1
|
Bass C, Nauen R. The molecular mechanisms of insecticide resistance in aphid crop pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103937. [PMID: 37023831 DOI: 10.1016/j.ibmb.2023.103937] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 05/05/2023]
Abstract
Aphids are a group of hemipteran insects that include some of the world's most economically important agricultural pests. The control of pest aphids has relied heavily on the use of chemical insecticides, however, the evolution of resistance poses a serious threat to their sustainable control. Over 1000 cases of resistance have now been documented for aphids involving a remarkable diversity of mechanisms that, individually or in combination, allow the toxic effect of insecticides to be avoided or overcome. In addition to its applied importance as a growing threat to human food security, insecticide resistance in aphids also offers an exceptional opportunity to study evolution under strong selection and gain insight into the genetic variation fuelling rapid adaptation. In this review we summarise the biochemical and molecular mechanisms underlying resistance in the most economically important aphid pests worldwide and the insights study of this topic has provided on the genomic architecture of adaptive traits.
Collapse
Affiliation(s)
- Chris Bass
- Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
2
|
Gouin N, Notte AM, Kolok AS, Bertin A. Pesticide exposure affects DNA methylation patterns in natural populations of a mayfly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161096. [PMID: 36572299 DOI: 10.1016/j.scitotenv.2022.161096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chemical pollutants derived from agricultural activities represent a major threat to freshwater biota. Despite growing evidence involving epigenetic processes, such as DNA methylation, in response to pesticide contamination in agroecosystems, research on wild populations of non-model species remains scarce, particularly for endemic freshwater arthropods. Using the MethylRAD method, this study investigates whether exposure to pesticide contamination in natural populations of the endemic mayfly A. torrens produces genome wide changes in levels of DNA methylation. From a total of 1,377,147 MethylRAD markers produced from 285 specimens collected at 30 different study sites along the Limarí watershed of north-central Chile, six showed significant differential methylation between populations exposed and unexposed to pesticides. In all cases the effect of pesticides was positive, independent and stronger than the effects detected for other spatial and environmental factors. Only one candidate marker appeared correlated significantly with additional variables, nitrate and calcium levels, which also reflects the impact of agrichemicals and could additionally suggest, to a lower extent, antagonistic effects of mineral salts concentration for this specific marker. These results suggest that the effect of pesticide exposure on methylation levels is apparent at these six MethylRAD markers in A. torrens populations. Such data is challenging to obtain in natural populations and is, for the most part, lacking in ecotoxicological studies. Our study shows that DNA methylation processes are involved in the response to pesticide contamination in populations of the mayfly A. torrens in their natural habitat, and provides new evidence regarding the impact of pesticide contamination and agricultural activities on the endemic fauna of lotic ecosystems.
Collapse
Affiliation(s)
- Nicolas Gouin
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile.
| | - Ana-Maria Notte
- Programa de doctorado en Biología y Ecología Aplicada, Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| | - Alan S Kolok
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844-3002, United States
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
3
|
Bailey E, Field L, Rawlings C, King R, Mohareb F, Pak KH, Hughes D, Williamson M, Ganko E, Buer B, Nauen R. A near-chromosome level genome assembly of the European hoverfly, Sphaerophoria rueppellii (Diptera: Syrphidae), provides comparative insights into insecticide resistance-related gene family evolution. BMC Genomics 2022; 23:198. [PMID: 35279098 PMCID: PMC8917705 DOI: 10.1186/s12864-022-08436-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sphaerophoria rueppellii, a European species of hoverfly, is a highly effective beneficial predator of hemipteran crop pests including aphids, thrips and coleopteran/lepidopteran larvae in integrated pest management (IPM) programmes. It is also a key pollinator of a wide variety of important agricultural crops. No genomic information is currently available for S. rueppellii. Without genomic information for such beneficial predator species, we are unable to perform comparative analyses of insecticide target-sites and genes encoding metabolic enzymes potentially responsible for insecticide resistance, between crop pests and their predators. These metabolic mechanisms include several gene families - cytochrome P450 monooxygenases (P450s), ATP binding cassette transporters (ABCs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs) and carboxyl/choline esterases (CCEs). METHODS AND FINDINGS In this study, a high-quality near-chromosome level de novo genome assembly (as well as a mitochondrial genome assembly) for S. rueppellii has been generated using a hybrid approach with PacBio long-read and Illumina short-read data, followed by super scaffolding using Hi-C data. The final assembly achieved a scaffold N50 of 87Mb, a total genome size of 537.6Mb and a level of completeness of 96% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 14,249 protein-coding genes. Comparative analysis revealed gene expansions of CYP6Zx P450s, epsilon-class GSTs, dietary CCEs and multiple UGT families (UGT37/302/308/430/431). Conversely, ABCs, delta-class GSTs and non-CYP6Zx P450s showed limited expansion. Differences were seen in the distributions of resistance-associated gene families across subfamilies between S. rueppellii and some hemipteran crop pests. Additionally, S. rueppellii had larger numbers of detoxification genes than other pollinator species. CONCLUSION AND SIGNIFICANCE This assembly is the first published genome for a predatory member of the Syrphidae family and will serve as a useful resource for further research into selectivity and potential tolerance of insecticides by beneficial predators. Furthermore, the expansion of some gene families often linked to insecticide resistance and selectivity may be an indicator of the capacity of this predator to detoxify IPM selective insecticides. These findings could be exploited by targeted insecticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably and effectively controlling pests without impacting beneficial predator populations.
Collapse
Affiliation(s)
- Emma Bailey
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK.
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK.
| | - Linda Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christopher Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Keywan-Hassani Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Martin Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Eric Ganko
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, Durham, NC, USA
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| |
Collapse
|
4
|
Cheng Z, Wang D, Han S, Zuo C, He Y. Transcriptome analysis in the thiamethoxam resistance of seven-spot ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113144. [PMID: 34998260 DOI: 10.1016/j.ecoenv.2021.113144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The seven-spot ladybird beetle, Coccinella septempunctata Linnaeus (Coleoptera: Coccinellidae) has been used as the main biological control agent against all kinds of aphids in farmland and greenhouse. In this study, a thiamethoxam-resistant strain (ThR) and a susceptible strain (SS) of seven-spot ladybird beetle were established, and differentially expressed genes (DEGs) associated with thiamethoxam resistance were recorded through de novo Illumina HiSeq 4000 sequencing. A total of 53.5 Gb of clean data were obtained and finally assembled into 21,217 unigenes from ThR and SS transcriptomes. 1798 DEGs were identified between the ThR libraries and the SS libraries, including 560 up-regulated genes and 1238 down-regulated genes. Some cytochrome p450 monooxygenases (CYP450s), UDP-glycosyltransferases (UGTs), esterases (ESTs) and ATP-binding cassette (ABC) transporters were observed to be up-regulated and the nicotinic acetylcholine receptors (nAChRs) α subunit gene down-regulated in the ThR strain compared to the SS strain. This study provides genetic information for further studies on thiamethoxam resistance mechanisms in the seven-spot ladybird beetle.
Collapse
Affiliation(s)
- Zhi Cheng
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Shipeng Han
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Cheng Zuo
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China.
| |
Collapse
|
5
|
Gong P, Chen D, Wang C, Li M, Li X, Zhang Y, Li X, Zhu X. Susceptibility of Four Species of Aphids in Wheat to Seven Insecticides and Its Relationship to Detoxifying Enzymes. Front Physiol 2021; 11:623612. [PMID: 33536942 PMCID: PMC7848177 DOI: 10.3389/fphys.2020.623612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Sitobion avenae (Fabricius), Rhopalosiphum padi (Linnaeus), Schizaphis graminum (Rondani), and Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) are important pests of wheat and other cereals worldwide. In this study, the susceptibilities of four wheat aphid species to seven insecticides were assessed. Furthermore, the activities of carboxylesterase (CarE), glutathione S-transferase (GSTs), and cytochrome P450 monooxygenase (P450s) were determined in imidacloprid treated and untreated aphids. The results showed that the susceptibilities of four wheat aphid species to tested insecticides are different and M. dirhodum has shown higher tolerance to most insecticides. Relatively higher CarE and GST activities were observed in M. dirhodum, and P450s activities increased significantly in response to imidacloprid treatment. Moreover, susceptibility to imidacloprid were increased by the oxidase inhibitor piperonyl butoxide in M. dirhodum (20-fold). The results we have obtained imply that P450s may play an important role in imidacloprid metabolic process in M. dirhodum. We suggest that a highly species-specific approach is essential for managing M. dirhodum.
Collapse
Affiliation(s)
- Peipan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Defeng Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Beijing Vegetable Research Center, Ministry of Agriculture, Beijing, China.,Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengyi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Nagar G, Upadhaya D, Sharma AK, Kumar R, Fular A, Ghosh S. Association between overexpression of cytochrome P450 genes and deltamethrin resistance in Rhipicephalus microplus. Ticks Tick Borne Dis 2020; 12:101610. [PMID: 33285351 DOI: 10.1016/j.ttbdis.2020.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 monooxygenases mediated metabolic detoxification has been recognized as one of the mechanisms involved in resistance to pyrethroids, which is a class of pesticides that includes acaricides such as deltamethrin. Several cytochrome P450 (CYP) genes were identified in arthropod pests which are upregulated in response to exposure to pesticides used as acaricides. However, to date, limited information is available with respect to CYP genes and their response to acaricide exposure in ticks. We cloned and sequenced four CYP genes, the CYP41, CYP3006G8, CYP319A1 and CYP4W1 from reference susceptible IVRI-I strain of Rhipicephalus microplus. The expression pattern of the genes was investigated using qPCR in reference susceptible IVRI-I, pyrethroid-resistant IVRI-IV and multi-acaricide resistant IVRI-V strains. The effect of a single exposure of deltamethrin, at a concentration of 2600 μg/mL and 299.7 μg/mL on IVRI-IV and IVRI-V strains, respectively, on the expression of the four CYP genes was evaluated. In IVRI-IV strain, the CYP41 gene was highly overexpressed (FC 8.72) while CYP3006G8 was underexpressed with FC of 0.06. All the four genes were overexpressed in IVRI-V strain. After exposure to deltamethrin, the CYP3006G8 transcript levels were significantly upregulated at all time intervals in both resistant strains with the highest FC of 11.62 at 12 h in IVRI-IV and 13.38 at 3 h in IVRI-V. Our results suggest that the constitutive overexpression of CYP41 and deltamethrin induced upregulation of CYP3006G8 contribute to the development of pyrethroid resistance, specifically deltamethrin, in these two reference strains.
Collapse
Affiliation(s)
- Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Deepak Upadhaya
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Rinesh Kumar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India.
| |
Collapse
|
7
|
Patterson EL, Pettinga DJ, Ravet K, Neve P, Gaines TA. Glyphosate Resistance and EPSPS Gene Duplication: Convergent Evolution in Multiple Plant Species. J Hered 2018; 109:117-125. [PMID: 29040588 DOI: 10.1093/jhered/esx087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Dean J Pettinga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Paul Neve
- Rothamsted Research, Biointeractions and Crop Protection Department, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| |
Collapse
|
8
|
Kim D, Thairu MW, Hansen AK. Novel Insights into Insect-Microbe Interactions-Role of Epigenomics and Small RNAs. FRONTIERS IN PLANT SCIENCE 2016; 7:1164. [PMID: 27540386 PMCID: PMC4972996 DOI: 10.3389/fpls.2016.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/20/2016] [Indexed: 05/23/2023]
Abstract
It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory "dark matter" such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes.
Collapse
|
9
|
Oppold A, Kreß A, Vanden Bussche J, Diogo JB, Kuch U, Oehlmann J, Vandegehuchte MB, Müller R. Epigenetic alterations and decreasing insecticide sensitivity of the Asian tiger mosquito Aedes albopictus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:45-53. [PMID: 26188644 DOI: 10.1016/j.ecoenv.2015.06.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
A range of environmental factors, including chemicals, can affect epigenetic processes in organisms leading to variations in phenotype. Thus, epigenetics displays an important environmentally responsive element. The transgenerational impact of environmental stressors on DNA methylation and phenotype was the focus of this study. The influence of two known DNA methylation-changing agents, the phytoestrogen genistein and the fungicide vinclozolin, on the overall DNA methylation level in the Asian tiger mosquito Aedes albopictus was investigated. The experiment comprised four generations in a full life-cycle design with an exposed parental generation and three consecutive non-exposed offspring generations. Application of the methylation agents to the parental generation of the study led to an alteration of the global DNA methylation level of the exposed individuals and those in two subsequent generations. The phenotypic variability of the offspring generations was assessed by examining their insecticide sensitivity. Here, a significant decrease in sensitivity (p<0.01) towards the model insecticide imidacloprid revealed alterations of the mosquito's phenotype in two subsequent generations. Thus, the evaluation of A. albopictus from an epigenetic perspective can contribute important information to the study of the high adaptability of this invasive disease vector to new environments, and its underlying mechanisms.
Collapse
Affiliation(s)
- A Oppold
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - A Kreß
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - J Vanden Bussche
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - J B Diogo
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - U Kuch
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, Haus 9b, 60590 Frankfurt am Main, Germany
| | - J Oehlmann
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - M B Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| | - R Müller
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, Haus 9b, 60590 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Ilias A, Lagnel J, Kapantaidaki DE, Roditakis E, Tsigenopoulos CS, Vontas J, Tsagkarakou A. Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype. BMC Genomics 2015; 16:939. [PMID: 26573457 PMCID: PMC4647701 DOI: 10.1186/s12864-015-2161-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
Background Bemisia tabaci is one of the most damaging agricultural pests world-wide. Although its control is based on insecticides, B. tabaci has developed resistance against almost all classes of insecticides, including neonicotinoids. Results We employed an RNA-seq approach to generate genome wide expression data and identify genes associated with neonicotinoid resistance in Mediterranean (MED) B. tabaci (Q1 biotype). Twelve libraries from insecticide resistant and susceptible whitefly populations were sequenced on an Illumina Next-generation sequencing platform, and genomic sequence information of approximately 73 Gbp was generated. A reference transcriptome was built by de novo assembly and functionally annotated. A total of 146 P450s, 18 GSTs and 23 CCEs enzymes (unigenes) potentially involved in the detoxification of xenobiotics were identified, along with 78 contigs encoding putative target proteins of six different insecticide classes. Ten unigenes encoding nicotinic Acetylcholine Receptors (nAChR), the target of neoinicotinoids, were identified and phylogenetically classified. No nAChR polymorphism potentially related with the resistant phenotypes, was observed among the studied strains. DE analysis revealed that among the 550 differentially (logFC > 1) over-transcribed unigenes, 52 detoxification enzymes were over expressed including unigenes with orthologues in P450s, GSTs, CCE and UDP-glucuronosyltransferases. Eight P450 unigenes belonging to clades CYP2, CYP3 and CYP4 were highly up-regulated (logFC > 2) including CYP6CM1, a gene already known to confer imidacloprid resistance in B. tabaci. Using quantitative qPCRs, a larger screening of field MED B. tabaci from Crete with known neonicotinoid phenotype was performed to associate expression levels of P450s with resistance levels. Expression levels of five P450s, including CYP6CM1, were found associated with neonicotinoid resistance. However, a significant correlation was found only in CYP303 and CYP6CX3, with imidacloprid and acetamiprid respectively. Conclusion Our work has generated new toxicological data and genomic resources which will significantly enrich the available dataset and substantially facilitate the molecular studies in MED B. tabaci. No evidence of target site neonicotinoid resistance has been found. Eight P450 unigenes, including CYP6CM1, were found significantly over-expressed in resistant B. tabaci. This study suggests at least two novel P450s (CYP303 and CYP6CX3) as candidates for their functional characterization as detoxification mechanisms of neonicotinoid resistance in B. tabaci. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2161-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aris Ilias
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece.
| | - Jacques Lagnel
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.
| | - Despoina E Kapantaidaki
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece. .,Department of Environmental and Natural Resources, University of Patras, Agrinio, Greece.
| | - Emmanouil Roditakis
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece.
| | - Costas S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.
| | - John Vontas
- Department of Crop Science, Agricultural University of Athens, Athens, Greece. .,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion, Greece.
| | - Anastasia Tsagkarakou
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece.
| |
Collapse
|
11
|
Pan Y, Peng T, Gao X, Zhang L, Yang C, Xi J, Xin X, Bi R, Shang Q. Transcriptomic comparison of thiamethoxam-resistance adaptation in resistant and susceptible strains of Aphis gossypii Glover. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:10-5. [DOI: 10.1016/j.cbd.2014.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/28/2022]
|
12
|
Ayyanath MM, Cutler GC, Scott-Dupree CD, Prithiviraj B, Kandasamy S, Prithiviraj K. Gene expression during imidacloprid-induced hormesis in green peach aphid. Dose Response 2014; 12:480-97. [PMID: 25249837 DOI: 10.2203/dose-response.13-057.cutler] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Imidacloprid-induced hormesis in the form of stimulated reproduction has previously been reported in green peach aphid, Myzus persicae. Changes in gene expression accompanying this hormetic response have not been previously investigated. In this study, expression of stress response (Hsp60), dispersal (OSD, TOL and ANT), and developmental (FPPS I) genes were examined for two generations during imidacloprid-induced reproductive stimulation in M. persicae. Global DNA methylation was also measured to test the hypothesis that changes in gene expression are heritable. At hormetic concentrations, down-regulation of Hsp60 was followed by up-regulation of this gene in the subsequent generation. Likewise, expression of dispersal-related genes and FPPS I varied with concentration, life stage, and generation. These results indicate that reproductive hormesis in M. persicae is accompanied by a complex transgenerational pattern of up- and down-regulation of genes that likely reflects trade-offs in gene expression and related physiological processes during the phenotypic dose-response. Moreover, DNA methylation in second generation M. persicae occurred at higher doses than in first-generation aphids, suggesting that heritable adaptability to low doses of the stressor might have occurred.
Collapse
Affiliation(s)
- Murali-Mohan Ayyanath
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA; ; School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, CANADA
| | - G Christopher Cutler
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| | - Cynthia D Scott-Dupree
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, CANADA
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| | - Saveetha Kandasamy
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| | - Kalyani Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| |
Collapse
|
13
|
Yang N, Xie W, Yang X, Wang S, Wu Q, Li R, Pan H, Liu B, Shi X, Fang Y, Xu B, Zhou X, Zhang Y. Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam. PLoS One 2013; 8:e61820. [PMID: 23671574 PMCID: PMC3650016 DOI: 10.1371/journal.pone.0061820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. Although it has developed resistance to many registered insecticides including the neonicotinoid insecticide thiamethoxam, the mechanisms that regulate the resistance are poorly understood. To understand the molecular basis of thiamethoxam resistance, "omics" analyses were carried out to examine differences between resistant and susceptible B. tabaci at both transcriptional and translational levels. RESULTS A total of 1,338 mRNAs and 52 proteins were differentially expressed between resistant and susceptible B. tabaci. Among them, 11 transcripts had concurrent transcription and translation profiles. KEGG analysis mapped 318 and 35 differentially expressed genes and proteins, respectively, to 160 and 59 pathways (p<0.05). Thiamethoxam treatment activated metabolic pathways (e.g., drug metabolism), in which 118 transcripts were putatively linked to insecticide resistance, including up-regulated glutathione-S-transferase, UDP glucuronosyltransferase, glucosyl/glucuronosyl transferase, and cytochrome P450. Gene Ontology analysis placed these genes and proteins into protein complex, metabolic process, cellular process, signaling, and response to stimulus categories. Quantitative real-time PCR analysis validated "omics" response, and suggested a highly overexpressed P450, CYP6CX1, as a candidate molecular basis for the mechanistic study of thiamethoxam resistance in whiteflies. Finally, enzymatic activity assays showed elevated detoxification activities in the resistant B. tabaci. CONCLUSIONS This study demonstrates the applicability of high-throughput omics tools for identifying molecular candidates related to thiamethoxam resistance in an agricultural important insect pest. In addition, transcriptomic and proteomic analyses provide a solid foundation for future functional investigations into the complex molecular mechanisms governing the neonicotinoid resistance in whiteflies.
Collapse
Affiliation(s)
- Nina Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rumei Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huipeng Pan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Baiming Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaobin Shi
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yong Fang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (XGZ); (YJZ)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (XGZ); (YJZ)
| |
Collapse
|
14
|
Epigenetics in social insects: a new direction for understanding the evolution of castes. GENETICS RESEARCH INTERNATIONAL 2012; 2012:609810. [PMID: 22567395 PMCID: PMC3335566 DOI: 10.1155/2012/609810] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/21/2011] [Indexed: 11/23/2022]
Abstract
Epigenetic modifications to DNA, such as DNA methylation, can expand a genome's
regulatory flexibility, and thus may contribute to the evolution of phenotypic plasticity. Recent work has demonstrated the importance of DNA methylation in alternative queen
and worker “castes” in social insects, particularly honeybees. Social insects are an excellent system for addressing questions about epigenetics and evolution because: (1)
they have dramatic caste polyphenisms that appear to be tied to differential methylation,
(2) DNA methylation is widespread in various groups of social insects, and (3) there are
intriguing connections between the social environment and DNA methylation in many
species, from insects to mammals. In this article, we review research on honeybees, and,
when available, other social insects, on DNA methylation and queen and worker caste
differences. We outline a conceptual framework for the effects of methylation on caste
determination in honeybees that may help guide studies of epigenetic regulation in other
polyphenic taxa. Finally, we suggest future paths of study for social insect epigenetic
research, including the importance of comparative studies of DNA methylation on a
broader range of species, and highlight some key unanswered mechanistic questions
about how DNA methylation affects gene regulation.
Collapse
|
15
|
Glastad KM, Hunt BG, Yi SV, Goodisman MAD. DNA methylation in insects: on the brink of the epigenomic era. INSECT MOLECULAR BIOLOGY 2011; 20:553-65. [PMID: 21699596 DOI: 10.1111/j.1365-2583.2011.01092.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage-specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes.
Collapse
Affiliation(s)
- K M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
16
|
Bass C, Field LM. Gene amplification and insecticide resistance. PEST MANAGEMENT SCIENCE 2011; 67:886-90. [PMID: 21538802 DOI: 10.1002/ps.2189] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 05/03/2023]
Abstract
Pesticide resistance in arthropods has been shown to evolve by two main mechanisms, the enhanced production of metabolic enzymes, which bind to and/or detoxify the pesticide, and mutation of the target protein, which makes it less sensitive to the pesticide. One route that leads to enhanced metabolism is the duplication or amplification of the structural gene(s) encoding the detoxifying enzyme, and this has now been described for the three main families (esterases, glutathione S-transferases and cytochrome P450 monooxygenases) implicated in resistance. More recently, a direct or indirect role for gene duplication or amplification has been described for target-site resistance in several arthropod species. This mini-review summarises the involvement of gene duplication/amplification in the insecticide/acaricide resistance of insect and mite pests and highlights recent developments in this area in relation to P450-mediated and target-site resistance.
Collapse
Affiliation(s)
- Chris Bass
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, UK.
| | | |
Collapse
|
17
|
Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera: Muscidae). Comp Biochem Physiol B Biochem Mol Biol 2010; 156:6-11. [PMID: 20117228 DOI: 10.1016/j.cbpb.2010.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/17/2010] [Accepted: 01/21/2010] [Indexed: 11/23/2022]
Abstract
Mechanisms of esterase-mediated pyrethroid resistance were analyzed based on our previous works in a strain of the housefly, Musca domestica. The carboxylesterase gene, MdalphaE7, was cloned and sequenced from susceptible (CSS) and resistant (CRR) strains, and a total of nine amino acid substitutions were found. The mutation, Trp(251)-Ser appeared to play a role in beta-cypermethrin resistance and cross-resistance between organophosphates (OPs) and pyrethroids in the CRR strain. Quantitative real-time PCR showed that MdalphaE7 was over-expressed in the CRR strain, the reciprocal cross progeny F(1) and back-cross progeny BC(2) compared with the CSS strain, respectively. Two alpha-cynaoester substrates as surrogates for beta-cypermethrin and deltamethrin, were synthesized to determine the pyrethroid hydrolase activity. Results showed that carboxylesterases from the CRR strain hydrolyzed cypermethrin/deltamethrin-like substrate 9.05- and 13.53-fold more efficiently than those from the CSS strain, respectively. Our studies suggested that quantitative and qualitative changes in the carboxylesterase might contribute together to pyrethroid resistance in the CRR strain.
Collapse
|
18
|
Brisson JA, Stern DL. The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies. Bioessays 2006; 28:747-55. [PMID: 16850403 DOI: 10.1002/bies.20436] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aphids display an abundance of adaptations that are not easily studied in existing model systems. Here we review the biology of a new genomic model system, the pea aphid, Acyrthosiphon pisum. We then discuss several phenomena that are particularly accessible to study in the pea aphid: the developmental genetic basis of polyphenisms, aphid-bacterial symbioses, the genetics of adaptation and mechanisms of virus transmission. The pea aphid can be maintained in the laboratory and natural populations can be studied in the field. These properties allow controlled experiments to be performed on problems of direct relevance to natural aphid populations. Combined with new genomic approaches, the pea aphid is poised to become an important model system for understanding the molecular and developmental basis of many ecologically and evolutionarily relevant problems.
Collapse
Affiliation(s)
- Jennifer A Brisson
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
19
|
Zhou X, Scharf ME, Meinke LJ, Chandler LD, Siegfried BD. Immunological assessment of an insecticide resistance-associated esterase in the Western corn rootworm. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 58:157-165. [PMID: 15717320 DOI: 10.1002/arch.20040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In previous investigations, we have determined that organophosphate resistance in the western corn rootworm, Diabrotica virgifera virgifera, is at least partially attributed to a group of non-specific carboxylesterases referred to as group II. Antiserum raised against a purified 66-kDa group II esterase is specific for the denatured enzyme. This antiserum reacts similarly with both beetle homogenates from resistant and susceptible populations, although there is much higher signal intensity in immunoblots of resistant relative to susceptible beetles. These results suggest that overproduction of group II esterases is the underlying basis of esterase-mediated resistance in D. v. virgifera by demonstrating that (1) group II esterases are immunologically indistinguishable between the resistant and susceptible populations, and (2) the intensity differences are due to increased group II esterase proteins in the resistant population. The diagnostic potential of immunological-based assays was tested with a traditional diagnostic concentration bioassay and a biochemical-based native PAGE assay. Significant correlations were observed among all three diagnostic assays (regression coefficients ranging from 0.95 to 0.96). These results demonstrate the importance of the 66-kDa protein as a resistance-associated biochemical marker, thus emphasizing the potential for 66-kDa protein-targeted immunoassays in resistance monitoring programs.
Collapse
Affiliation(s)
- Xuguo Zhou
- Department of Entomology and Nematology, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
20
|
Llewellyn KS, Loxdale HD, Harrington R, Clark SJ, Sunnucks P. Evidence for gene flow and local clonal selection in field populations of the grain aphid (Sitobion avenae) in Britain revealed using microsatellites. Heredity (Edinb) 2004; 93:143-53. [PMID: 15241466 DOI: 10.1038/sj.hdy.6800466] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Samples of the grain aphid, Sitobion avenae (F.), a major European pest of cereals, were collected in June and July 1997 from fields sown with winter wheat in a rough transect south-west of Rothamsted, UK. These aphids were genotyped at four microsatellite loci known from previous studies to be highly polymorphic. Allelic frequencies were similar between samples collected in the fields and in the 12.2 m high suction trap at Rothamsted, and there were many widespread genotypes (clones), providing evidence that the species is highly migratory. However, field samples were found to display a high level of genotypic heterogeneity (= variable clonal composition), most probably the result of clonal selection. The suction trap genotypes sample were slightly different from the field samples, indicative of the inclusion of genotypes from plant hosts (cereals and grasses, Poaceae) other than winter wheat and/or genotype-biased emigration from the field. The relevance of these data to modelling of aphid outbreaks is briefly discussed.
Collapse
Affiliation(s)
- K S Llewellyn
- Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | | | | |
Collapse
|
21
|
Abstract
Cytosine DNA methylation has been demonstrated in numerous eukaryotic organisms and has been shown to play an important role in human disease. The function of DNA methylation has been studied extensively in vertebrates, but establishing its primary role has proved difficult and controversial. Analysing methylation in insects has indicated an apparent functional diversity that seems to argue against a strict functional conservation. To investigate this hypothesis, we here assess the data reported in four different insect species in which DNA methylation has been analysed more thoroughly: the fruit fly Drosophila melanogaster, the cabbage moth Mamestra brassicae, the peach-potato aphid Myzus persicae and the mealybug Planococcus citri.
Collapse
Affiliation(s)
- L M Field
- BCH Division, Rothamsted Research, Harpenden, Herts, UK
| | | | | | | |
Collapse
|
22
|
FIELD LINDAM, BLACKMAN ROGERL. Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00178.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Ono M, Swanson JJ, Field LM, Devonshire AL, Siegfried BD. Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs, Schizaphis graminum (Rondani) (Homoptera: Aphididae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:1065-1073. [PMID: 10612041 DOI: 10.1016/s0965-1748(99)00082-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The greenbug aphid, Schizaphis graminum (Rondani) has developed resistance to organophosphorus insecticides by the over-production of esterases that have been classified as Type I and Type II. The first twenty N-terminal amino acids of the Type I esterase were determined and used to design an oligonucleotide, which in conjunction with an active site primer derived from conserved sequences of other insect esterases and two internal primers specific for esterases from another aphid species resulted in a 0.85 kb genomic DNA fragment from resistant greenbugs. This was extended by 5' RACE which provided approximately 1.2 kb of the 5' end of the esterase gene. The 5' DNA sequence corresponded to 19 of the 20 known amino acids of the Type I esterase, with the last needing only a one base change (probably resulting from a PCR artifact). Furthermore, the sequence showed very close similarity to the amplified E4/FE4 esterase genes of Myzus persicae (Sulzer). A comparison of sequences suggested that the S. graminum gene has introns in the same positions as the first two introns of E4/FE4, with the second intron being considerably larger in S. graminum. Probing of Southern blots with the 0.85 kb esterase fragment showed that the gene encoding the Type I esterase is amplified 4- to 8-fold in resistant S. graminum and that the amplified sequences contain 5-methylcytosine at MspI/HpaII sites, again in agreement with previous findings for M. persicae genes.
Collapse
Affiliation(s)
- M Ono
- Department of Entomology, University of Nebraska, Lincoln 68583-0816, USA
| | | | | | | | | |
Collapse
|