1
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
2
|
Lee JS. Immunologic Mechanism of Ischemia Reperfusion Injury in Transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2017. [DOI: 10.4285/jkstn.2017.31.3.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jong Soo Lee
- Division of Nephrology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Biomedical Research Center, Ulsan, Korea
| |
Collapse
|
3
|
Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. CLINICAL NEUROSCIENCE RESEARCH 2006; 6:261-281. [PMID: 18060039 PMCID: PMC1831679 DOI: 10.1016/j.cnr.2006.09.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroinflammatory processes play a significant role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies all support the presence of an neuroinflammatory cascade in disease. This is highlighted by the neurotoxic potential of microglia . In steady state, microglia serve to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of innate and adaptive immune responses. In neurodegenerative diseases, activated microglia affect neuronal injury and death through production of glutamate, pro-inflammatory factors, reactive oxygen species, quinolinic acid amongst others and by mobilization of adaptive immune responses and cell chemotaxis leading to transendothelial migration of immunocytes across the blood-brain barrier and perpetuation of neural damage. As disease progresses, inflammatory secretions engage neighboring glial cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation perpetuating tissue injury. Such pathogenic processes contribute to neurodegeneration in PD. Research from others and our own laboratories seek to harness such inflammatory processes with the singular goal of developing therapeutic interventions that positively affect the tempo and progression of human disease.
Collapse
Affiliation(s)
- R. Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Eric J. Benner
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Mark Thomas
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Michael D. Boska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- Radiology, University of Nebraska Medical Center, Omaha, NE
| | - Khader Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas School at Houston, Houston, TX
| | - Chad Laurie
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
5
|
Ardans JA, Economou AP, Martinson JM, Zhou M, Wahl LM. Oxidized low‐density and high‐density lipoproteins regulate the production of matrix metalloproteinase‐1 and ‐9 by activated monocytes. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.6.1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jeanette A. Ardans
- Immunopathology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Antaeus P. Economou
- Immunopathology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - James M. Martinson
- Immunopathology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Min Zhou
- Immunopathology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Larry M. Wahl
- Immunopathology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Shankavaram UT, Lai WC, Netzel-Arnett S, Mangan PR, Ardans JA, Caterina N, Stetler-Stevenson WG, Birkedal-Hansen H, Wahl LM. Monocyte membrane type 1-matrix metalloproteinase. Prostaglandin-dependent regulation and role in metalloproteinase-2 activation. J Biol Chem 2001; 276:19027-32. [PMID: 11259424 DOI: 10.1074/jbc.m009562200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP)-mediated activation of MMP-2 is thought to be important in the proteolysis of extracellular matrix in pathological events in which monocytes/macrophages are found. Here we report on the induction and regulation of human monocyte MT1-MMP and its role in MMP-2 activation. Activation of monocytes by lipopolysaccharide resulted in the induction of MT1-MMP mRNA and protein that was suppressed by inhibitors of prostaglandin synthesis (indomethacin), adenylyl cyclase (SQ 22536), and protein kinase A (Rp-cAMPs). Suppression of MT1-MMP by indomethacin and SQ 22536 was reversed by prostaglandin E(2) and dibutyryl cyclic AMP, respectively, demonstrating that induction of monocyte MT1-MMP is regulated through a prostaglandin-cAMP pathway. Functional analysis revealed that pro-MMP-2 in the supernatants from human bone marrow stromal fibroblasts, normal male-derived fibroblasts and melanoma cells (A2058) was converted to active MMP-2 when cultured with activated but not control monocytes. Antibodies against MT1-MMP blocked the activation of MMP-2. Tissue inhibitor of metalloproteinase-2 regulation of MMP-2 activation was shown through the addition of varying amounts of recombinant tissue inhibitor of metalloproteinase-2 with pro-MMP-2 to MT1-MMP-expressing monocytes. These findings demonstrate that activated monocytes express functionally active MT1-MMP that may play a significant role in the activation of MMP-2 produced by other cells and as such influence developmental and pathological conditions.
Collapse
Affiliation(s)
- U T Shankavaram
- Immunopathology Section and Matrix Metalloproteinase Unit, National Institute of Dental and Craniofacial Research and the Extracellular Matrix Pathology Section, Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|