | | | | | |
Collapse
|
14
|
Cui L, Yoshioka Y, Suyari O, Kohno Y, Zhang X, Adachi Y, Ikehara S, Yoshida T, Yamaguchi M, Taketani S. Relevant expression of Drosophila heme oxygenase is necessary for the normal development of insect tissues. Biochem Biophys Res Commun 2008; 377:1156-1161. [PMID: 18983822 DOI: 10.1016/j.bbrc.2008.10.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 10/22/2008] [Indexed: 11/17/2022]
Abstract
Heme oxygenase (HO) is a rate-limiting step of heme degradation, which catalyzes the conversion of heme into biliverdin, iron, and CO. HO has been characterized in micro-organisms, insects, plants, and mammals. The mammalian enzyme participates in adaptive and protective responses to oxidative stress and various inflammatory stimuli. The present study reports the use of RNA-interference (RNAi) to suppress HO in the multicellular eukaryote Drosophila. Eye imaginal disc-specific suppression of the Drosophila HO homolog (dHO) conferred serious abnormal eye morphology in adults. Deficiency of the dHO protein resulted in increased levels of iron and heme in larvae. The accumulation of iron was also observed in the compound eyes of dHO-knockdown adult flies. In parallel with the decrease of dHO, the expression of delta-aminolevulinic acid synthase, the first enzyme of the heme-biosynthetic pathway, in larvae was decreased markedly, suggesting that heme biosynthesis was totally suppressed by dHO-deficiency. The activation of caspase-3 occurred in eye imaginal discs of dHO-knockdown flies, indicating the occurrence of apoptosis in the discs. On the other hand, the overexpression of dHO resulted in a weak but significant rough eye phenotype in adults. Taken together, considering that dHO is not a stress-inducible protein, the expression of dHO can be tightly regulated at developmental stages and the relevant expression is necessary for the normal development of tissues in Drosophila.
Collapse
Affiliation(s)
- Lihua Cui
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Silva JR, Gomes-Silva L, Lins UC, Nogueira NFS, Dansa-Petretski M. The haemoxisome: a haem-iron containing structure in the Rhodnius prolixus midgut cells. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:542-50. [PMID: 16713601 DOI: 10.1016/j.jinsphys.2006.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 05/09/2023]
Abstract
Rhodnius prolixus midgut was analysed using transmission electron microscopy and electron spectroscopic imaging in order to localize the cellular structures involved in haem metabolism. In the posterior midgut, special cellular electron-dense structures were observed. These structures are here designated haemoxisomes. Haemoxisomes are present in the epithelial cells at various time points after a blood meal. Several days after the blood meal, some of them become less electron-dense. By electron spectroscopic imaging, large amounts of iron and oxygen were detected in these cellular structures. The iron is probably bound to the porphyrin ring as an iron-protoporphyrin IX complex, as detected using the diaminobenzidine technique. An interesting observation was the presence of endoplasmic reticulum surrounding the haemoxisomes during some special periods. Iron content was monitored in the posterior midgut epithelium and was found to be constant at the initial days after a blood meal, but slightly higher at the end of the digestive process (from 13th up to 20th day). These results are in agreement with the observation that the appearance of the haemoxisomes changes at the end of the digestive process. The ability to degrade haem seems to depend on the presence of endoplasmic reticulum as observed using a haem degradation assay in the presence of an endoplasmic reticulum-enriched fraction. Taken together these results suggest that haemoxisomes may play a role in intracellular haem detoxification.
Collapse
Affiliation(s)
- José Roberto Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro, RJ 28015-620, Brazil
| | | | | | | | | |
Collapse
|
16
|
Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MAC, Masuda H. Oogenesis and egg development in triatomines: a biochemical approach. AN ACAD BRAS CIENC 2005; 77:405-30. [PMID: 16127549 DOI: 10.1590/s0001-37652005000300005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In triatomines, as well as in other insects, accumulation of yolk is a process in which an extra-ovarian tissue, the fat body, produces yolk proteins that are packed in the egg. The main protein, synthesized by the fat body, which is accumulated inside the oocyte, is vitellogenin. This process is also known as vitellogenesis. There are growing evidences in triatomines that besides fat body the ovary also produces yolk proteins. The way these yolk proteins enter the oocyte will be discussed. Yolk is a complex material composed of proteins, lipids, carbohydrates and other minor components which are packed inside the oocyte in an organized manner. Fertilization triggers embryogenesis, a process where an embryo will develop. During embryogenesis the yolk will be used for the construction of a new individual, the first instar nymph. The challenge for the next decade is to understand how and where these egg proteins are used up together with their non-protein components, in pace with the genetic program of the embryo, which enables cell differentiation (early phase of embryogenesis) and embryo differentiation (late phase) inside the egg.
Collapse
Affiliation(s)
- Georgia C Atella
- Bloco H, Centro de Ciências da Saúde, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Kayser H, Krull-Savage U, Rilk-van Gessel R. Developmental profiles of 5-aminolevulinate, porphobilinogen and porphobilinogen synthase activity in Pieris brassicae related to the synthesis of the bilin-binding protein. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:165-174. [PMID: 15681226 DOI: 10.1016/j.ibmb.2004.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Revised: 10/26/2004] [Accepted: 11/01/2004] [Indexed: 05/24/2023]
Abstract
The bilin-binding protein (BBP) occurs as a major soluble protein in haemolymph, fat body, epidermis and wings of Pieris brassicae. It is a member of the lipocalin protein superfamily with yet unknown function. Here, we studied the developmental regulation of tetrapyrrole biosynthesis that provides the bilin ligand as the predominating end product. The levels of the precursors 5-aminolevulinate (ALA) and porphobilinogen (PBG) varied during larval-pupal transition in accordance with the activity of the related enzyme porphobilinogen synthase (PBGS). During adult development, both precursors were low while PBGS activity increased parallel to the formation of BBP, as shown in previous work. A competitive inhibitor of PBGS was partially purified from the meconium and characterised as a heat-stabile acidic compound. Label from [14C]ALA, injected into developing pupae of different age, was found to 80% in the hind wings and to 20% in the forewings after adult eclosion, reflecting the unequal distribution of BBP between the pairs of wings. This contrasted to the activity of PBGS that was equally active in forewings and hind wings. Together with the variation of enzyme activity during wing development our results led us propose that the (hind) wings may play a role in the synthesis of the tetrapyrrole ligand of BBP.
Collapse
Affiliation(s)
- Hartmut Kayser
- Abteilung für Biologie I, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
18
|
Zhang X, Sato M, Sasahara M, Migita CT, Yoshida T. Unique features of recombinant heme oxygenase of Drosophila melanogaster compared with those of other heme oxygenases studied. ACTA ACUST UNITED AC 2004; 271:1713-24. [PMID: 15096210 DOI: 10.1111/j.1432-1033.2004.04077.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We cloned a cDNA for a Drosophila melanogaster homologue of mammalian heme oxygenase (HO) and constructed a bacterial expression system of a truncated, soluble form of D. melanogaster HO (DmDeltaHO). The purified DmDeltaHO degraded hemin to biliverdin, CO and iron in the presence of reducing systems such as NADPH/cytochrome P450 reductase and sodium ascorbate, although the reaction rate was slower than that of mammalian HOs. Some properties of DmHO, however, are quite different from other known HOs. Thus DmDeltaHO bound hemin stoichiometrically to form a hemin-enzyme complex like other HOs, but this complex did not show an absorption spectrum of hexa-coordinated heme protein. The absorption spectrum of the ferric complex was not influenced by changing the pH of the solution. Interestingly, an EPR study revealed that the iron of heme was not involved in binding heme to the enzyme. Hydrogen peroxide failed to convert it into verdoheme. A spectrum of the ferrous-CO form of verdoheme was not detected during the reaction from hemin under oxygen and CO. Degradation of hemin catalyzed by DmDeltaHO yielded three isomers of biliverdin, of which biliverdin IXalpha and two other isomers (IXbeta and IXdelta) accounted for 75% and 25%, respectively. Taken together, we conclude that, although DmHO acts as a real HO in D. melanogaster, its active-site structure is quite different from those of other known HOs.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Biochemistry, Yamagata University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
19
|
Medeiros MN, Mendonça LH, Hunter AL, Paiva-Silva GO, Mello FG, Henze IP, Masuda H, Maya-Monteiro CM, Machado EA. The role of lipoxygenase products on the endocytosis of yolk proteins in insects: participation of cAMP. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 55:178-187. [PMID: 15027072 DOI: 10.1002/arch.10129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The participation of eicosanoids and second messengers in the regulation of endocytosis by the ovaries was investigated using the uptake of Rhodnius heme binding protein (RHBP) as an experimental model. The rate of RHBP uptake decreased up to 40% in the presence of BWA4C and NDGA, 5 and 12-lipoxygenase inhibitors, respectively, suggesting the involvement of lipoxygenase products in endocytosis regulation. Addition of Leukotriene B4 (LTB(4); one product of the 5 lipoxygenase pathway) increased in vitro the uptake of RHBP by 30%. The content of cAMP in the Rhodnius' ovaries were monitored after treatment with different eicosanoids and inhibitors of eicosanoids synthesis. The amount of cAMP decreased in the presence of indomethacin (by 50%), while treatment with PGE(2) induced an increase of 85% of this messenger in the ovaries. The presence of LTB(4) in the medium inhibited in 60% the content of cAMP in the ovaries, while BWA4C induced a 100% increase of this messenger in the ovaries. Addition of 1 microM DBcAMP in the medium resulted in a 30% decrease in the rate of RHBP uptake. Taken together, these data show that cyclooxygenase and lipoxygenase products participate in the control of protein internalization by modulation of cAMP levels.
Collapse
Affiliation(s)
- M N Medeiros
- Laboratório de Entomologia Médica do Programa de Parasitologia e Biologia Celular, IBCCF, CCS, UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Paiva-Silva GO, Sorgine MHF, Benedetti CE, Meneghini R, Almeida IC, Machado EA, Dansa-Petretski M, Yepiz-Plascencia G, Law JH, Oliveira PL, Masuda H. On the biosynthesis of Rhodnius prolixus heme-binding protein. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1533-1541. [PMID: 12530221 DOI: 10.1016/s0965-1748(02)00074-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemolymph and oocytes of Rhodnius prolixus, was investigated. Fat bodies of female insects incubated in vitro with 14C-leucine were able to synthesize and secrete 14C-RHBP to the culture medium. Titrtion of synthesized RHBP with hemin showed that the protein secreted by the fat bodies is bound to heme, despite the presence of apo-RHBP in the hemolymph. The sequence of the RHBP cDNA encodes a pre-protein of 128 amino acids with no significant homology to any known protein. Northern-blot assays revealed that RHBP expression was limited to fat bodies. The levels of both RHBP mRNA and secreted protein increased in response to blood meal. In addition, the time-course of RHBP secretion in vitro paralleled mRNA accumulation observed in vivo. The inhibition of the de novo heme biosynthesis by treatment of fat bodies with succinyl acetone (SA), an irreversible inhibitor of delta-aminolevulinic acid-dehydratase, led to a significant decrease of heme-RHBP secretion. Nevertheless, the levels of RHBP mRNA were not modified by SA treatment, suggesting that the heme availability is involved in a post-transcriptional control of the RHBP synthesis.
Collapse
Affiliation(s)
- G O Paiva-Silva
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|