1
|
Nadal-Molero F, Rosselli R, Garcia-Juan S, Campos-Lopez A, Martin-Cuadrado AB. Unveiling host-parasite relationships through conserved MITEs in prokaryote and viral genomes. Nucleic Acids Res 2024; 52:13094-13109. [PMID: 39470691 PMCID: PMC11602168 DOI: 10.1093/nar/gkae906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Transposable elements (TEs) play a pivotal role in the evolution of genomes across all life domains. 'Miniature Inverted-repeat Transposable-Elements' (MITEs) are non-autonomous TEs mainly located in intergenic regions, relying on external transposases for mobilization. The extent of MITEs' mobilome was explored across nearly 1700 prokaryotic genera, 183 232 genomes, revealing a broad distribution. MITEs were identified in 56.5% of genomes, totaling over 1.4 million cMITEs (cellular MITEs). Cluster analysis revealed that 97.4% of cMITEs were specific within genera boundaries, with up to 23% being species-specific. Subsequently, this genus-specificity was evaluated as a method to link microbial host to their viruses. A total of 51 655 cMITEs had counterparts in viral sequences, termed vMITEs (viral MITEs), resulting in the identification of 2500 viral sequences with them. Among these, 1501 sequences were positively assigned to a previously known host (41.8% were isolated viruses and 12.3% were assigned through CRISPR data), while 379 new host-virus associations were predicted. Deeper analysis in Neisseria and Bacteroidota groups allowed the association of 242 and 530 new viral sequences, respectively. MITEs are proposed as a novel approach to establishing valid virus-host relationships.
Collapse
Affiliation(s)
- Francisco Nadal-Molero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Riccardo Rosselli
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Silvia Garcia-Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Alicia Campos-Lopez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
2
|
Savino S, Desmet T, Franceus J. Insertions and deletions in protein evolution and engineering. Biotechnol Adv 2022; 60:108010. [PMID: 35738511 DOI: 10.1016/j.biotechadv.2022.108010] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.
Collapse
Affiliation(s)
- Simone Savino
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium..
| |
Collapse
|
3
|
Xiong N, Xie D, Dong Y, Xue YP, Zheng YG. Efficient biosynthesis of 1-cyanocyclohexaneacetic acid using a highly soluble nitrilase by N-terminus modification of novel peptide tags. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Mikhailov KV, Efeykin BD, Panchin AY, Knorre DA, Logacheva MD, Penin AA, Muntyan MS, Nikitin MA, Popova OV, Zanegina ON, Vyssokikh MY, Spiridonov SE, Aleoshin VV, Panchin YV. Coding palindromes in mitochondrial genes of Nematomorpha. Nucleic Acids Res 2020; 47:6858-6870. [PMID: 31194871 PMCID: PMC6649704 DOI: 10.1093/nar/gkz517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding genes in mitochondrial genomes of four Nematomorpha species. Strikingly, both arms of the inverted repeats encode conserved regions of the amino acid sequence. We confirmed enzymatic activity of the respiratory complex I encoded by inverted repeat-containing genes. The nucleotide composition of inverted repeats suggests strong selection at the amino acid level in these regions. We conclude that the inverted repeat-containing genes are transcribed and translated into functional proteins. The survey of available mitochondrial genomes reveals that several other organisms possess similar albeit shorter embedded repeats. Mitochondrial genomes of Nematomorpha demonstrate an extraordinary evolutionary compromise where protein function and stringent secondary structure elements within the coding regions are preserved simultaneously.
Collapse
Affiliation(s)
- Kirill V Mikhailov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Boris D Efeykin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation.,Severtsov Institute of Ecology and Evolution, Moscow 119071, Russian Federation
| | - Alexander Y Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | - Maria D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russian Federation
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Maria S Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Olga V Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Olga N Zanegina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Mikhail Y Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Sergei E Spiridonov
- Severtsov Institute of Ecology and Evolution, Moscow 119071, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Yuri V Panchin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| |
Collapse
|
5
|
Diop A, Raoult D, Fournier PE. Paradoxical evolution of rickettsial genomes. Ticks Tick Borne Dis 2018; 10:462-469. [PMID: 30448253 DOI: 10.1016/j.ttbdis.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
Rickettsia species are strictly intracellular bacteria that evolved approximately 150 million years ago from a presumably free-living common ancestor from the order Rickettsiales that followed a transition to an obligate intracellular lifestyle. Rickettsiae are best known as human pathogens vectored by various arthropods causing a range of mild to severe human diseases. As part of their obligate intracellular lifestyle, rickettsial genomes have undergone a convergent evolution that includes a strong genomic reduction resulting from progressive gene degradation, genomic rearrangements as well as a paradoxical expansion of various genetic elements, notably small RNAs and short palindromic elements whose role remains unknown. This reductive evolutionary process is not unique to members of the Rickettsia genus but is common to several human pathogenic bacteria. Gene loss, gene duplication, DNA repeat duplication and horizontal gene transfer all have shaped rickettsial genome evolution. Gene loss mostly involved amino-acid, ATP, LPS and cell wall component biosynthesis and transcriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules, recombination and DNA repair proteins. Surprisingly the most virulent Rickettsia species were shown to have the most drastically reduced and degraded genomes compared to closely related species of milder pathogenesis. In contrast, the less pathogenic species harbored the greatest number of mobile genetic elements. Thus, this distinct evolutionary process observed in Rickettsia species may be correlated with the differences in virulence and pathogenicity observed in these obligate intracellular bacteria. However, future investigations are needed to provide novel insights into the evolution of genome sizes and content, for that a better understanding of the balance between proliferation and elimination of genetic material in these intracellular bacteria is required.
Collapse
Affiliation(s)
- Awa Diop
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- UMR MEPHI, Aix-Marseille University, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
6
|
Diop A, Raoult D, Fournier PE. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect 2018; 20:401-409. [DOI: 10.1016/j.micinf.2017.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
|
7
|
Delihas N. Enterobacterial Small Mobile Sequences Carry Open Reading Frames and are Found Intragenically–-Evolutionary Implications for Formation of New Peptides. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intergenic repeat units of 127-bp (RU-1) and 168-bp (RU-2), as well as a newly-found class of 103-bp (RU-3), represent small mobile sequences in enterobacterial genomes present in multiple intergenic regions. These repeat sequences display similarities to eukaryotic miniature inverted-repeat transposable elements (MITE). The RU mobile elements have not been reported to encode amino acid sequences. An in silico approach was used to scan genomes for location of repeat units. RU sequences are found to have open reading frames, which are present in annotated gene loci whereby the RU amino acid sequence is maintained. Gene loci that display repeat units include those that encode large proteins which are part of super families that carry conserved domains and those that carry predicted motifs such as signal peptide sequences and transmembrane domains. A putative exported protein in Y. pestis and a phylogenetically conserved putative inner membrane protein in Salmonella species represent some of the more interesting constructs. We hypothesize that a major outcome of RU open reading frame fusions is the evolutionary emergence of new proteins.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, U.S.A
| |
Collapse
|
8
|
Surkont J, Diekmann Y, Ryder PV, Pereira-Leal JB. Coiled-coil length: Size does matter. Proteins 2015; 83:2162-9. [PMID: 26387794 DOI: 10.1002/prot.24932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/23/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022]
Abstract
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints.
Collapse
Affiliation(s)
| | - Yoan Diekmann
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| | - Pearl V Ryder
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543.,Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Jose B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| |
Collapse
|
9
|
Estupiñán M, Álvarez-García D, Barril X, Diaz P, Manresa A. In Silico/In Vivo Insights into the Functional and Evolutionary Pathway of Pseudomonas aeruginosa Oleate-Diol Synthase. Discovery of a New Bacterial Di-Heme Cytochrome C Peroxidase Subfamily. PLoS One 2015; 10:e0131462. [PMID: 26154497 PMCID: PMC4496055 DOI: 10.1371/journal.pone.0131462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
As previously reported, P. aeruginosa genes PA2077 and PA2078 code for 10S-DOX (10S-Dioxygenase) and 7,10-DS (7,10-Diol Synthase) enzymes involved in long-chain fatty acid oxygenation through the recently described oleate-diol synthase pathway. Analysis of the amino acid sequence of both enzymes revealed the presence of two heme-binding motifs (CXXCH) on each protein. Phylogenetic analysis showed the relation of both proteins to bacterial di-heme cytochrome c peroxidases (Ccps), similar to Xanthomonas sp. 35Y rubber oxidase RoxA. Structural homology modelling of PA2077 and PA2078 was achieved using RoxA (pdb 4b2n) as a template. From the 3D model obtained, presence of significant amino acid variations in the predicted heme-environment was found. Moreover, the presence of palindromic repeats located in enzyme-coding regions, acting as protein evolution elements, is reported here for the first time in P. aeruginosa genome. These observations and the constructed phylogenetic tree of the two proteins, allow the proposal of an evolutionary pathway for P. aeruginosa oleate-diol synthase operon. Taking together the in silico and in vivo results obtained we conclude that enzymes PA2077 and PA2078 are the first described members of a new subfamily of bacterial peroxidases, designated as Fatty acid-di-heme Cytochrome cperoxidases (FadCcp).
Collapse
Affiliation(s)
- Mónica Estupiñán
- Unitat de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, University of Barcelona, Barcelona, Spain
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Álvarez-García
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), PCB-Edifici Hèlix Baldiri Reixac, Barcelona, Spain
| | - Xavier Barril
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), PCB-Edifici Hèlix Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, Barcelona, Spain
| | - Pilar Diaz
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| | - Angeles Manresa
- Unitat de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Alphaproteobacteria species as a source and target of lateral sequence transfers. Trends Microbiol 2014; 22:147-56. [DOI: 10.1016/j.tim.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022]
|
11
|
Di Nocera PP, De Gregorio E, Rocco F. GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes. BMC Genomics 2013; 14:522. [PMID: 23902135 PMCID: PMC3733652 DOI: 10.1186/1471-2164-14-522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND REPs (Repetitive Extragenic Palindromes) are small (20-40 bp) palindromic repeats found in high copies in some prokaryotic genomes, hypothesized to play a role in DNA supercoiling, transcription termination, mRNA stabilization. RESULTS We have monitored a large number of REP elements in prokaryotic genomes, and found that most can be sorted into two large DNA super-families, as they feature at one end unpaired motifs fitting either the GTAG or the CGTC consensus. Tagged REPs have been identified in >80 species in 8 different phyla. GTAG and CGTC repeats reside predominantly in microorganisms of the gamma and alpha division of Proteobacteria, respectively. However, the identification of members of both super- families in deeper branching phyla such Cyanobacteria and Planctomycetes supports the notion that REPs are old components of the bacterial chromosome. On the basis of sequence content and overall structure, GTAG and CGTC repeats have been assigned to 24 and 4 families, respectively. Of these, some are species-specific, others reside in multiple species, and several organisms contain different REP types. In many families, most units are close to each other in opposite orientation, and may potentially fold into larger secondary structures. In different REP-rich genomes the repeats are predominantly located between unidirectionally and convergently transcribed ORFs. REPs are predominantly located downstream from coding regions, and many are plausibly transcribed and function as RNA elements. REPs located inside genes have been identified in several species. Many lie within replication and global genome repair genes. It has been hypothesized that GTAG REPs are miniature transposons mobilized by specific transposases known as RAYTs (REP associated tyrosine transposases). RAYT genes are flanked either by GTAG repeats or by long terminal inverted repeats (TIRs) unrelated to GTAG repeats. Moderately abundant families of TIRs have been identified in multiple species. CONCLUSIONS CGTC REPs apparently lack a dedicated transposase. Future work will clarify whether these elements may be mobilized by RAYTs or other transposases, and assess if de-novo formation of either GTAG or CGTC repeats type still occurs.
Collapse
Affiliation(s)
- Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Via S, Pansini 5 80131, Naples, Italy.
| | | | | |
Collapse
|
12
|
Wu J, Husile, Sun H, Wang F, Li Y, Zhao C, Zhang W. Adaptive evolution of Hoxc13 genes in the origin and diversification of the vertebrate integument. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:412-9. [PMID: 25961277 DOI: 10.1002/jez.b.22504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/07/2013] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Abstract
The problem of origination and diversification of integument derivatives in vertebrates is still a challenge. The homeobox (Hox) genes Hoxc13 control integument formation in vertebrate. Hoxc13 show strong expression in the integument development, are highly conserved across vertebrates, and show mutations that are associated with skin and appendages. To test whether the evolution of the integument is associated with positive selection or relaxation of Hoxc13, we obtained these genes in a wide range of vertebrates. In Hoxc13, we found evidence of diversifying selection after speciation during the origin of vertebrates. In addition, we found the glycine-rich regions in Hoxc13 protein in mammals, but not among non-mammalian taxa. Our results strongly implicate that Hoxc13 genes could have played an important role in the evolution of integument structure.
Collapse
Affiliation(s)
- Jianghong Wu
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China.,Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Husile
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| | - Hailian Sun
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
| | - Feng Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yurong Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Cunfa Zhao
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China.,Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Wenguang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
13
|
Rogers AN, Chen D, McColl G, Czerwieniec G, Felkey K, Gibson BW, Hubbard A, Melov S, Lithgow GJ, Kapahi P. Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab 2011; 14:55-66. [PMID: 21723504 PMCID: PMC3220185 DOI: 10.1016/j.cmet.2011.05.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 01/10/2011] [Accepted: 05/12/2011] [Indexed: 01/26/2023]
Abstract
Reducing protein synthesis slows growth and development but can increase adult life span. We demonstrate that knockdown of eukaryotic translation initiation factor 4G (eIF4G), which is downregulated during starvation and dauer state, results in differential translation of genes important for growth and longevity in C. elegans. Genome-wide mRNA translation state analysis showed that inhibition of IFG-1, the C. elegans ortholog of eIF4G, results in a relative increase in ribosomal loading and translation of stress response genes. Some of these genes are required for life span extension when IFG-1 is inhibited. Furthermore, enhanced ribosomal loading of certain mRNAs upon IFG-1 inhibition was correlated with increased mRNA length. This association was supported by changes in the proteome assayed via quantitative mass spectrometry. Our results suggest that IFG-1 mediates the antagonistic effects on growth and somatic maintenance by regulating mRNA translation of particular mRNAs based, in part, on transcript length.
Collapse
Affiliation(s)
- Aric N. Rogers
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Di Chen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Gawain McColl
- The Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia
- Center for Neuroscience, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregg Czerwieniec
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Krysta Felkey
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Alan Hubbard
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Simon Melov
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Gordon J. Lithgow
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| |
Collapse
|
14
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Röske K, Foecking MF, Yooseph S, Glass JI, Calcutt MJ, Wise KS. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes. BMC Genomics 2010; 11:430. [PMID: 20626840 PMCID: PMC2996958 DOI: 10.1186/1471-2164-11-430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/13/2010] [Indexed: 01/07/2023] Open
Abstract
Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling. Conclusions We describe novel features of PARCELs (Palindromic Amphipathic Repeat Coding ELements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches.
Collapse
Affiliation(s)
- Kerstin Röske
- Saxony Academy of Sciences Leipzig, D-04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Smirnov GB. Repeats in bacterial genome: Evolutionary considerations. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2010. [DOI: 10.3103/s0891416810020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Chen Y, Zhou F, Li G, Xu Y. MUST: A system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. Gene 2009; 436:1-7. [DOI: 10.1016/j.gene.2009.01.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/23/2009] [Accepted: 01/24/2009] [Indexed: 01/30/2023]
|
18
|
Delihas N. Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs. BMC Genomics 2009; 10:101. [PMID: 19267927 PMCID: PMC2674063 DOI: 10.1186/1471-2164-10-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Borrelia species are unusual in that they contain a large number of linear and circular plasmids. Many of these plasmids have long intergenic regions. These regions have many fragmented genes, repeated sequences and appear to be in a state of flux, but they may serve as reservoirs for evolutionary change and/or maintain stable motifs such as small RNA genes. RESULTS In an in silico study, intergenic regions of Borrelia plasmids were scanned for phylogenetically conserved stem loop structures that may represent functional units at the RNA level. Five repeat sequences were found that could fold into stable RNA-type stem loop structures, three of which are closely linked to protein genes, one of which is a member of the Borrelia lipoprotein_1 super family genes and another is the complement regulator-acquiring surface protein_1 (CRASP-1) family. Modeled secondary structures of repeat sequences display numerous base-pair compensatory changes in stem regions, including C-G-->A-U transversions when orthologous sequences are compared. Base-pair compensatory changes constitute strong evidence for phylogenetic conservation of secondary structure. CONCLUSION Intergenic regions of Borrelia species carry evolutionarily stable RNA secondary structure motifs. Of major interest is that some motifs are associated with protein genes that show large sequence variability. The cell may conserve these RNA motifs whereas allow a large flux in amino acid sequence, possibly to create new virulence factors but with associated RNA motifs intact.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, Suny, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
19
|
Abstract
ORFan genes can constitute a large fraction of a bacterial genome, but due to their lack of homologs, their functions have remained largely unexplored. To determine if particular features of ORFan-encoded proteins promote their presence in a genome, we analyzed properties of ORFans that originated over a broad evolutionary timescale. We also compared ORFan genes to another class of acquired genes, heterogeneous occurrence in prokaryotes (HOPs), which have homologs in other bacteria. A total of 54 ORFan and HOP genes selected from different phylogenetic depths in the Escherichia coli lineage were cloned, expressed, purified, and subjected to circular dichroism (CD) spectroscopy. A majority of genes could be expressed, but only 18 yielded sufficient soluble protein for spectral analysis. Of these, half were significantly alpha-helical, three were predominantly beta-sheet, and six were of intermediate/indeterminate structure. Although a higher proportion of HOPs yielded soluble proteins with resolvable secondary structures, ORFans resembled HOPs with regard to most of the other features tested. Overall, we found that those ORFan and HOP genes that have persisted in the E. coli lineage were more likely to encode soluble and folded proteins, more likely to display environmental modulation of their gene expression, and by extrapolation, are more likely to be functional.
Collapse
Affiliation(s)
- Hema Prasad Narra
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, AZ, USA
| | - Matthew H. J. Cordes
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, AZ, USA
| | - Howard Ochman
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Cozzuto L, Petrillo M, Silvestro G, Di Nocera PP, Paolella G. Systematic identification of stem-loop containing sequence families in bacterial genomes. BMC Genomics 2008; 9:20. [PMID: 18201379 PMCID: PMC2267715 DOI: 10.1186/1471-2164-9-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 01/17/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Analysis of non-coding sequences in several bacterial genomes brought to the identification of families of repeated sequences, able to fold as secondary structures. These sequences have often been claimed to be transcribed and fulfill a functional role. A previous systematic analysis of a representative set of 40 bacterial genomes produced a large collection of sequences, potentially able to fold as stem-loop structures (SLS). Computational analysis of these sequences was carried out by searching for families of repetitive nucleic acid elements sharing a common secondary structure. RESULTS The initial clustering procedure identified clusters of similar sequences in 29 genomes, corresponding to about 1% of the whole population. Sequences selected in this way have a substantially higher aptitude to fold into a stable secondary structure than the initial set. Removal of redundancies and regrouping of the selected sequences resulted in a final set of 92 families, defined by HMM analysis. 25 of them include all well-known SLS containing repeats and others reported in literature, but not analyzed in detail. The remaining 67 families have not been previously described. Two thirds of the families share a common predicted secondary structure and are located within intergenic regions. CONCLUSION Systematic analysis of 40 bacterial genomes revealed a large number of repeated sequence families, including known and novel ones. Their predicted structure and genomic location suggest that, even in compact bacterial genomes, a relatively large fraction of the genome consists of non-protein-coding sequences, possibly functioning at the RNA level.
Collapse
Affiliation(s)
- Luca Cozzuto
- CEINGE Biotecnologie Avanzate scarl, Via Comunale Margherita 482, 80145 Napoli, Italy.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Small repeat sequences in bacterial genomes, which represent non-autonomous mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transposable elements. These repeat elements are found in both intergenic and intragenic chromosomal regions, and contain an array of diverse motifs. These can include DNA sequences containing an integration host factor binding site and a proposed DNA methyltransferase recognition site, transcribed RNA secondary structural motifs, which are involved in mRNA regulation, and translated open reading frames found fused to other open reading frames. Some bacterial mobile element fusions are in evolutionarily conserved protein and RNA genes. Others might represent or lead to creation of new protein genes. Here we review the remarkable properties of these small bacterial mobile elements in the context of possible beneficial roles resulting from random insertions into the genome.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
22
|
Blanc G, Ogata H, Robert C, Audic S, Claverie JM, Raoult D. Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res 2007; 17:1657-64. [PMID: 17916642 DOI: 10.1101/gr.6742107] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rickettsia massiliae is a tick-borne obligate intracellular alpha-proteobacteria causing spotted fever in humans. Here, we present the sequence of its genome, comprising a 1.3-Mb circular chromosome and a 15.3-kb plasmid. The chromosome exhibits long-range colinearity with the other Spotted Fever Group Rickettsia genomes, except for a large fragment specific to R. massiliae that contains 14 tra genes presumably involved in pilus formation and conjugal DNA transfer. We demonstrate that the tra region was acquired recently by lateral gene transfer (LGT) from a species related to Rickettsia bellii. Further analysis of the genomic sequences identifies additional candidates of LGT between Rickettsia. Our study indicates that recent LGT between obligate intracellular Rickettsia is more common than previously thought.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, Institut de Biologie Structurale et Microbiologie, IFR 88, Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
23
|
Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie JM, Raoult D. Reductive genome evolution from the mother of Rickettsia. PLoS Genet 2007; 3:e14. [PMID: 17238289 PMCID: PMC1779305 DOI: 10.1371/journal.pgen.0030014] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 12/08/2006] [Indexed: 11/30/2022] Open
Abstract
The Rickettsia genus is a group of obligate intracellular α-proteobacteria representing a paradigm of reductive evolution. Here, we investigate the evolutionary processes that shaped the genomes of the genus. The reconstruction of ancestral genomes indicates that their last common ancestor contained more genes, but already possessed most traits associated with cellular parasitism. The differences in gene repertoires across modern Rickettsia are mainly the result of differential gene losses from the ancestor. We demonstrate using computer simulation that the propensity of loss was variable across genes during this process. We also analyzed the ratio of nonsynonymous to synonymous changes (Ka/Ks) calculated as an average over large sets of genes to assay the strength of selection acting on the genomes of Rickettsia, Anaplasmataceae, and free-living γ-proteobacteria. As a general trend, Ka/Ks were found to decrease with increasing divergence between genomes. The high Ka/Ks for closely related genomes are probably due to a lag in the removal of slightly deleterious nonsynonymous mutations by natural selection. Interestingly, we also observed a decrease of the rate of gene loss with increasing divergence, suggesting a similar lag in the removal of slightly deleterious pseudogene alleles. For larger divergence (Ks > 0.2), Ka/Ks converge toward similar values indicating that the levels of selection are roughly equivalent between intracellular α-proteobacteria and their free-living relatives. This contrasts with the view that obligate endocellular microorganisms tend to evolve faster as a consequence of reduced effectiveness of selection, and suggests a major role of enhanced background mutation rates on the fast protein divergence in the obligate intracellular α-proteobacteria. Genome downsizing and fast sequence divergence are frequently observed in bacteria living exclusively within the cells of higher eukaryotes. However, the driving forces and contributions of these processes to the genome diversity of the microorganisms remain poorly understood. The genus Rickettsia, a group of small obligate intracellular pathogens of humans, provides a fascinating model to study the genome downsizing process. In this article, we used seven Rickettsia genomes to reconstruct the genome of their ancestor and inferred the origin and fate of the genes found in today's species. We identify the process of gene loss as the main cause of genome diversification within the genus and show that the rate of gene loss, sequence divergence, and genome rearrangements are highly variable across the various Rickettsia lineages. This heterogeneity likely reflects the intricate effects of specialization to distinct arthropod hosts and critical alterations of the gene repertoire, such as the losses of DNA repair genes and the amplification of mobile genes. In contrast, we did not find evidence for the role of reduced population sizes on the long-term acceleration of sequence evolution. Overall, the data presented in this article shed new light on the fundamental evolutionary processes that drive the evolution of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | | | - Stéphane Audic
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Karsten Suhre
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Guy Vestris
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| |
Collapse
|
24
|
Abstract
A possible origin of novel coding sequences is the removal of stop codons, leading to the inclusion of 3' untranslated regions (3' UTRs) within genes. We classified changes in the position of stop codons in closely related Saccharomyces species and in a mouse/rat comparison as either additions to or subtractions from coding regions. In both cases, the position of stop codons is highly labile, with more subtractions than additions found. The subtraction bias may be balanced by the input of new coding regions through gene duplication. Saccharomyces shows less stop codon lability than rodents, probably due to greater selective constraint. A higher proportion of 3' UTR incorporation events preserve frame in Saccharomyces. This higher proportion is consistent with the action of the [PSI(+)] prion as an evolutionary capacitor to facilitate 3' UTR incorporation in yeast.
Collapse
Affiliation(s)
| | | | - Joanna Masel
- Dpt. Ecology & Evolutionary Biology, University of
Arizona
| |
Collapse
|
25
|
Abergel C, Blanc G, Monchois V, Renesto P, Sigoillot C, Ogata H, Raoult D, Claverie JM. Impact of the excision of an ancient repeat insertion on Rickettsia conorii guanylate kinase activity. Mol Biol Evol 2006; 23:2112-22. [PMID: 16891376 DOI: 10.1093/molbev/msl082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genomic sequencing of Rickettsia conorii revealed a new family of Rickettsia-specific palindromic elements (RPEs) capable of in-frame insertion in preexisting open reading frames (ORFs). Many of these altered ORFs correspond to proteins with well-characterized or essential functions in other microorganisms. Previous experiments indicated that RPE-containing genes are normally transcribed and that no excision of the repeat occurs at the mRNA level. Using mass spectrometry, we now confirmed the retention of the RPE-derived amino acid residues in 4 proteins successfully expressed in Escherichia coli, raising the general question of the consequences of this common insertion event on the fitness of Rickettsia enzymes. The predicted guanylate kinase activity of the R. conorii gmk gene product was measured both on the RPE-containing and RPE-excised recombinant proteins. We show that the 2 proteins are active but exhibit substantial differences in their affinity for adenosine triphosphate, guanosine monophosphate, and catalytic constants. The distribution of the RPEgmk insert among Rickettsia species indicates that the insertion event is ancient and occurred after the divergence of Rickettsia felis and R. conorii but before that of Rickettsia helvetica and R. conorii. We found no evidence that the gmk gene fixed adaptive changes to compensate the RPE peptide insertion. Furthermore, the analysis of the rates of divergence in 23 RPE-containing genes indicates that coding RPE repeats tend to evolve under weak selective constraint, at a rate similar to intergenic noncoding RPE sequences. Altogether, these results suggest that the insertion of RPE-encoded "selfish peptides," although respecting the original fold and activity of the host proteins, might be slightly detrimental to the enzyme efficiency within limits tolerable for slow-growing intracellular parasites such as Rickettsia.
Collapse
Affiliation(s)
- Chantal Abergel
- Information Génomique & Structurale, CNRS UPR 2589, IBSM, Marseille cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Petrillo M, Silvestro G, Di Nocera PP, Boccia A, Paolella G. Stem-loop structures in prokaryotic genomes. BMC Genomics 2006; 7:170. [PMID: 16820051 PMCID: PMC1590033 DOI: 10.1186/1471-2164-7-170] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/04/2006] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. RESULTS Systematic analysis of the distribution of stem-loop structures (SLSs) in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. CONCLUSION In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or the turnover of cotranscribed mRNAs. Three previously undescribed families of repeated sequences were found in Yersiniae, Bordetellae and Enterococci.
Collapse
Affiliation(s)
- Mauro Petrillo
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giustina Silvestro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Pier Paolo Di Nocera
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
- Dipartimento SAVA Università del Molise Via De Sanctis, 86100 Campobasso, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
27
|
Xu L, Chen H, Hu X, Zhang R, Zhang Z, Luo ZW. Average Gene Length Is Highly Conserved in Prokaryotes and Eukaryotes and Diverges Only Between the Two Kingdoms. Mol Biol Evol 2006; 23:1107-8. [PMID: 16611645 DOI: 10.1093/molbev/msk019] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The average length of genes in a eukaryote is larger than in a prokaryote, implying that evolution of complexity is related to change of gene lengths. Here, we show that although the average lengths of genes in prokaryotes and eukaryotes are much different, the average lengths of genes are highly conserved within either of the two kingdoms. This suggests that natural selection has clearly set a strong limitation on gene elongation within the kingdom. Furthermore, the average gene size adds another distinct characteristic for the discrimination between the two kingdoms of organisms.
Collapse
|
28
|
Suyama M, Lathe WC, Bork P. Palindromic repetitive DNA elements with coding potential in Methanocaldococcus jannaschii. FEBS Lett 2005; 579:5281-6. [PMID: 16182294 DOI: 10.1016/j.febslet.2005.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/02/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
We have identified 141 novel palindromic repetitive elements in the genome of euryarchaeon Methanocaldococcus jannaschii. The total length of these elements is 14.3kb, which corresponds to 0.9% of the total genomic sequence and 6.3% of all extragenic regions. The elements can be divided into three groups (MJRE1-3) based on the sequence similarity. The low sequence identity within each of the groups suggests rather old origin of these elements in M. jannaschii. Three MJRE2 elements were located within the protein coding regions without disrupting the coding potential of the host genes, indicating that insertion of repeats might be a widespread mechanism to enhance sequence diversity in coding regions.
Collapse
|
29
|
Ogata H, Suhre K, Claverie JM. Discovery of protein-coding palindromic repeats in Wolbachia. Trends Microbiol 2005; 13:253-5. [PMID: 15936655 DOI: 10.1016/j.tim.2005.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/15/2005] [Accepted: 03/23/2005] [Indexed: 11/29/2022]
|
30
|
Renesto P, Ogata H, Audic S, Claverie JM, Raoult D. Some lessons from Rickettsia genomics. FEMS Microbiol Rev 2005; 29:99-117. [PMID: 15652978 DOI: 10.1016/j.femsre.2004.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/11/2004] [Accepted: 09/02/2004] [Indexed: 10/26/2022] Open
Abstract
Sequencing of the Rickettsia conorii genome and its comparison with its closest sequenced pathogenic relative, i.e., Rickettsia prowazekii, provided powerful insights into the evolution of these microbial pathogens. However, advances in our knowledge of rickettsial diseases are still hindered by the difficulty of working with strict intracellular bacteria and their hosts. Information gained from comparing the genomes of closely related organisms will shed new light on proteins susceptible to be targeted in specific diagnostic assays, by new antimicrobial drugs, and that could be employed in the generation of future rickettsial vaccines. In this review we present a detailed comparison of the metabolic pathways of these bacteria as well as the polymorphisms of their membrane proteins, transporters and putative virulence factors. Environmental adaptation of Rickettsia is also discussed.
Collapse
Affiliation(s)
- Patricia Renesto
- Unité des Rickettsies, CNRS UMR 6020, IFR-48, Faculté de Médecine--Universite de la Mediterranee, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | | | |
Collapse
|
31
|
Sommer AP, Miyake N, Wickramasinghe NC, Narlikar JV, Al-Mufti S. Functions and Possible Provenance of Primordial Proteins. J Proteome Res 2004; 3:1296-9. [PMID: 15595742 DOI: 10.1021/pr049861n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanobacteria or living nanovesicles are of great interest to the scientific community because of their dual nature: on the one hand, they appear as primal biosystems originating life; on the other hand, they can cause severe diseases. Their survival as well as their pathogenic potential is apparently linked to a self-synthesized protein-based slime, rich in calcium and phosphate (when available). Here, we provide challenging evidence for the occurrence of nanobacteria in the stratosphere, reflecting a possibly primordial provenance of the slime. An analysis of the slime's biological functions may lead to novel strategies suitable to block adhesion modalities in modern bacterial populations.
Collapse
Affiliation(s)
- Andrei P Sommer
- Central Institute of Biomedical Engineering, University of Ulm, 89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|
32
|
Boldogköi Z. Gene Network Polymorphism Is the Raw Material of Natural Selection: The Selfish Gene Network Hypothesis. J Mol Evol 2004; 59:340-57. [PMID: 15553089 DOI: 10.1007/s00239-004-2629-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population genetics, the mathematical theory of modern evolutionary biology, defines evolution as the alteration of the frequency of distinct gene variants (alleles) differing in fitness over the time. The major problem with this view is that in gene and protein sequences we can find little evidence concerning the molecular basis of phenotypic variance, especially those that would confer adaptive benefit to the bearers. Some novel data, however, suggest that a large amount of genetic variation exists in the regulatory region of genes within populations. In addition, comparison of homologous DNA sequences of various species shows that evolution appears to depend more strongly on gene expression than on the genes themselves. Furthermore, it has been demonstrated in several systems that genes form functional networks, whose products exhibit interrelated expression profiles. Finally, it has been found that regulatory circuits of development behave as evolutionary units. These data demonstrate that our view of evolution calls for a new synthesis. In this article I propose a novel concept, termed the selfish gene network hypothesis, which is based on an overall consideration of the above findings. The major statements of this hypothesis are as follows. (1) Instead of individual genes, gene networks (GNs) are responsible for the determination of traits and behaviors. (2) The primary source of microevolution is the intraspecific polymorphism in GNs and not the allelic variation in either the coding or the regulatory sequences of individual genes. (3) GN polymorphism is generated by the variation in the regulatory regions of the component genes and not by the variance in their coding sequences. (4) Evolution proceeds through continuous restructuring of the composition of GNs rather than fixing of specific alleles or GN variants.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Laboratory of Neuromorphology, Department of Anatomy, Faculty of Medicine, University of Budapest, Budapest, Hungary.
| |
Collapse
|
33
|
Raoult D, Ogata H, Audic S, Robert C, Suhre K, Drancourt M, Claverie JM. Tropheryma whipplei Twist: a human pathogenic Actinobacteria with a reduced genome. Genome Res 2003; 13:1800-9. [PMID: 12902375 PMCID: PMC403771 DOI: 10.1101/gr.1474603] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human pathogen Tropheryma whipplei is the only known reduced genome species (<1 Mb) within the Actinobacteria [high G+C Gram-positive bacteria]. We present the sequence of the 927303-bp circular genome of T. whipplei Twist strain, encoding 808 predicted protein-coding genes. Specific genome features include deficiencies in amino acid metabolisms, the lack of clear thioredoxin and thioredoxin reductase homologs, and a mutation in DNA gyrase predicting a resistance to quinolone antibiotics. Moreover, the alignment of the two available T. whipplei genome sequences (Twist vs. TW08/27) revealed a large chromosomal inversion the extremities of which are located within two paralogous genes. These genes belong to a large cell-surface protein family defined by the presence of a common repeat highly conserved at the nucleotide level. The repeats appear to trigger frequent genome rearrangements in T. whipplei, potentially resulting in the expression of different subsets of cell surface proteins. This might represent a new mechanism for evading host defenses. The T. whipplei genome sequence was also compared to other reduced bacterial genomes to examine the generality of previously detected features. The analysis of the genome sequence of this previously largely unknown human pathogen is now guiding the development of molecular diagnostic tools and more convenient culture conditions.
Collapse
Affiliation(s)
- Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, CNRS UMR6020, Université de la Méditerranée, 13385 Marseille Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|