1
|
Pagacz J, Borek A, Osyczka A. ROS production by cytochrome bc 1: Its mechanism as inferred from the effects of heme b cofactor mutants. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149513. [PMID: 39326544 DOI: 10.1016/j.bbabio.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cytochrome bc1 is one of the enzymes of electron transport chain responsible for generation of reactive oxygen species (ROS). While ROS are considered to be products of side reactions of quinol oxidation site (Qo), molecular aspects of their generation remain unclear. One of them concerns significance of hemes b (bL and bH) redox potentials (Em) and properties on ROS generation by Qo. Here we addressed this question by examining ROS production in mutants of bacterial cytochrome bc1 that replaced one of the His ligand of either heme bL or bH with Lys or Asn. We observed that severe slowing down of electron flow by the Asn mutants induces similar effects on ROS production as inhibition by antimycin in the native cytochrome bc1 (WT). An increase in the Em of hemes b (either bL or bH) in Lys mutants does not exert major effect on the ROS production level, compared to WT. The experimental data were analyzed in the frame of a dynamic model to conclude that the observed ROS rates and levels reflect a combinatory effect of two factors: probability of heme bL being in the reduced state and probability of electron transfer from heme bL towards Qo. A significant contribution from short-circuits maintains the ROS levels at ~15 % in all tested forms. Overall, ROS production by cytochrome bc1 shows remarkably low susceptibility to changes in the Em of heme b cofactors, leaving significance of tuning the Em of hemes b as factor limiting superoxide production an open question.
Collapse
Affiliation(s)
- Jakub Pagacz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland
| | - Arkadiusz Borek
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland.
| |
Collapse
|
2
|
Venturoli G, Mamedov MD, Vitukhnovskaya LA, Semenov AY, Francia F. Trehalose Interferes with the Photosynthetic Electron Transfer Chain of Cereibacter (Rhodobacter) sphaeroides Permeating the Bacterial Chromatophore Membrane. Int J Mol Sci 2024; 25:13420. [PMID: 39769184 PMCID: PMC11678701 DOI: 10.3390/ijms252413420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium Cereibacter sphaeroides. In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) bc1 complexes is observable. The kinetics of the third phase of the electrochromic carotenoid shift, due to electrogenic events linked to the reduction in cyt bH heme via the low-potential branch of the cyt bc1 complex and its oxidation by quinone molecule on the Qi site, is about four times slower in the presence of trehalose. In parallel, the reduction in oxidized cyt (c1 + c2) and high-potential cyt bH are strongly slowed down, suggesting that the disaccharide interferes with the electron transfer reactions of the high-potential branch of the bc1 complex. A slowing effect of trehalose on the kinetics of the electrogenic protonation of the secondary quinone acceptor QB in the reaction center complex, measured by direct electrometrical methods, was also found, but was much less pronounced. The direct detection of carbohydrate content indicates that trehalose, at high concentrations, permeates the membrane of chromatophores. The possible mechanisms underlying the observed effect of trehalose on the electron/proton transfer process are discussed in terms of trehalose's propensity to form strong hydrogen bonds with its surroundings.
Collapse
Affiliation(s)
- Giovanni Venturoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA), Università di Bologna, Via Irnerio 46, 40126 Bologna, Italy
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Liya A. Vitukhnovskaya
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Alexey Y. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Borek A, Wójcik-Augustyn A, Kuleta P, Ekiert R, Osyczka A. Identification of hydrogen bonding network for proton transfer at the quinol oxidation site of Rhodobacter capsulatus cytochrome bc 1. J Biol Chem 2023; 299:105249. [PMID: 37714464 PMCID: PMC10583091 DOI: 10.1016/j.jbc.2023.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Cytochrome bc1 catalyzes electron transfer from quinol (QH2) to cytochrome c in reactions coupled to proton translocation across the energy-conserving membrane. Energetic efficiency of the catalytic cycle is secured by a two-electron and two-proton bifurcation reaction leading to oxidation of QH2 and reduction of the Rieske cluster and heme bL. The proton paths associated with this reaction remain elusive. Here, we used site-directed mutagenesis and quantum mechanical calculations to analyze the contribution of protonable side chains located at the heme bL side of the QH2 oxidation site in Rhodobacter capsulatus cytochrome bc1. We observe that the proton path is effectively switched off when H276 and E295 are simultaneously mutated to the nonprotonable residues in the H276F/E295V double mutant. The two single mutants, H276F or E295V, are less efficient but still transfer protons at functionally relevant rates. Natural selection exposed two single mutations, N279S and M154T, that restored the functional proton transfers in H276F/E295V. Quantum mechanical calculations indicated that H276F/E295V traps the side chain of Y147 in a position distant from QH2, whereas either N279S or M154T induce local changes releasing Y147 from that position. This shortens the distance between the protonable groups of Y147 and D278 and/or increases mobility of the Y147 side chain, which makes Y147 efficient in transferring protons from QH2 toward D278 in H276F/E295V. Overall, our study identified an extended hydrogen bonding network, build up by E295, H276, D278, and Y147, involved in efficient proton removal from QH2 at the heme bL side of QH2 oxidation site.
Collapse
Affiliation(s)
- Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
4
|
Wieferig JP, Kühlbrandt W. Analysis of the conformational heterogeneity of the Rieske iron-sulfur protein in complex III 2 by cryo-EM. IUCRJ 2023; 10:27-37. [PMID: 36598500 PMCID: PMC9812224 DOI: 10.1107/s2052252522010570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Movement of the Rieske domain of the iron-sulfur protein is essential for intramolecular electron transfer within complex III2 (CIII2) of the respiratory chain as it bridges a gap in the cofactor chain towards the electron acceptor cytochrome c. We present cryo-EM structures of CIII2 from Yarrowia lipolytica at resolutions up to 2.0 Å under different conditions, with different redox states of the cofactors of the high-potential chain. All possible permutations of three primary positions were observed, indicating that the two halves of the dimeric complex act independently. Addition of the substrate analogue decylubiquinone to CIII2 with a reduced high-potential chain increased the occupancy of the Qo site. The extent of Rieske domain interactions through hydrogen bonds to the cytochrome b and cytochrome c1 subunits varied depending on the redox state and substrate. In the absence of quinols, the reduced Rieske domain interacted more closely with cytochrome b and cytochrome c1 than in the oxidized state. Upon addition of the inhibitor antimycin A, the heterogeneity of the cd1-helix and ef-loop increased, which may be indicative of a long-range effect on the Rieske domain.
Collapse
Affiliation(s)
- Jan-Philip Wieferig
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Król S, Fedotovskaya O, Högbom M, Ädelroth P, Brzezinski P. Electron and proton transfer in the M. smegmatis III 2IV 2 supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148585. [PMID: 35753381 DOI: 10.1016/j.bbabio.2022.148585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation‑oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 μs, 100 μs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 μs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P → F nor the F → O reactions are pH dependent, but the P → F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
Furlan C, Chongdar N, Gupta P, Lubitz W, Ogata H, Blaza JN, Birrell JA. Structural insight on the mechanism of an electron-bifurcating [FeFe] hydrogenase. eLife 2022; 11:79361. [PMID: 36018003 PMCID: PMC9499530 DOI: 10.7554/elife.79361] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Electron bifurcation is a fundamental energy conservation mechanism in nature in which two electrons from an intermediate-potential electron donor are split so that one is sent along a high-potential pathway to a high-potential acceptor and the other is sent along a low-potential pathway to a low-potential acceptor. This process allows endergonic reactions to be driven by exergonic ones and is an alternative, less recognized, mechanism of energy coupling to the well-known chemiosmotic principle. The electron-bifurcating [FeFe] hydrogenase from Thermotoga maritima (HydABC) requires both NADH and ferredoxin to reduce protons generating hydrogen. The mechanism of electron bifurcation in HydABC remains enigmatic in spite of intense research efforts over the last few years. Structural information may provide the basis for a better understanding of spectroscopic and functional information. Here, we present a 2.3 Å electron cryo-microscopy structure of HydABC. The structure shows a heterododecamer composed of two independent 'halves' each made of two strongly interacting HydABC heterotrimers connected via a [4Fe-4S] cluster. A central electron transfer pathway connects the active sites for NADH oxidation and for proton reduction. We identified two conformations of a flexible iron-sulfur cluster domain: a 'closed bridge' and an 'open bridge' conformation, where a Zn2+ site may act as a 'hinge' allowing domain movement. Based on these structural revelations, we propose a possible mechanism of electron bifurcation in HydABC where the flavin mononucleotide serves a dual role as both the electron bifurcation center and as the NAD+ reduction/NADH oxidation site.
Collapse
Affiliation(s)
- Chris Furlan
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, United Kingdom
| | - Nipa Chongdar
- Max Planck Institute for Chemical Energy Conversion, Muelheim an der Ruhr, Germany
| | - Pooja Gupta
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, United Kingdom
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Muelheim an der Ruhr, Germany
| | - Hideaki Ogata
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan.,Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - James N Blaza
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, United Kingdom
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, Muelheim an der Ruhr, Germany
| |
Collapse
|
7
|
Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy. Biochem Soc Trans 2022; 50:877-893. [PMID: 35356963 PMCID: PMC9162462 DOI: 10.1042/bst20190963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
Cytochrome (cyt) bc1, bcc and b6f complexes, collectively referred to as cyt bc complexes, are homologous isoprenoid quinol oxidising enzymes present in diverse phylogenetic lineages. Cyt bc1 and bcc complexes are constituents of the electron transport chain (ETC) of cellular respiration, and cyt b6f complex is a component of the photosynthetic ETC. Cyt bc complexes share in general the same Mitchellian Q cycle mechanism, with which they accomplish proton translocation and thus contribute to the generation of proton motive force which drives ATP synthesis. They therefore require a quinol oxidation (Qo) and a quinone reduction (Qi) site. Yet, cyt bc complexes evolved to adapt to specific electrochemical properties of different quinone species and exhibit structural diversity. This review summarises structural information on native quinones and quinone-like inhibitors bound in cyt bc complexes resolved by X-ray crystallography and cryo-EM structures. Although the Qi site architecture of cyt bc1 complex and cyt bcc complex differs considerably, quinone molecules were resolved at the respective Qi sites in very similar distance to haem bH. In contrast, more diverse positions of native quinone molecules were resolved at Qo sites, suggesting multiple quinone binding positions or captured snapshots of trajectories toward the catalytic site. A wide spectrum of inhibitors resolved at Qo or Qi site covers fungicides, antimalarial and antituberculosis medications and drug candidates. The impact of these structures for characterising the Q cycle mechanism, as well as their relevance for the development of medications and agrochemicals are discussed.
Collapse
|
8
|
González PJ, Rivas MG, Ferroni FM, Rizzi AC, Brondino CD. Electron transfer pathways and spin–spin interactions in Mo- and Cu-containing oxidoreductases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Wani MA, Dhaked DK. Targeting the cytochrome bc 1 complex for drug development in M. tuberculosis: review. Mol Divers 2021; 26:2949-2965. [PMID: 34762234 DOI: 10.1007/s11030-021-10335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The terminal oxidases of the oxidative phosphorylation pathway play a significant role in the survival and growth of M. tuberculosis, targeting these components lead to inhibition of M. tuberculosis. Many drug candidates targeting various components of the electron transport chain in M. tuberculosis have recently been discovered. The cytochrome bc1-aa3 supercomplex is one of the most important components of the electron transport chain in M. tuberculosis, and it has emerged as the novel target for several promising candidates. There are two cryo-electron microscopy structures (PDB IDs: 6ADQ and 6HWH) of the cytochrome bc1-aa3 supercomplex that aid in the development of effective and potent inhibitors for M. tuberculosis. In recent years, a number of potential candidates targeting the QcrB subunit of the cytochrome bc1 complex have been developed. In this review, we describe the recently identified inhibitors that target the electron transport chain's terminal oxidase enzyme in M. tuberculosis, specifically the QcrB subunit of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
10
|
Di Trani JM, Liu Z, Whitesell L, Brzezinski P, Cowen LE, Rubinstein JL. Rieske head domain dynamics and indazole-derivative inhibition of Candida albicans complex III. Structure 2021; 30:129-138.e4. [PMID: 34525326 DOI: 10.1016/j.str.2021.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
Electron transfer between respiratory complexes drives transmembrane proton translocation, which powers ATP synthesis and membrane transport. The homodimeric respiratory complex III (CIII2) oxidizes ubiquinol to ubiquinone, transferring electrons to cytochrome c and translocating protons through a mechanism known as the Q cycle. The Q cycle involves ubiquinol oxidation and ubiquinone reduction at two different sites within each CIII monomer, as well as movement of the head domain of the Rieske subunit. We determined structures of Candida albicans CIII2 by cryoelectron microscopy (cryo-EM), revealing endogenous ubiquinone and visualizing the continuum of Rieske head domain conformations. Analysis of these conformations does not indicate cooperativity in the Rieske head domain position or ligand binding in the two CIIIs of the CIII2 dimer. Cryo-EM with the indazole derivative Inz-5, which inhibits fungal CIII2 and is fungicidal when administered with fungistatic azole drugs, showed that Inz-5 inhibition alters the equilibrium of Rieske head domain positions.
Collapse
Affiliation(s)
- Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Science, Stockholm University, Stockholm, Sweden.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Crofts AR. The modified Q-cycle: A look back at its development and forward to a functional model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148417. [PMID: 33745972 DOI: 10.1016/j.bbabio.2021.148417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
On looking back at a lifetime of research, it is interesting to see, in the light of current progress, how things came to be, and to speculate on how things might be. I am delighted in the context of the Mitchell prize to have that excuse to present this necessarily personal view of developments in areas of my interests. I have focused on the Q-cycle and a few examples showing wider ramifications, since that had been the main interest of the lab in the 20 years since structures became available, - a watershed event in determining our molecular perspective. I have reviewed the evidence for our model for the mechanism of the first electron transfer of the bifurcated reaction at the Qo-site, which I think is compelling. In reviewing progress in understanding the second electron transfer, I have revisited some controversies to justify important conclusions which appear, from the literature, not to have been taken seriously. I hope this does not come over as nitpicking. The conclusions are important to the final section in which I develop an internally consistent mechanism for turnovers of the complex leading to a state similar to that observed in recent rapid-mix/freeze-quench experiments, reported three years ago. The final model is necessarily speculative but is open to test.
Collapse
Affiliation(s)
- Antony R Crofts
- Department of Biochemistry, 417 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, IL 61801, United States of America
| |
Collapse
|
13
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
14
|
Cryo-EM structures of engineered active bc 1-cbb 3 type CIII 2CIV super-complexes and electronic communication between the complexes. Nat Commun 2021; 12:929. [PMID: 33568648 PMCID: PMC7876108 DOI: 10.1038/s41467-021-21051-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc1 (Complex III, CIII2), and may have specific cbb3-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa3-type CIV. Electron transfer between these complexes is mediated by soluble (c2) and membrane-anchored (cy) cyts. Here, we report the structure of an engineered bc1-cbb3 type SC (CIII2CIV, 5.2 Å resolution) and three conformers of native CIII2 (3.3 Å resolution). The SC is active in vivo and in vitro, contains all catalytic subunits and cofactors, and two extra transmembrane helices attributed to cyt cy and the assembly factor CcoH. The cyt cy is integral to SC, its cyt domain is mobile and it conveys electrons to CIV differently than cyt c2. The successful production of a native-like functional SC and determination of its structure illustrate the characteristics of membrane-confined and membrane-external respiratory electron transport pathways in Gram-negative bacteria.
Collapse
|
15
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
16
|
Pagacz J, Broniec A, Wolska M, Osyczka A, Borek A. ROS signaling capacity of cytochrome bc 1: Opposing effects of adaptive and pathogenic mitochondrial mutations. Free Radic Biol Med 2021; 163:243-254. [PMID: 33352219 DOI: 10.1016/j.freeradbiomed.2020.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/06/2023]
Abstract
Cytochrome bc1, also known as mitochondrial complex III, is considered to be one of the important producers of reactive oxygen species (ROS) in living organisms. Under physiological conditions, a certain level of ROS produced by mitochondrial electron transport chain (ETC) might be beneficial and take part in cellular signaling. However, elevated levels of ROS might exhibit negative effects, resulting in cellular damage. It is well known that inhibiting the electron flow within mitochondrial complex III leads to high production of ROS. However, superoxide production by cytochrome bc1 in a non-inhibited system remained controversial. Here, we propose a novel method for ROS detection in ETC hybrid system in solution comprising bacterial cytochrome bc1 and mitochondrial complex IV. We clearly show that non-inhibited cytochrome bc1 generates ROS and that adaptive and pathogenic mitochondrial mutations suppress and enhance ROS production, respectively. We also noted that cytochrome bc1 produces ROS in a rate-dependent manner and that the mechanism of ROS generation changes according to the rate of operation of the enzyme. This dependency has not yet been reported, but seems to be crucial when discussing ROS signaling originating from mitochondria.
Collapse
Affiliation(s)
- Jakub Pagacz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Broniec
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Wolska
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
17
|
Pérez-Mejías G, Olloqui-Sariego JL, Guerra-Castellano A, Díaz-Quintana A, Calvente JJ, Andreu R, De la Rosa MA, Díaz-Moreno I. Physical contact between cytochrome c1 and cytochrome c increases the driving force for electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148277. [DOI: 10.1016/j.bbabio.2020.148277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
|
18
|
Rochaix JD. The Dynamics of the Photosynthetic Apparatus in Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Abstract
Books with titles like 'The Call of the Wild' seemed to set a path for a life. Thus, I would be an explorer-a plan that did not work out so well, at least at first. On leaving school I got a job as a 'Works Chemist Improver', testing Ni catalysts for the hydrogenation of phenol to cyclohexanol. Taking night classes I passed enough exams to study geology at Queen Mary College, London. Armed thus I travelled to the Solomon Islands where geology is a 'happening'! Next was Canada to visit a mine sunk into a 1.5 billion year old Pb-Zn orebody precipitated from submarine hot springs. At last I reached the Yukon to prospect for silver. Thence to Ireland researching what I also took to be 'exhalative' (i.e. hot spring-related) Pb-Zn orebodies. While there in 1979, the discovery of 350°C metal-bearing acidic waters issuing from submarine Black Smoker chimneys in the Pacific sent us searching for fossil examples in the Irish mines. However, the chimneys we found were more like chemical gardens than Black Smokers, a finding that made us think about the emergence of life. After all, what better for life's emergence than to have a membrane comprising Fe minerals dosed with Ni in our chimneys to mediate the 'hydrogenation' of CO2-life's job anyway. Indeed, such a membrane would keep redox and pH disequilibria at bay, just like biological membranes. At the same time, my field research among Alpine ophiolites-ocean floor mafic rocks obducted to the Alps-indicated that alkaline waters bearing H2 and CH4 were a result of serpentinization, a process that must have operated in all ocean floors over all time. Thus it was that we could predict the Lost City hydrothermal field 10 years before its discovery in the North Atlantic in the year 2000. Lost City comprises a number of alkaline springs at up to 90°C that produce carbonate and brucite (Mg[OH]2) chimneys. We had surmised that Ni-enriched FeS chimneys would have precipitated at comparable alkaline springs issuing into a metal-rich carbonic ocean on the very early Earth (inducing membrane potentials comparable to those capable of succouring all life, and presumably, sufficient to drive life into being). However, our laboratory precipitates also revealed green rust, thought to be the precursor to the magnetite now comprising the Archaean Banded Iron Formations. We now look upon green rust, also known as fougèrite, as the tangible, base fractal of life.
Collapse
Affiliation(s)
- Michael J. Russell
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, CA, USA
- http://bip.cnrs-mrs.fr/bip09/AHVics.html
| |
Collapse
|
20
|
Abstract
In the 1930s, Lars Onsager published his famous 'reciprocal relations' describing free energy conversion processes. Importantly, these relations were derived on the assumption that the fluxes of the processes involved in the conversion were proportional to the forces (free energy gradients) driving them. For chemical reactions, however, this condition holds only for systems operating close to equilibrium-indeed very close; nominally requiring driving forces to be smaller than k B T. Fairly soon thereafter, however, it was quite inexplicably observed that in at least some biological conversions both the reciprocal relations and linear flux-force dependency appeared to be obeyed no matter how far from equilibrium the system was being driven. No successful explanation of how this 'paradoxical' behaviour could occur has emerged and it has remained a mystery. We here argue, however, that this anomalous behaviour is simply a gift of water, of its viscosity in particular; a gift, moreover, without which life almost certainly could not have emerged. And a gift whose appreciation we primarily owe to recent work by Prof. R. Dean Astumian who, as providence has kindly seen to it, was led to the relevant insights by the later work of Onsager himself.
Collapse
Affiliation(s)
- E. Branscomb
- Carl R. Woese Institute for Genomic Biology, and Department of Physics, University of Illinois, 3113 IGB MC 195, 128 W. Gregory Dr., Urbana, IL 61801, USA
| | - M. J. Russell
- NASA Astrobiology Institute, Ames Research Center, Mountain View, CA, USA
| |
Collapse
|
21
|
Measuring the functionality of the mitochondrial pumping complexes with multi-wavelength spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:89-101. [DOI: 10.1016/j.bbabio.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/04/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
|
22
|
Wiseman B, Nitharwal RG, Fedotovskaya O, Schäfer J, Guo H, Kuang Q, Benlekbir S, Sjöstrand D, Ädelroth P, Rubinstein JL, Brzezinski P, Högbom M. Structure of a functional obligate complex III 2IV 2 respiratory supercomplex from Mycobacterium smegmatis. Nat Struct Mol Biol 2018; 25:1128-1136. [PMID: 30518849 DOI: 10.1038/s41594-018-0160-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
In the mycobacterial electron-transport chain, respiratory complex III passes electrons from menaquinol to complex IV, which in turn reduces oxygen, the terminal acceptor. Electron transfer is coupled to transmembrane proton translocation, thus establishing the electrochemical proton gradient that drives ATP synthesis. We isolated, biochemically characterized, and determined the structure of the obligate III2IV2 supercomplex from Mycobacterium smegmatis, a model for Mycobacterium tuberculosis. The supercomplex has quinol:O2 oxidoreductase activity without exogenous cytochrome c and includes a superoxide dismutase subunit that may detoxify reactive oxygen species produced during respiration. We found menaquinone bound in both the Qo and Qi sites of complex III. The complex III-intrinsic diheme cytochrome cc subunit, which functionally replaces both cytochrome c1 and soluble cytochrome c in canonical electron-transport chains, displays two conformations: one in which it provides a direct electronic link to complex IV and another in which it serves as an electrical switch interrupting the connection.
Collapse
Affiliation(s)
- Benjamin Wiseman
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Ram Gopal Nitharwal
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.,School of Sports Sciences, Central University of Rajasthan, Rajasthan, India
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Jacob Schäfer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Hui Guo
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Qie Kuang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - John L Rubinstein
- Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
23
|
Bujnowicz Ł, Borek A, Kuleta P, Sarewicz M, Osyczka A. Suppression of superoxide production by a spin‐spin coupling between semiquinone and the Rieske cluster in cytochrome
bc
1. FEBS Lett 2018; 593:3-12. [DOI: 10.1002/1873-3468.13296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Łukasz Bujnowicz
- Department of Molecular Biophysics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Arkadiusz Borek
- Department of Molecular Biophysics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Artur Osyczka
- Department of Molecular Biophysics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| |
Collapse
|
24
|
Borek A, Ekiert R, Osyczka A. Functional flexibility of electron flow between quinol oxidation Q o site of cytochrome bc 1 and cytochrome c revealed by combinatory effects of mutations in cytochrome b, iron-sulfur protein and cytochrome c 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:754-761. [PMID: 29705394 DOI: 10.1016/j.bbabio.2018.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023]
Abstract
Transfer of electron from quinol to cytochrome c is an integral part of catalytic cycle of cytochrome bc1. It is a multi-step reaction involving: i) electron transfer from quinol bound at the catalytic Qo site to the Rieske iron-sulfur ([2Fe-2S]) cluster, ii) large-scale movement of a domain containing [2Fe-2S] cluster (ISP-HD) towards cytochrome c1, iii) reduction of cytochrome c1 by reduced [2Fe-2S] cluster, iv) reduction of cytochrome c by cytochrome c1. In this work, to examine this multi-step reaction we introduced various types of barriers for electron transfer within the chain of [2Fe-2S] cluster, cytochrome c1 and cytochrome c. The barriers included: impediment in the motion of ISP-HD, uphill electron transfer from [2Fe-2S] cluster to heme c1 of cytochrome c1, and impediment in the catalytic quinol oxidation. The barriers were introduced separately or in various combinations and their effects on enzymatic activity of cytochrome bc1 were compared. This analysis revealed significant degree of functional flexibility allowing the cofactor chains to accommodate certain structural and/or redox potential changes without losing overall electron and proton transfers capabilities. In some cases inhibitory effects compensated one another to improve/restore the function. The results support an equilibrium model in which a random oscillation of ISP-HD between the Qo site and cytochrome c1 helps maintaining redox equilibrium between all cofactors of the chain. We propose a new concept in which independence of the dynamics of the Qo site substrate and the motion of ISP-HD is one of the elements supporting this equilibrium and also is a potential factor limiting the overall catalytic rate.
Collapse
Affiliation(s)
- Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland.
| |
Collapse
|
25
|
Abstract
This chapter presents an overview of structural properties of the cytochrome (Cyt) b 6 f complex and its functioning in chloroplasts. The Cyt b 6 f complex stands at the crossroad of photosynthetic electron transport pathways, providing connectivity between Photosystem (PSI) and Photosysten II (PSII) and pumping protons across the membrane into the thylakoid lumen. After a brief review of the chloroplast electron transport chain, the consideration is focused on the structural organization of the Cyt b 6 f complex and its interaction with plastoquinol (PQH2, reduced form of plastoquinone), a mediator of electron transfer from PSII to the Cyt b 6 f complex. The processes of PQH2 oxidation by the Cyt b 6 f complex have been considered within the framework of the Mitchell's Q-cycle. The overall rate of the intersystem electron transport is determined by PQH2 turnover at the quinone-binding site Qo of the Cyt b 6 f complex. The rate of PQH2 oxidation is controlled by the intrathylakoid pHin, which value determines the protonation/deprotonation events in the Qo-center. Two other regulatory mechanisms associated with the Cyt b 6 f complex are briefly overviewed: (i) redistribution of electron fluxes between alternative (linear and cyclic) pathways, and (ii) "state transitions" related to redistribution of solar energy between PSI and PSII.
Collapse
|
26
|
Mitochondrial UQCRB as a new molecular prognostic biomarker of human colorectal cancer. Exp Mol Med 2017; 49:e391. [PMID: 29147009 PMCID: PMC5704184 DOI: 10.1038/emm.2017.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Ubiquinol cytochrome c reductase binding protein (UQCRB) is important for mitochondrial complex III stability, electron transport, cellular oxygen sensing and angiogenesis. However, its potential as a prognostic marker in colorectal cancer (CRC) remains unclear. The aim of this study was to determine whether UQCRB can be used as a diagnostic molecular marker for CRC. The correlation between the expression of three genes (UQCRB, UQCRFS1 and MT-CYB) in the mitochondrial respiratory chain complex III and clinico-pathological features was determined. Compared to non-tumor tissues, UQCRB gene expression was upregulated in CRC tissues. Gene and protein expression of the genes were positively correlated. Copy number variation (CNV) differences in UQCRB were observed in CRC tissues (1.32-fold) compared to non-tumor tissues. The CNV of UQCRB in CRC tissues increased proportionally with gene expression and clinical stage. Single-nucleotide polymorphisms in the 3′-untranslated region of UQCRB (rs7836698 and rs10504961) were investigated, and the rs7836698 polymorphism was associated with CRC clinical stage. DNA methylation of the UQCRB promoter revealed that most CRC patients had high methylation levels (12/15 patients) in CRC tissues compared to non-tumor tissues. UQCRB overexpression and CNV gain were correlated with specific CRC clinico-pathological features, indicating clinical significance as a prognostic predictor in CRC. Gene structural factors may be more important than gene transcription repression factors with respect to DNA methylation in UQCRB overexpression. Our results provide novel insights into the critical role of UQCRB in regulating CRC, supporting UQCRB as a new candidate for the development of diagnostics for CRC patients.
Collapse
|
27
|
Orchestrated Domain Movement in Catalysis by Cytochrome P450 Reductase. Sci Rep 2017; 7:9741. [PMID: 28852004 PMCID: PMC5575293 DOI: 10.1038/s41598-017-09840-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
NADPH-cytochrome P450 reductase is a multi-domain redox enzyme which is a key component of the P450 mono-oxygenase drug-metabolizing system. We report studies of the conformational equilibrium of this enzyme using small-angle neutron scattering, under conditions where we are able to control the redox state of the enzyme precisely. Different redox states have a profound effect on domain orientation in the enzyme and we analyse the data in terms of a two-state equilibrium between compact and extended conformations. The effects of ionic strength show that the presence of a greater proportion of the extended form leads to an enhanced ability to transfer electrons to cytochrome c. Domain motion is intrinsically linked to the functionality of the enzyme, and we can define the position of the conformational equilibrium for individual steps in the catalytic cycle.
Collapse
|
28
|
Crofts AR, Rose SW, Burton RL, Desai AV, Kenis PJA, Dikanov SA. The Q-Cycle Mechanism of the bc1 Complex: A Biologist’s Perspective on Atomistic Studies. J Phys Chem B 2017; 121:3701-3717. [DOI: 10.1021/acs.jpcb.6b10524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Antony R. Crofts
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Stuart W. Rose
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Rodney L. Burton
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Amit V. Desai
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul J. A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sergei A. Dikanov
- Department
of Veterinary Clinical Medicine, University of Illinois at Urbana−Champaign, 1008 West Hazelwood Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Francia F, Malferrari M, Lanciano P, Steimle S, Daldal F, Venturoli G. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q o site of bacterial cytochrome bc 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1796-1806. [PMID: 27550309 DOI: 10.1016/j.bbabio.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022]
Abstract
The ubiquinol:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important membrane protein complex in photosynthetic and respiratory energy transduction. In bacteria such as Rhodobacter capsulatus it is constituted of three subunits: the iron-sulfur protein, cyt b and cyt c1, which form two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the pathways of bifurcated electron transfers emanating from QH2 oxidation are known, but the associated proton release routes are not well defined. In energy transducing complexes, Zn2+ binding amino acid residues often correlate with proton uptake or release pathways. Earlier, using combined EXAFS and structural studies, we identified Zn coordinating residues of mitochondrial and bacterial cyt bc1. In this work, using the genetically tractable bacterial cyt bc1, we substituted each of the proposed Zn binding residues with non-protonatable side chains. Among these mutants, only the His291Leu substitution destroyed almost completely the Qo site catalysis without perturbing significantly the redox properties of the cofactors or the assembly of the complex. In this mutant, which is unable to support photosynthetic growth, the bifurcated electron transfer reactions that result from QH2 oxidation at the Qo site, as well as the associated proton(s) release, were dramatically impaired. Based on these findings, on the putative role of His291 in liganding Zn, and on its solvent exposed and highly conserved position, we propose that His291 of cyt b is critical for proton release associated to QH2 oxidation at the Qo site of cyt bc1.
Collapse
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Pascal Lanciano
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Steimle
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
30
|
Sarewicz M, Dutka M, Pietras R, Borek A, Osyczka A. Effect of H bond removal and changes in the position of the iron-sulphur head domain on the spin-lattice relaxation properties of the [2Fe-2S](2+) Rieske cluster in cytochrome bc(1). Phys Chem Chem Phys 2016; 17:25297-308. [PMID: 26355649 PMCID: PMC5716461 DOI: 10.1039/c5cp02815a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here, comparative electron spin–lattice relaxation studies of the 2Fe–2S iron–sulphur (Fe–S) cluster embedded in a large membrane protein complex – cytochrome bc1 – are reported.
Here, comparative electron spin–lattice relaxation studies of the 2Fe–2S iron–sulphur (Fe–S) cluster embedded in a large membrane protein complex – cytochrome bc1 – are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe–S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe–S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1–1) for the Fe–S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1–1 (T) over the range 5–120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin–orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin–orbit coupling but was also influenced by other factors – possibly the modification of protein rigidity and therefore the vibrational modes around the Fe–S cluster that change upon the movement of the iron–sulphur head domain.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | | | | | | | | |
Collapse
|
31
|
Steuber J, Vohl G, Muras V, Toulouse C, Claußen B, Vorburger T, Fritz G. The structure of Na⁺-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na⁺ transport. Biol Chem 2016; 396:1015-30. [PMID: 26146127 DOI: 10.1515/hsz-2015-0128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/29/2015] [Indexed: 11/15/2022]
Abstract
The Na⁺-translocating NADH:ubiquinone oxidoreductase (Na⁺-NQR) of Vibrio cholerae is a respiratory complex that couples the exergonic oxidation of NADH to the transport of Na⁺ across the cytoplasmic membrane. It is composed of six different subunits, NqrA, NqrB, NqrC, NqrD, NqrE, and NqrF, which harbor FAD, FMN, riboflavin, quinone, and two FeS centers as redox co-factors. We recently determined the X-ray structure of the entire Na⁺-NQR complex at 3.5-Å resolution and complemented the analysis by high-resolution structures of NqrA, NqrC, and NqrF. The position of flavin and FeS co-factors both at the cytoplasmic and the periplasmic side revealed an electron transfer pathway from cytoplasmic subunit NqrF across the membrane to the periplasmic NqrC, and via NqrB back to the quinone reduction site on cytoplasmic NqrA. A so far unknown Fe site located in the midst of membrane-embedded subunits NqrD and NqrE shuttles the electrons over the membrane. Some distances observed between redox centers appear to be too large for effective electron transfer and require conformational changes that are most likely involved in Na⁺ transport. Based on the structure, we propose a mechanism where redox induced conformational changes critically couple electron transfer to Na⁺ translocation from the cytoplasm to the periplasm through a channel in subunit NqrB.
Collapse
|
32
|
Pietras R, Sarewicz M, Osyczka A. Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications. J R Soc Interface 2016; 13:20160133. [PMID: 27194483 PMCID: PMC4892266 DOI: 10.1098/rsif.2016.0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
The two-electron ubiquinol oxidation or ubiquinone reduction typically involves semiquinone (SQ) intermediates. Natural engineering of ubiquinone binding sites of bioenergetic enzymes secures that SQ is sufficiently stabilized, so that it does not leave the site to membranous environment before full oxidation/reduction is completed. The ubiquinol oxidation Qo site of cytochrome bc1 (mitochondrial complex III, cytochrome b6f in plants) has been considered an exception with catalytic reactions assumed to involve highly unstable SQ or not to involve any SQ intermediate. This view seemed consistent with long-standing difficulty in detecting any reaction intermediates at the Qo site. New perspective on this issue is now offered by recent, independent reports on detection of SQ in this site. Each of the described SQs seems to have different spectroscopic properties leaving space for various interpretations and mechanistic considerations. Here, we comparatively reflect on those properties and their consequences on the SQ stabilization, the involvement of SQ in catalytic reactions, including proton transfers, and the reactivity of SQ with oxygen associated with superoxide generation activity of the Qo site.
Collapse
Affiliation(s)
- Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
33
|
Gráczer É, Szimler T, Garamszegi A, Konarev PV, Lábas A, Oláh J, Palló A, Svergun DI, Merli A, Závodszky P, Weiss MS, Vas M. Dual Role of the Active Site Residues of Thermus thermophilus 3-Isopropylmalate Dehydrogenase: Chemical Catalysis and Domain Closure. Biochemistry 2016; 55:560-74. [PMID: 26731489 DOI: 10.1021/acs.biochem.5b00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The key active site residues K185, Y139, D217, D241, D245, and N102 of Thermus thermophilus 3-isopropylmalate dehydrogenase (Tt-IPMDH) have been replaced, one by one, with Ala. A drastic decrease in the kcat value (0.06% compared to that of the wild-type enzyme) has been observed for the K185A and D241A mutants. Similarly, the catalytic interactions (Km values) of these two mutants with the substrate IPM are weakened by more than 1 order of magnitude. The other mutants retained some (1-13%) of the catalytic activity of the wild-type enzyme and do not exhibit appreciable changes in the substrate Km values. The pH dependence of the wild-type enzyme activity (pK = 7.4) is shifted toward higher values for mutants K185A and D241A (pK values of 8.4 and 8.5, respectively). For the other mutants, smaller changes have been observed. Consequently, K185 and D241 may constitute a proton relay system that can assist in the abstraction of a proton from the OH group of IPM during catalysis. Molecular dynamics simulations provide strong support for the neutral character of K185 in the resting state of the enzyme, which implies that K185 abstracts the proton from the substrate and D241 assists the process via electrostatic interactions with K185. Quantum mechanics/molecular mechanics calculations revealed a significant increase in the activation energy of the hydride transfer of the redox step for both D217A and D241A mutants. Crystal structure analysis of the molecular contacts of the investigated residues in the enzyme-substrate complex revealed their additional importance (in particular that of K185, D217, and D241) in stabilizing the domain-closed active conformation. In accordance with this, small-angle X-ray scattering measurements indicated the complete absence of domain closure in the cases of D217A and D241A mutants, while only partial domain closure could be detected for the other mutants. This suggests that the same residues that are important for catalysis are also essential for inducing domain closure.
Collapse
Affiliation(s)
- Éva Gráczer
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Tamás Szimler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Anita Garamszegi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Petr V Konarev
- European Molecular Biology Laboratory , Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Anikó Lábas
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Gellért tér 4., H-1111 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Gellért tér 4., H-1111 Budapest, Hungary
| | - Anna Palló
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Dmitri I Svergun
- European Molecular Biology Laboratory , Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Angelo Merli
- Dipartimento di Bioscienze, Universitá degli Studi di Parma , Viale G.P. Usberti 23/A, I-43100 Parma, Italy
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Mária Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|
34
|
Hagras MA, Hayashi T, Stuchebrukhov AA. Quantum Calculations of Electron Tunneling in Respiratory Complex III. J Phys Chem B 2015; 119:14637-51. [DOI: 10.1021/acs.jpcb.5b09424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Muhammad A. Hagras
- Department of Chemistry, University of California, One Shields
Avenue, Davis, California 95616, United States
| | - Tomoyuki Hayashi
- Department of Chemistry, University of California, One Shields
Avenue, Davis, California 95616, United States
| | - Alexei A. Stuchebrukhov
- Department of Chemistry, University of California, One Shields
Avenue, Davis, California 95616, United States
| |
Collapse
|
35
|
Song Z, Clain J, Iorga BI, Vallières C, Lalève A, Fisher N, Meunier B. Interplay between the hinge region of iron sulphur protein and the Qo site in the bc1 complex - Analysis of Plasmodium-like mutations in the yeast enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1487-94. [PMID: 26301481 DOI: 10.1016/j.bbabio.2015.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/21/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
The respiratory chain bc1 complex is central to mitochondrial bioenergetics and the target of antiprotozoals. We characterized a modified yeast bc1 complex that more closely resemble Plasmodium falciparum enzyme. The mutant version was generated by replacing ten cytochrome b Qo site residues by P. falciparum equivalents. The Plasmodium-like changes caused a major dysfunction of the catalytic mechanism of the bc1 complex resulting in superoxide overproduction and respiratory growth defect. The defect was corrected by substitution of the conserved residue Y279 by a phenylalanine, or by mutations in or in the vicinity of the hinge domain of the iron-sulphur protein. It thus appears that side-reactions can be prevented by the substitution Y279F or the modification of the iron-sulphur protein hinge region. Interestingly, P. falciparum - and all the apicomplexan - contains an unusual hinge region. We replaced the yeast hinge region by the Plasmodium version and combined it with the Plasmodium-like version of the Qo site. This combination restored the respiratory growth competence. It could be suggested that, in the apicomplexan, the hinge region and the cytochrome b Qo site have co-evolved to maintain catalytic efficiency of the bc1 complex Qo site.
Collapse
Affiliation(s)
- Zehua Song
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | - Jérôme Clain
- UMR 216, Faculté de Pharmacie de Paris, Université Paris Descartes, and Institut de Recherche pour le Développement, 75006 Paris, France
| | - Bogdan I Iorga
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Labex LERMIT, 91198 Gif-sur-Yvette, France
| | - Cindy Vallières
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | - Anaïs Lalève
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA..
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
36
|
Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide. J Biol Chem 2015; 290:23781-92. [PMID: 26245902 PMCID: PMC4583038 DOI: 10.1074/jbc.m115.661314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P.
Collapse
Affiliation(s)
- Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Robert Ekiert
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
37
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
38
|
Tikhonov AN. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:163-83. [PMID: 24485217 DOI: 10.1016/j.plaphy.2013.12.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI).
Collapse
|
39
|
Xia D, Esser L, Tang WK, Zhou F, Zhou Y, Yu L, Yu CA. Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1278-94. [PMID: 23201476 PMCID: PMC3593749 DOI: 10.1016/j.bbabio.2012.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023]
Abstract
The cytochrome bc1 complex (bc1) is the mid-segment of the cellular respiratory chain of mitochondria and many aerobic prokaryotic organisms; it is also part of the photosynthetic apparatus of non-oxygenic purple bacteria. The bc1 complex catalyzes the reaction of transferring electrons from the low potential substrate ubiquinol to high potential cytochrome c. Concomitantly, bc1 translocates protons across the membrane, contributing to the proton-motive force essential for a variety of cellular activities such as ATP synthesis. Structural investigations of bc1 have been exceedingly successful, yielding atomic resolution structures of bc1 from various organisms and trapped in different reaction intermediates. These structures have confirmed and unified results of decades of experiments and have contributed to our understanding of the mechanism of bc1 functions as well as its inactivation by respiratory inhibitors. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Jung HJ, Kwon HJ. Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. MOLECULAR BIOSYSTEMS 2013; 9:930-9. [PMID: 23475074 DOI: 10.1039/c3mb25426g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive small molecules are powerful tools used to evaluate protein function under physiological and pathological conditions. Over recent decades, utilization of a variety of biologically active small molecules in basic research and clinical applications has provided tremendous benefits in understanding the molecular mechanisms of biology and accelerating drug development. This review focuses on recent advances in the identification of new small molecules and their target proteins for exploring angiogenesis at the molecular level. In particular, we focus on the oxygen-sensing role of ubiquinol-cytochrome c reductase binding protein (UQCRB) of mitochondrial Complex III through identification of the protein target and the mode of action of a natural small molecule, terpestacin. The positive feedback approach of chemistry and biology provides a new way to explore functional roles of proteins and to translate this information into practical applications.
Collapse
Affiliation(s)
- Hye Jin Jung
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| | | |
Collapse
|
41
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
42
|
Cooley JW. Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1340-5. [PMID: 23876289 DOI: 10.1016/j.bbabio.2013.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/23/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
Early structures of the cytochrome bc1 complex revealed heterogeneity in the position of the soluble portion of the Rieske iron sulfur protein subunit, implicating a movement of this domain during function. Subsequent biochemical and biophysical works have firmly established that the motion of this subunit acts in the capacity of a conformationally assisted electron transfer step during the already complicated catalytic mechanism described within the modified version of Peter Mitchells Q cycle. How the movement of this subunit is initiated or how the frequency of its motion is controlled as a function of other steps during the catalysis remain topics of debate within the active research communities. This review addresses the historical aspects of the discovery and description of this movement, while attempting to provide a context for the involvement of conformational motion in the catalysis and efficiency of the enzyme. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Jason W Cooley
- Department of Chemistry, University of Missouri, Columbia, MO 65211-7600, USA.
| |
Collapse
|
43
|
Al-Attar S, de Vries S. Energy transduction by respiratory metallo-enzymes: From molecular mechanism to cell physiology. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Fusing proteins as an approach to study bioenergetic enzymes and processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1847-51. [PMID: 22484274 DOI: 10.1016/j.bbabio.2012.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Fusing proteins is an attractive genetic tool used in several biochemical and biophysical investigations. Within a group of redox proteins, certain fusion constructs appear to provide valuable templates for spectroscopy with which specific bioenergetic questions can be addressed. Here we briefly summarize three different cases of fusions reported for bacterial cytochrome bc(1) (prokaryotic equivalent of mitochondrial respiratory complex III), a common component of electron transport chains. These fusions were used to study supramolecular organization of enzymatic complexes in bioenergetic membrane, influence of the accessory subunits on the activity and stability of the complex, and molecular mechanism of operation of the enzyme in the context of its dimeric structure. Besides direct connotation to molecular bioenergetics, these fusions also appeared interesting from the protein design, biogenesis, and assembly points of view. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
45
|
Kim N, Ripple MO, Springett R. Measurement of the mitochondrial membrane potential and pH gradient from the redox poise of the hemes of the bc1 complex. Biophys J 2012; 102:1194-203. [PMID: 22404942 DOI: 10.1016/j.bpj.2012.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/22/2012] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
The redox potentials of the hemes of the mitochondrial bc(1) complex are dependent on the proton-motive force due to the energy transduction. This allows the membrane potential and pH gradient components to be calculated from the oxidation state of the hemes measured with multi-wavelength cell spectroscopy. Oxidation states were measured in living RAW 264.7 cells under varying electron flux and membrane potential obtained by a combination of oligomycin and titration with a proton ionophore. A stochastic model of bc(1) turnover was used to confirm that the membrane potential and redox potential of the ubiquinone pool could be measured from the redox poise of the b-hemes under physiological conditions assuming the redox couples are in equilibrium. The pH gradient was then calculated from the difference in redox potentials of cytochrome c and ubiquinone pool using the stochastic model to evaluate the ΔG of the bc(1) complex. The technique allows absolute quantification of the membrane potential, pH gradient, and proton-motive force without the need for genetic manipulation or exogenous compounds.
Collapse
Affiliation(s)
- N Kim
- Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | |
Collapse
|
46
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Haque MM, Kenney C, Tejero J, Stuehr DJ. A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual-flavin enzyme-simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains. FEBS J 2011; 278:4055-69. [PMID: 21848659 DOI: 10.1111/j.1742-4658.2011.08310.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NADPH-dependent dual-flavin enzymes provide electrons in many redox reactions, although the mechanism responsible for regulating their electron flux remains unclear. We recently proposed a four-state kinetic model that links the electron flux through a dual-flavin enzyme to its rates of interflavin electron transfer and FMN domain conformational motion [Stuehr DJ et al. (2009) FEBS J276, 3959-3974]. In the present study, we ran computer simulations of the kinetic model to determine whether it could fit the experimentally-determined, pre-steady-state and steady-state traces of electron flux through the neuronal and endothelial NO synthase flavoproteins (reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, respectively) to cytochrome c. We found that the kinetic model accurately fitted the experimental data. The simulations gave estimates for the ensemble rates of interflavin electron transfer and FMN domain conformational motion in the reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, provided the minimum rate boundary values, and predicted the concentrations of the four enzyme species that cycle during catalysis. The findings of the present study suggest that the rates of interflavin electron transfer and FMN domain conformational motion are counterbalanced such that both processes may limit electron flux through the enzymes. Such counterbalancing would allow a robust electron flux at the same time as keeping the rates of interflavin electron transfer and FMN domain conformational motion set at relatively slow levels.
Collapse
Affiliation(s)
- Mohammad M Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | | | | | | |
Collapse
|
48
|
Khalfaoui-Hassani B, Lanciano P, Lee DW, Darrouzet E, Daldal F. Recent advances in cytochrome bc(1): inter monomer electronic communication? FEBS Lett 2011; 586:617-21. [PMID: 21878327 DOI: 10.1016/j.febslet.2011.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
The ubihydroquinone: cytochrome c oxidoreductase, or cytochrome bc(1), is a central component of photosynthetic and respiratory energy transduction pathways in many organisms. It contributes to the generation of membrane potential and proton gradient used for cellular energy production (ATP). The three-dimensional structures of cytochrome bc(1) indicate that its two monomers are intertwined to form a symmetrical homodimer. This unusual architecture raises the issue of whether the monomers operate independently, or function cooperatively during the catalytic cycle of the enzyme. In this review, recent progresses achieved in our understanding of the mechanism of function of dimeric cytochrome bc(1) are presented. New genetic approaches producing heterodimeric enzymes, and emerging insights related to the inter monomer electron transfer between the heme b cofactors of cytochrome bc(1) are described.
Collapse
|
49
|
Cramer WA, Hasan SS, Yamashita E. The Q cycle of cytochrome bc complexes: a structure perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:788-802. [PMID: 21352799 PMCID: PMC3101715 DOI: 10.1016/j.bbabio.2011.02.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 12/01/2022]
Abstract
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30Å along the membrane normal×25Å (central inter-monomer distance)×15Å (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
50
|
Lee DW, Khoury YE, Francia F, Zambelli B, Ciurli S, Venturoli G, Hellwig P, Daldal F. Zinc inhibition of bacterial cytochrome bc(1) reveals the role of cytochrome b E295 in proton release at the Q(o) site. Biochemistry 2011; 50:4263-72. [PMID: 21500804 PMCID: PMC3187937 DOI: 10.1021/bi200230e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 μM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 μM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Youssef El Khoury
- Institut de Chimie, UMR 7177, Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, Université de Strasbourg, 67070 Strasbourg, France
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, University of Bologna, 40127 Bologna, and Center for Magnetic Resonance, University of Florence, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, University of Bologna, 40127 Bologna, and Center for Magnetic Resonance, University of Florence, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Petra Hellwig
- Institut de Chimie, UMR 7177, Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, Université de Strasbourg, 67070 Strasbourg, France
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|