1
|
Viader-Salvadó JM, Pentón-Piña N, Robainas-del-Pino Y, Fuentes-Garibay JA, Guerrero-Olazarán M. Effect of AOX1 and GAP transcriptional terminators on transcript levels of both the heterologous and the GAPDH genes and the extracellular Y p/x in GAP promoter-based Komagataella phaffii strains. PeerJ 2024; 12:e18181. [PMID: 40109886 PMCID: PMC11922483 DOI: 10.7717/peerj.18181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 03/22/2025] Open
Abstract
The constitutive and strong GAP promoter (PGAP) from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene has emerged as a suitable option for protein production in methanol-free Komagataella phaffii (syn. Pichia pastoris) expression systems. Nevertheless, the effect of the transcriptional terminator from the alcohol oxidase 1 gene (TAOX1) or GAPDH gene (TGAP) within the heterologous gene structure on the transcriptional activity in a PGAP-based strain and the impact on the extracellular product/biomass yield (Yp/x) has not yet been fully characterized. In this study, we engineered two K. phaffii strains, each harboring a single copy of a different combination of regulatory DNA elements (i.e., PGAP-TAOX1 or PGAP-TGAP pairs) within the heterologous gene structure. Moreover, we assessed the impact of the regulatory element combinations, along with the carbon source (glucose or glycerol) and the stage of cell growth, on the transcript levels of the reporter gene and the endogenous GAPDH gene in the yeast cells, as well as the extracellular Yp/x values. The results indicate that the regulation of transcription for both heterologous and endogenous GAPDH genes, the extracellular Yp/x values, and translation and/or heterologous protein secretion were influenced by the PGAP-transcriptional terminator combination, with the carbon source and the stage of cell growth acting as modulatory factors. The highest transcript levels for the heterologous and endogenous GAPDH genes were observed in glucose cultures at a high specific growth rate (0.253 h-1). Extracellular Yp/x values showed an increasing trend as the culture progressed, with the highest values observed in glucose cultures, and in the PGAP-TAOX1-based strain. The presence of TAOX1 or TGAP within the heterologous gene structure activated distinct gene regulatory elements in each strain, leading to differential modulation of gene regulation for the heterologous and the GAPDH genes, even though both genes were under the control of the same promoter (PGAP). TAOX1 induced competitive regulation of transcriptional activity between the two genes, resulting in enhanced transcriptional activity of the GAPDH gene. Moreover, TAOX1 led to increased mRNA stability and triggered distinct metabolic downregulation mechanisms due to carbon source depletion compared to TGAP. TAOX1 enhanced translation and/or heterologous protein secretion activity at a high specific growth rate (0.253 h-1), while TGAP was more effective in enhancing post-transcriptional activity at a low specific growth rate (0.030 h-1), regardless of the carbon source. The highest extracellular Yp/x was obtained with the PGAP-TAOX1-based strain when the culture was carried out at a low specific growth rate (0.030 h-1) using glucose as the carbon source. The optimization of regulatory elements and growth conditions presents opportunities for enhancing the production of biomolecules of interest.
Collapse
Affiliation(s)
- José M. Viader-Salvadó
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Nancy Pentón-Piña
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Yanelis Robainas-del-Pino
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José A. Fuentes-Garibay
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Guerrero-Olazarán
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
2
|
Byrd SE, Hoyt B, Ozersky SA, Crocker AW, Habenicht D, Nester MR, Prowse H, Turkal CE, Joseph L, Duina AA. Assessing contributions of DNA sequences at the 3' end of a yeast gene on yFACT, RNA polymerase II, and nucleosome occupancy. BMC Res Notes 2024; 17:219. [PMID: 39103906 PMCID: PMC11301940 DOI: 10.1186/s13104-024-06872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVE In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3' end of genes in promoting yFACT dissociation upon transcription termination. RESULTS We generated fourteen different alleles of the constitutively expressed yeast gene PMA1, each lacking a distinct DNA fragment across its 3' end, and assessed their effects on occupancy of the yFACT component Spt16. Whereas most of these alleles conferred no defects on Spt16 occupancy, one did cause a modest increase in Spt16 binding at the gene's 3' end. Interestingly, the same allele also caused minor retention of RNA Polymerase II (Pol II) and altered nucleosome occupancy across the same region of the gene. These results suggest that specific DNA sequences at the 3' ends of genes can play roles in promoting efficient yFACT and Pol II dissociation from genes and can also contribute to proper chromatin architecture.
Collapse
Affiliation(s)
- Samuel E Byrd
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | - Brianna Hoyt
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Alex W Crocker
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Mattie R Nester
- Biology Department, Hendrix College, Conway, AR, 72032, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Heather Prowse
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Lauren Joseph
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | - Andrea A Duina
- Biology Department, Hendrix College, Conway, AR, 72032, USA.
| |
Collapse
|
3
|
Ni X, Liu Z, Guo J, Zhang G. Development of Terminator-Promoter Bifunctional Elements for Application in Saccharomyces cerevisiae Pathway Engineering. Int J Mol Sci 2023; 24:9870. [PMID: 37373018 DOI: 10.3390/ijms24129870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of a genetic circuit requires the substitution and redesign of different promoters and terminators. The assembly efficiency of exogenous pathways will also decrease significantly when the number of regulatory elements and genes is increased. We speculated that a novel bifunctional element with promoter and terminator functions could be created via the fusion of a termination signal with a promoter sequence. In this study, the elements from a Saccharomyces cerevisiae promoter and terminator were employed to design a synthetic bifunctional element. The promoter strength of the synthetic element is apparently regulated through a spacer sequence and an upstream activating sequence (UAS) with a ~5-fold increase, and the terminator strength could be finely regulated by the efficiency element, with a ~5-fold increase. Furthermore, the use of a TATA box-like sequence resulted in the adequate execution of both functions of the TATA box and the efficiency element. By regulating the TATA box-like sequence, UAS, and spacer sequence, the strengths of the promoter-like and terminator-like bifunctional elements were optimally fine-tuned with ~8-fold and ~7-fold increases, respectively. The application of bifunctional elements in the lycopene biosynthetic pathway showed an improved pathway assembly efficiency and higher lycopene yield. The designed bifunctional elements effectively simplified pathway construction and can serve as a useful toolbox for yeast synthetic biology.
Collapse
Affiliation(s)
- Xiaoxia Ni
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhengyang Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jintang Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Genlin Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
4
|
Geisberg JV, Moqtaderi Z, Fong N, Erickson B, Bentley DL, Struhl K. Nucleotide-level linkage of transcriptional elongation and polyadenylation. eLife 2022; 11:e83153. [PMID: 36421680 PMCID: PMC9721619 DOI: 10.7554/elife.83153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative polyadenylation yields many mRNA isoforms whose 3' termini occur disproportionately in clusters within 3' untranslated regions. Previously, we showed that profiles of poly(A) site usage are regulated by the rate of transcriptional elongation by RNA polymerase (Pol) II (Geisberg et al., 2020). Pol II derivatives with slow elongation rates confer an upstream-shifted poly(A) profile, whereas fast Pol II strains confer a downstream-shifted poly(A) profile. Within yeast isoform clusters, these shifts occur steadily from one isoform to the next across nucleotide distances. In contrast, the shift between clusters - from the last isoform of one cluster to the first isoform of the next - is much less pronounced, even over large distances. GC content in a region 13-30 nt downstream from isoform clusters correlates with their sensitivity to Pol II elongation rate. In human cells, the upstream shift caused by a slow Pol II mutant also occurs continuously at single nucleotide resolution within clusters but not between them. Pol II occupancy increases just downstream of poly(A) sites, suggesting a linkage between reduced elongation rate and cluster formation. These observations suggest that (1) Pol II elongation speed affects the nucleotide-level dwell time allowing polyadenylation to occur, (2) poly(A) site clusters are linked to the local elongation rate, and hence do not arise simply by intrinsically imprecise cleavage and polyadenylation of the RNA substrate, (3) DNA sequence elements can affect Pol II elongation and poly(A) profiles, and (4) the cleavage/polyadenylation and Pol II elongation complexes are spatially, and perhaps physically, coupled so that polyadenylation occurs rapidly upon emergence of the nascent RNA from the Pol II elongation complex.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Benjamin Erickson
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - David L Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
5
|
Lui KH, Geisberg JV, Moqtaderi Z, Struhl K. 3' Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles. Mol Cell Biol 2022; 42:e0024422. [PMID: 35972270 PMCID: PMC9476944 DOI: 10.1128/mcb.00244-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/15/2023] Open
Abstract
The 3' ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3' untranslated regions (3' UTRs) but rarely within coding regions. An individual gene can yield many 3'-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3' UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3' UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3'-UTR chimeric genes indicate that the poly(A) profile is determined by the 3' UTR. Thus, 3' UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3'-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3' UTRs.
Collapse
Affiliation(s)
- Kai Hin Lui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Controlling gene expression with deep generative design of regulatory DNA. Nat Commun 2022; 13:5099. [PMID: 36042233 PMCID: PMC9427793 DOI: 10.1038/s41467-022-32818-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass the expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue. Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Here the authors present EspressionGAN, a generative adversarial network that uses genomic and transcriptomic data to generate regulatory sequences.
Collapse
|
7
|
Rodríguez-Molina JB, O'Reilly FJ, Fagarasan H, Sheekey E, Maslen S, Skehel JM, Rappsilber J, Passmore LA. Mpe1 senses the binding of pre-mRNA and controls 3' end processing by CPF. Mol Cell 2022; 82:2490-2504.e12. [PMID: 35584695 PMCID: PMC9380774 DOI: 10.1016/j.molcel.2022.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Most eukaryotic messenger RNAs (mRNAs) are processed at their 3' end by the cleavage and polyadenylation specificity factor (CPF/CPSF). CPF mediates the endonucleolytic cleavage of the pre-mRNA and addition of a polyadenosine (poly(A)) tail, which together define the 3' end of the mature transcript. The activation of CPF is highly regulated to maintain the fidelity of RNA processing. Here, using cryo-EM of yeast CPF, we show that the Mpe1 subunit directly contacts the polyadenylation signal sequence in nascent pre-mRNA. The region of Mpe1 that contacts RNA also promotes the activation of CPF endonuclease activity and controls polyadenylation. The Cft2 subunit of CPF antagonizes the RNA-stabilized configuration of Mpe1. In vivo, the depletion or mutation of Mpe1 leads to widespread defects in transcription termination by RNA polymerase II, resulting in transcription interference on neighboring genes. Together, our data suggest that Mpe1 plays a major role in accurate 3' end processing, activating CPF, and ensuring timely transcription termination.
Collapse
Affiliation(s)
| | - Francis J O'Reilly
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | | | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
8
|
Turner RE, Harrison PF, Swaminathan A, Kraupner-Taylor CA, Goldie BJ, See M, Peterson AL, Schittenhelm RB, Powell DR, Creek DJ, Dichtl B, Beilharz TH. Genetic and pharmacological evidence for kinetic competition between alternative poly(A) sites in yeast. eLife 2021; 10:65331. [PMID: 34232857 PMCID: PMC8263057 DOI: 10.7554/elife.65331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/22/2021] [Indexed: 01/23/2023] Open
Abstract
Most eukaryotic mRNAs accommodate alternative sites of poly(A) addition in the 3’ untranslated region in order to regulate mRNA function. Here, we present a systematic analysis of 3’ end formation factors, which revealed 3’UTR lengthening in response to a loss of the core machinery, whereas a loss of the Sen1 helicase resulted in shorter 3’UTRs. We show that the anti-cancer drug cordycepin, 3’ deoxyadenosine, caused nucleotide accumulation and the usage of distal poly(A) sites. Mycophenolic acid, a drug which reduces GTP levels and impairs RNA polymerase II (RNAP II) transcription elongation, promoted the usage of proximal sites and reversed the effects of cordycepin on alternative polyadenylation. Moreover, cordycepin-mediated usage of distal sites was associated with a permissive chromatin template and was suppressed in the presence of an rpb1 mutation, which slows RNAP II elongation rate. We propose that alternative polyadenylation is governed by temporal coordination of RNAP II transcription and 3’ end processing and controlled by the availability of 3’ end factors, nucleotide levels and chromatin landscape.
Collapse
Affiliation(s)
- Rachael Emily Turner
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Paul F Harrison
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Calvin A Kraupner-Taylor
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Belinda J Goldie
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Michael See
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, Australia
| | - Amanda L Peterson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Traude H Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Zrimec J, Buric F, Kokina M, Garcia V, Zelezniak A. Learning the Regulatory Code of Gene Expression. Front Mol Biosci 2021; 8:673363. [PMID: 34179082 PMCID: PMC8223075 DOI: 10.3389/fmolb.2021.673363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology.
Collapse
Affiliation(s)
- Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Filip Buric
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mariia Kokina
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Victor Garcia
- School of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Aleksej Zelezniak
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
10
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
11
|
Characterization of the effects of terminators and introns on recombinant gene expression in the basidiomycete Ceriporiopsis subvermispora. J Microbiol 2020; 58:1037-1045. [DOI: 10.1007/s12275-020-0213-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
|
12
|
Transcriptional control of gene expression in Pichia pastoris by manipulation of terminators. Appl Microbiol Biotechnol 2020; 104:7841-7851. [DOI: 10.1007/s00253-020-10785-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
13
|
Ipa1 Is an RNA Polymerase II Elongation Factor that Facilitates Termination by Maintaining Levels of the Poly(A) Site Endonuclease Ysh1. Cell Rep 2020; 26:1919-1933.e5. [PMID: 30759400 PMCID: PMC7236606 DOI: 10.1016/j.celrep.2019.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/05/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
The yeast protein Ipa1 was recently discovered to interact with the Ysh1
endonuclease of the prem-RNA cleavage and polyadenylation (C/P) machinery, and
Ipa1 mutation impairs 3′end processing. We report that Ipa1 globally
promotes proper transcription termination and poly(A) site selection, but with
variable effects on genes depending upon the specific configurations of
polyadenylation signals. Our findings suggest that the role of Ipa1 in
termination is mediated through interaction with Ysh1, since Ipa1 mutation leads
to decrease in Ysh1 and poor recruitment of the C/P complex to a transcribed
gene. The Ipa1 association with transcriptionally active chromatin resembles
that of elongation factors, and the mutant shows defective Pol II elongation
kinetics in vivo. Ysh1 overexpression in the Ipa1 mutant
rescues the termination defect, but not the mutant’s sensitivity to
6-azauracil, an indicator of defective elongation. Our findings support a model
in which an Ipa1/Ysh1 complex helps coordinate transcription elongation and
3′ end processing. The essential, uncharacterized Ipa1 protein was recently discovered to
interact with the Ysh1 endonuclease of the pre-mRNA cleavage and polyadenylation
machinery. Pearson et al. propose that the Ipa1/Ysh1 interaction provides the
cell with a means to coordinate and regulate transcription elongation with
3′ end processing in accordance with the cell’s needs.
Collapse
|
14
|
Lee KY, Chopra A, Burke GL, Chen Z, Greenblatt JF, Biggar KK, Meneghini MD. A crucial RNA-binding lysine residue in the Nab3 RRM domain undergoes SET1 and SET3-responsive methylation. Nucleic Acids Res 2020; 48:2897-2911. [PMID: 31960028 PMCID: PMC7102954 DOI: 10.1093/nar/gkaa029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/07/2020] [Accepted: 01/18/2020] [Indexed: 11/13/2022] Open
Abstract
The Nrd1-Nab3-Sen1 (NNS) complex integrates molecular cues to direct termination of noncoding transcription in budding yeast. NNS is positively regulated by histone methylation as well as through Nrd1 binding to the initiating form of RNA PolII. These cues collaborate with Nrd1 and Nab3 binding to target RNA sequences in nascent transcripts through their RRM RNA recognition motifs. In this study, we identify nine lysine residues distributed amongst Nrd1, Nab3 and Sen1 that are methylated, suggesting novel molecular inputs for NNS regulation. We identify mono-methylation of one these residues (Nab3-K363me1) as being partly dependent on the H3K4 methyltransferase, Set1, a known regulator of NNS function. Moreover, the accumulation of Nab3-K363me1 is essentially abolished in strains lacking SET3, a SET domain containing protein that is positively regulated by H3K4 methylation. Nab3-K363 resides within its RRM and physically contacts target RNA. Mutation of Nab3-K363 to arginine (Nab3-K363R) decreases RNA binding of the Nab3 RRM in vitro and causes transcription termination defects and slow growth. These findings identify SET3 as a potential contextual regulator of Nab3 function through its role in methylation of Nab3-K363. Consistent with this hypothesis, we report that SET3 exhibits genetic activation of NAB3 that is observed in a sensitized context.
Collapse
Affiliation(s)
- Kwan Yin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Giovanni L Burke
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ziyan Chen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Marc D Meneghini
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
15
|
Zhu S, Wu X, Fu H, Ye C, Chen M, Jiang Z, Ji G. Modeling of Genome-Wide Polyadenylation Signals in Xenopus tropicalis. Front Genet 2019; 10:647. [PMID: 31333724 PMCID: PMC6616101 DOI: 10.3389/fgene.2019.00647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional modification event to process messenger RNA (mRNA) for transcriptional termination, transport, and translation. In the present study, we characterized poly(A) signals in Xenopus tropicalis using 70,918 highly confident poly(A) sites derived from 16,511 protein-coding genes to understand their roles in the regulation of embryo development and gender difference. We examined potential factors, including the gene length, the number of introns in a gene, and the intron length, that may affect the prevalence of APA. We observed 12 prominent poly(A) signal patterns, which accounted for approximately 92% of total APA sites in Xenopus tropicalis. Among them, three patterns are specific to X. tropicalis, so they are absent in other animals such as humans or mice. We catalogued APA sites based on their genomic regions and developed a bioinformatics pipeline to identify over-represented signal patterns for each class. Then the schema of cis elements for APA sites in each genomic region was proposed. More importantly, APA usage is dramatically dynamic in embryos along five developmental stages and well-coordinated with the maternal-to-zygotic transition event. We used an entropy-based method to identify developmental stage-specific APA sites and identified significant signal patterns around specific sites and constitutive sites. We found that the APA frequency in different genomic regions varies with developmental stages and that those sites located in intron or coding sequence regions contribute most to the dynamics of gene expression during developmental stages. This study deciphers the characteristics and poly(A) signal patterns for both canonical APA sites and non-canonical APA sites across different developmental stages and gender dimorphisms in X. tropicalis, providing new insights into the dynamic regulation of distal and proximal APA.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Automation, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Hongjuan Fu
- Department of Automation, Xiamen University, Xiamen, China
| | - Congting Ye
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Moliang Chen
- Department of Automation, Xiamen University, Xiamen, China
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Miura O, Ogake T, Yoneyama H, Kikuchi Y, Ohyama T. A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats. Curr Genet 2018; 65:575-590. [PMID: 30498953 PMCID: PMC6420913 DOI: 10.1007/s00294-018-0907-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
DNA sequences that read the same from 5′ to 3′ in either strand are called inverted repeat sequences or simply IRs. They are found throughout a wide variety of genomes, from prokaryotes to eukaryotes. Despite extensive research, their in vivo functions, if any, remain unclear. Using Saccharomyces cerevisiae, we performed genome-wide analyses for the distribution, occurrence frequency, sequence characteristics and relevance to chromatin structure, for the IRs that reportedly have a cruciform-forming potential. Here, we provide the first comprehensive map of these IRs in the S. cerevisiae genome. The statistically significant enrichment of the IRs was found in the close vicinity of the DNA positions corresponding to polyadenylation [poly(A)] sites and ~ 30 to ~ 60 bp downstream of start codon-coding sites (referred to as ‘start codons’). In the former, ApT- or TpA-rich IRs and A-tract- or T-tract-rich IRs are enriched, while in the latter, different IRs are enriched. Furthermore, we found a strong structural correlation between the former IRs and the poly(A) signal. In the chromatin formed on the gene end regions, the majority of the IRs causes low nucleosome occupancy. The IRs in the region ~ 30 to ~ 60 bp downstream of start codons are located in the + 1 nucleosomes. In contrast, fewer IRs are present in the adjacent region downstream of start codons. The current study suggests that the IRs play similar roles in Escherichia coli and S. cerevisiae to regulate or complete transcription at the RNA level.
Collapse
Affiliation(s)
- Osamu Miura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshihiro Ogake
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroki Yoneyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yo Kikuchi
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takashi Ohyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
17
|
Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MHA, Silva-Rocha R. Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production. Front Bioeng Biotechnol 2018; 6:117. [PMID: 30338257 PMCID: PMC6178918 DOI: 10.3389/fbioe.2018.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023] Open
Abstract
Since the advent of systems and synthetic biology, many studies have sought to harness microbes as cell factories through genetic and metabolic engineering approaches. Yeast and filamentous fungi have been successfully harnessed to produce fine and high value-added chemical products. In this review, we present some of the most promising advances from recent years in the use of fungi for this purpose, focusing on the manipulation of fungal strains using systems and synthetic biology tools to improve metabolic flow and the flow of secondary metabolites by pathway redesign. We also review the roles of bioinformatics analysis and predictions in synthetic circuits, highlighting in silico systemic approaches to improve the efficiency of synthetic modules.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Luisa C Nora
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Ananda Sanches-Medeiros
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel L Lovate
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Murilo H A Cassiano
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Lodens S, De Graeve M, Roelants SLKW, De Maeseneire SL, Soetaert W. Transformation of an Exotic Yeast Species into a Platform Organism: A Case Study for Engineering Glycolipid Production in the Yeast Starmerella bombicola. Synth Biol (Oxf) 2018; 1772:95-123. [DOI: 10.1007/978-1-4939-7795-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
19
|
Morse NJ, Gopal MR, Wagner JM, Alper HS. Yeast Terminator Function Can Be Modulated and Designed on the Basis of Predictions of Nucleosome Occupancy. ACS Synth Biol 2017; 6:2086-2095. [PMID: 28771342 DOI: 10.1021/acssynbio.7b00138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The design of improved synthetic parts is a major goal of synthetic biology. Mechanistically, nucleosome occupancy in the 3' terminator region of a gene has been found to correlate with transcriptional expression. Here, we seek to establish a predictive relationship between terminator function and predicted nucleosome positioning to design synthetic terminators in the yeast Saccharomyces cerevisiae. In doing so, terminators improved net protein output from these expression cassettes nearly 4-fold over their original sequence with observed increases in termination efficiency to 96%. The resulting terminators were indeed depleted of nucleosomes on the basis of mapping experiments. This approach was successfully applied to synthetic, de novo, and native terminators. The mode of action of these modifications was mainly through increased termination efficiency, rather than half-life increases, perhaps suggesting a role in improved mRNA maturation. Collectively, these results suggest that predicted nucleosome depletion can be used as a heuristic approach for improving terminator function, though the underlying mechanism remains to be shown.
Collapse
Affiliation(s)
- Nicholas J. Morse
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Madan R. Gopal
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - James M. Wagner
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Hal S. Alper
- McKetta
Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
- Institute
for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Nucleotides upstream of the Kozak sequence strongly influence gene expression in the yeast S. cerevisiae. J Biol Eng 2017; 11:25. [PMID: 28835771 PMCID: PMC5563945 DOI: 10.1186/s13036-017-0068-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/13/2017] [Indexed: 11/25/2022] Open
Abstract
Background In the yeast Saccharomyces cerevisiae, as in every eukaryotic organism, the mRNA 5′-untranslated region (UTR) is important for translation initiation. However, the patterns and mechanisms that determine the efficiency with which ribozomes bind mRNA, the elongation of ribosomes through the 5′-UTR, and the formation of a stable translation initiation complex are not clear. Genes that are highly expressed in S. cerevisiae seem to prefer a 5′-UTR rich in adenine and poor in guanine, particularly in the Kozak sequence, which occupies roughly the first six nucleotides upstream of the START codon. Results We measured the fluorescence produced by 58 synthetic versions of the S. cerevisiae minimal CYC1 promoter (pCYC1min), each containing a different 5′-UTR. First, we replaced with adenine the last 15 nucleotides of the original pCYC1min 5′-UTR—a theoretically optimal configuration for high gene expression. Next, we carried out single and multiple point mutations on it. Protein synthesis was highly affected by both single and multiple point mutations upstream of the Kozak sequence. RNAfold simulations revealed that significant changes in the mRNA secondary structures occur by mutating more than three adenines into guanines between positions −15 and −9. Furthermore, the effect of point mutations turned out to be strongly context-dependent, indicating that adenines placed just upstream of the START codon do not per se guarantee an increase in gene expression, as previously suggested. Conclusions New synthetic eukaryotic promoters, which differ for their translation initiation rate, can be built by acting on the nucleotides upstream of the Kozak sequence. Translation efficiency could, potentially, be influenced by another portion of the 5′-UTR further upstream of the START codon. A deeper understanding of the role of the 5′-UTR in gene expression would improve criteria for choosing and using promoters inside yeast synthetic gene circuits. Electronic supplementary material The online version of this article (doi:10.1186/s13036-017-0068-1) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
MacPherson M, Saka Y. Short Synthetic Terminators for Assembly of Transcription Units in Vitro and Stable Chromosomal Integration in Yeast S. cerevisiae. ACS Synth Biol 2017; 6:130-138. [PMID: 27529501 DOI: 10.1021/acssynbio.6b00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Assembly of synthetic genetic circuits is central to synthetic biology. Yeast S. cerevisiae, in particular, has proven to be an ideal chassis for synthetic genome assemblies by exploiting its efficient homologous recombination. However, this property of efficient homologous recombination poses a problem for multigene assemblies in yeast, since repeated usage of standard parts, such as transcriptional terminators, can lead to rearrangements of the repeats in assembled DNA constructs in vivo. To address this issue in developing a library of orthogonal genetic components for yeast, we designed a set of short synthetic terminators based on a consensus sequence with random linkers to avoid repetitive sequences. We constructed a series of expression vectors with these synthetic terminators for efficient assembly of synthetic genes using Gateway recombination reactions. We also constructed two BAC (bacterial artificial chromosome) vectors for assembling multiple transcription units with the synthetic terminators in vitro and their integration in the yeast genome. The tandem array of synthetic genes integrated in the genome by this method is highly stable because there are few homologous segments in the synthetic constructs. Using this system of assembly and genomic integration of transcription units, we tested the synthetic terminators and their influence on the proximal transcription units. Although all the synthetic terminators have the common consensus with the identical length, they showed different activities and impacts on the neighboring transcription units.
Collapse
Affiliation(s)
- Murray MacPherson
- Institute of Medical Sciences,
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, U.K
| | - Yasushi Saka
- Institute of Medical Sciences,
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, U.K
| |
Collapse
|
22
|
Song W, Li J, Liang Q, Marchisio MA. Can terminators be used as insulators into yeast synthetic gene circuits? J Biol Eng 2016; 10:19. [PMID: 28018483 PMCID: PMC5162094 DOI: 10.1186/s13036-016-0040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background In bacteria, transcription units can be insulated by placing a terminator in front of a promoter. In this way promoter leakage due to the read-through from an upstream gene or RNA polymerase unspecific binding to the DNA is, in principle, removed. Differently from bacterial terminators, yeast S. cerevisiae terminators contain a hexamer sequence, the efficiency element, that strongly resembles the eukaryotic TATA box i.e. the promoter sequence recognized and bound by RNA polymerase II. Results By placing different yeast terminators (natural and synthetic) in front of the CYC1 yeast constitutive promoter stripped of every upstream activating sequences and TATA boxes, we verified that the efficiency element is able to bind RNA polymerase II, hence working as a TATA box. Moreover, terminators put in front of strong and medium-strength constitutive yeast promoters cause a non-negligible decrease in the promoter transcriptional activity. Conclusions Our data suggests that RNA polymerase II molecules upon binding the insulator efficiency element interfere with protein expression by competing either with activator proteins at the promoter enhancers or other RNA polymerase II molecules targeting the TATA box. Hence, it seems preferable to avoid the insulation of non-weak promoters when building synthetic gene circuit in yeast S. cerevisiae. Electronic supplementary material The online version of this article (doi:10.1186/s13036-016-0040-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjiang Song
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| | - Jing Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| | - Qiang Liang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| | - Mario Andrea Marchisio
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Nan Gang District, Harbin, 150080 People's Republic of China
| |
Collapse
|
23
|
Shalem O, Sharon E, Lubliner S, Regev I, Lotan-Pompan M, Yakhini Z, Segal E. Systematic dissection of the sequence determinants of gene 3' end mediated expression control. PLoS Genet 2015; 11:e1005147. [PMID: 25875337 PMCID: PMC4398552 DOI: 10.1371/journal.pgen.1005147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/17/2015] [Indexed: 01/09/2023] Open
Abstract
The 3'end genomic region encodes a wide range of regulatory process including mRNA stability, 3' end processing and translation. Here, we systematically investigate the sequence determinants of 3' end mediated expression control by measuring the effect of 13,000 designed 3' end sequence variants on constitutive expression levels in yeast. By including a high resolution scanning mutagenesis of more than 200 native 3' end sequences in this designed set, we found that most mutations had only a mild effect on expression, and that the vast majority (~90%) of strongly effecting mutations localized to a single positive TA-rich element, similar to a previously described 3' end processing efficiency element, and resulted in up to ten-fold decrease in expression. Measurements of 3' UTR lengths revealed that these mutations result in mRNAs with aberrantly long 3'UTRs, confirming the role for this element in 3' end processing. Interestingly, we found that other sequence elements that were previously described in the literature to be part of the polyadenylation signal had a minor effect on expression. We further characterize the sequence specificities of the TA-rich element using additional synthetic 3' end sequences and show that its activity is sensitive to single base pair mutations and strongly depends on the A/T content of the surrounding sequences. Finally, using a computational model, we show that the strength of this element in native 3' end sequences can explain some of their measured expression variability (R = 0.41). Together, our results emphasize the importance of efficient 3' end processing for endogenous protein levels and contribute to an improved understanding of the sequence elements involved in this process.
Collapse
Affiliation(s)
- Ophir Shalem
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eilon Sharon
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Shai Lubliner
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ifat Regev
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Yakhini
- Department of Computer Science, Technion, Haifa, Israel
- Agilent Laboratories, Tel Aviv, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
24
|
Dhar AK, Robles-Sikisaka R, Saksmerprome V, Lakshman DK. Biology, genome organization, and evolution of parvoviruses in marine shrimp. Adv Virus Res 2014; 89:85-139. [PMID: 24751195 DOI: 10.1016/b978-0-12-800172-1.00003-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
As shrimp aquaculture has evolved from a subsistent farming activity to an economically important global industry, viral diseases have also become a serious threat to the sustainable growth and productivity of this industry. Parvoviruses represent an economically important group of viruses that has greatly affected shrimp aquaculture. In the early 1980s, an outbreak of a shrimp parvovirus, infectious hypodermal and hematopoietic necrosis virus (IHHNV), led to the collapse of penaeid shrimp farming in the Americas. Since then, considerable progress has been made in characterizing the parvoviruses of shrimp and developing diagnostic methods aimed to preventing the spread of diseases caused by these viruses. To date, four parvoviruses are known that infect shrimp; these include IHHNV, hepatopancreatic parvovirus (HPV), spawner-isolated mortality virus (SMV), and lymphoid organ parvo-like virus. Due to the economic repercussions that IHHNV and HPV outbreaks have caused to shrimp farming over the years, studies have been focused mostly on these two pathogens, while information on SMV and LPV remains limited. IHHNV was the first shrimp virus to be sequenced and the first for which highly sensitive diagnostic methods were developed. IHHNV-resistant lines of shrimp were also developed to mitigate the losses caused by this virus. While the losses due to IHHNV have been largely contained in recent years, reports of HPV-induced mortalities in larval stages in hatchery and losses due to reduced growth have increased. This review presents a comprehensive account of the history and current knowledge on the biology, diagnostics methods, genomic features, mechanisms of evolution, and management strategies of shrimp parvoviruses. We also highlighted areas where research efforts should be focused in order to gain further insight on the mechanisms of parvoviral pathogenicity in shrimp that will help to prevent future losses caused by these viruses.
Collapse
Affiliation(s)
| | | | - Vanvimon Saksmerprome
- Centex Shrimp, Faculty of Science, Mahidol University, Bangkok, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Dilip K Lakshman
- USDA-ARS, Floral & Nursery Plants Research Unit, Beltsville, Maryland, USA
| |
Collapse
|
25
|
Redden H, Morse N, Alper HS. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 2014; 15:1-10. [DOI: 10.1111/1567-1364.12188] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Heidi Redden
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
| | - Nicholas Morse
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| | - Hal S. Alper
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
26
|
Guydosh NR, Green R. Dom34 rescues ribosomes in 3' untranslated regions. Cell 2014; 156:950-62. [PMID: 24581494 DOI: 10.1016/j.cell.2014.02.006] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/18/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Ribosomes that stall before completing peptide synthesis must be recycled and returned to the cytoplasmic pool. The protein Dom34 and cofactors Hbs1 and Rli1 can dissociate stalled ribosomes in vitro, but the identity of targets in the cell is unknown. Here, we extend ribosome profiling methodology to reveal a high-resolution molecular characterization of Dom34 function in vivo. Dom34 removes stalled ribosomes from truncated mRNAs, but, in contrast, does not generally dissociate ribosomes on coding sequences known to trigger stalling, such as polyproline. We also show that Dom34 targets arrested ribosomes near the ends of 3' UTRs. These ribosomes appear to gain access to the 3' UTR via a mechanism that does not require decoding of the mRNA. These results suggest that ribosomes frequently enter downstream noncoding regions and that Dom34 carries out the important task of rescuing them.
Collapse
Affiliation(s)
- Nicholas R Guydosh
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
de Boer CG, van Bakel H, Tsui K, Li J, Morris QD, Nislow C, Greenblatt JF, Hughes TR. A unified model for yeast transcript definition. Genome Res 2013; 24:154-66. [PMID: 24170600 PMCID: PMC3875857 DOI: 10.1101/gr.164327.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.
Collapse
|
28
|
Abstract
Systemic response to DNA damage and other stresses is a complex process that includes changes in the regulation and activity of nearly all stages of gene expression. One gene regulatory mechanism used by eukaryotes is selection among alternative transcript isoforms that differ in polyadenylation [poly(A)] sites, resulting in changes either to the coding sequence or to portions of the 3' UTR that govern translation, stability, and localization. To determine the extent to which this means of regulation is used in response to DNA damage, we conducted a global analysis of poly(A) site usage in Saccharomyces cerevisiae after exposure to the UV mimetic, 4-nitroquinoline 1-oxide (4NQO). Two thousand thirty-one genes were found to have significant variation in poly(A) site distributions following 4NQO treatment, with a strong bias toward loss of short transcripts, including many with poly(A) sites located within the protein coding sequence (CDS). We further explored one possible mechanism that could contribute to the widespread differences in mRNA isoforms. The change in poly(A) site profile was associated with an inhibition of cleavage and polyadenylation in cell extract and a decrease in the levels of several key subunits in the mRNA 3'-end processing complex. Sequence analysis identified differences in the cis-acting elements that flank putatively suppressed and enhanced poly(A) sites, suggesting a mechanism that could discriminate between variable and constitutive poly(A) sites. Our analysis indicates that variation in mRNA length is an important part of the regulatory response to DNA damage.
Collapse
|
29
|
Measurements of the impact of 3' end sequences on gene expression reveal wide range and sequence dependent effects. PLoS Comput Biol 2013; 9:e1002934. [PMID: 23505350 PMCID: PMC3591272 DOI: 10.1371/journal.pcbi.1002934] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
A full understanding of gene regulation requires an understanding of the contributions that the various regulatory regions have on gene expression. Although it is well established that sequences downstream of the main promoter can affect expression, our understanding of the scale of this effect and how it is encoded in the DNA is limited. Here, to measure the effect of native S. cerevisiae 3′ end sequences on expression, we constructed a library of 85 fluorescent reporter strains that differ only in their 3′ end region. Notably, despite being driven by the same strong promoter, our library spans a continuous twelve-fold range of expression values. These measurements correlate with endogenous mRNA levels, suggesting that the 3′ end contributes to constitutive differences in mRNA levels. We used deep sequencing to map the 3′UTR ends of our strains and show that determination of polyadenylation sites is intrinsic to the local 3′ end sequence. Polyadenylation mapping was followed by sequence analysis, we found that increased A/T content upstream of the main polyadenylation site correlates with higher expression, both in the library and genome-wide, suggesting that native genes differ by the encoded efficiency of 3′ end processing. Finally, we use single cells fluorescence measurements, in different promoter activation levels, to show that 3′ end sequences modulate protein expression dynamics differently than promoters, by predominantly affecting the size of protein production bursts as opposed to the frequency at which these bursts occur. Altogether, our results lead to a more complete understanding of gene regulation by demonstrating that 3′ end regions have a unique and sequence dependent effect on gene expression. A basic question in gene expression is the relative contribution of different regulatory layers and genomic regions to the differences in protein levels. In this work we concentrated on the effect of 3′ end sequences. For this, we constructed a library of yeast strains that differ only by a native 3′ end region integrated downstream to a reported gene driven by a constant inducible promoter. Thus we could attribute all differences in reporter expression between the strains to the different 3′ end sequences. Interestingly, we found that despite being driven by the same strong, inducible promoter, our library spanned a wide and continuous range of expression levels of more than twelve-fold. As these measurements represent the sole effect of the 3′ end region, we quantify the contribution of these sequences to the variance in mRNA levels by comparing our measurements to endogenous mRNA levels. We follow by sequence analysis to find a simple sequence signature that correlates with expression. In addition, single cell analysis reveals distinct noise dynamics of 3′ end mediated differences in expression compared to different levels of promoter activation leading to a more complete understanding of gene expression which also incorporates the effect of these regions.
Collapse
|
30
|
Abstract
We report a novel sexual-cycle-specific gene-silencing system in the genetic model Aspergillus nidulans. Duplication of the mating type matA(HMG) gene in this haploid organism triggers Mat-induced silencing (MatIS) of both endogenous and transgenic matA genes, eliminates function of the encoded SRY structural ortholog, and results in formation of barren fruiting bodies. MatIS is spatiotemporally restricted to the prezygotic stage of the sexual cycle and does not interfere with vegetative growth, asexual reproduction, differentiation of early sexual tissues, or fruiting body development. MatIS is reversible upon deletion of the matA transgene. In contrast to other sex-specific silencing phenomena, MatIS silencing has nearly 100% efficiency and appears to be independent of homologous duplicated DNA segments. Remarkably, transgene-derived matA RNA might be sufficient to induce MatIS. A unique feature of MatIS is that RNA-mediated silencing is RNA interference/Argonaute-independent and is restricted to the nucleus having the duplicated gene. The silencing phenomenon is recessive and does not spread between nuclei within the common cytoplasm of a multinucleate heterokaryon. Gene silencing induced by matA gene duplication emerges as a specific feature associated with matA(HMG) regulation during sexual development.
Collapse
|
31
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
32
|
Ruepp MD, Schümperli D, Barabino SML. mRNA 3' end processing and more--multiple functions of mammalian cleavage factor I-68. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:79-91. [PMID: 21956970 DOI: 10.1002/wrna.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The formation of defined 3(') ends is an important step in the biogenesis of mRNAs. In eukaryotic cells, all mRNA 3(') ends are generated by endonucleolytic cleavage of primary transcripts in reactions that are essentially posttranscriptional. Nevertheless, 3(') end formation is tightly connected to transcription in vivo, and a link with mRNA export to the cytoplasm has been postulated. Here, we briefly review the current knowledge about the two types of mRNA 3(') end processing reactions, cleavage/polyadenylation and histone RNA processing. We then focus on factors shared between these two reactions. In particular, we discuss evidence for new functions of the mammalian cleavage factor I subunit CF I(m) 68 in histone RNA 3(') processing and in the export of mature mRNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
33
|
Tian B, Graber JH. Signals for pre-mRNA cleavage and polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:385-96. [PMID: 22012871 DOI: 10.1002/wrna.116] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pre-mRNA cleavage and polyadenylation is an essential step for 3' end formation of almost all protein-coding transcripts in eukaryotes. The reaction, involving cleavage of nascent mRNA followed by addition of a polyadenylate or poly(A) tail, is controlled by cis-acting elements in the pre-mRNA surrounding the cleavage site. Experimental and bioinformatic studies in the past three decades have elucidated conserved and divergent elements across eukaryotes, from yeast to human. Here we review histories and current models of these elements in a broad range of species.
Collapse
Affiliation(s)
- Bin Tian
- UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | |
Collapse
|
34
|
Johnson SA, Kim H, Erickson B, Bentley DL. The export factor Yra1 modulates mRNA 3' end processing. Nat Struct Mol Biol 2011; 18:1164-71. [PMID: 21947206 PMCID: PMC3307051 DOI: 10.1038/nsmb.2126] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 07/20/2011] [Indexed: 11/09/2022]
Abstract
The Saccharomyces cerevisiae mRNA export adaptor Yra1 binds the Pcf11 subunit of cleavage-polyadenylation factor CF1A that links export to 3' end formation. We found that an unexpected consequence of this interaction is that Yra1 influences cleavage-polyadenylation. Yra1 competes with the CF1A subunit Clp1 for binding to Pcf11, and excess Yra1 inhibits 3' processing in vitro. Release of Yra1 at the 3' ends of genes coincides with recruitment of Clp1, and depletion of Yra1 enhances Clp1 recruitment within some genes. These results suggest that CF1A is not necessarily recruited as a complete unit; instead, Clp1 can be incorporated co-transcriptionally in a process regulated by Yra1. Yra1 depletion causes widespread changes in poly(A) site choice, particularly at sites where the efficiency element is divergently positioned. We propose that one way Yra1 modulates cleavage-polyadenylation is by influencing co-transcriptional assembly of the CF1A 3' processing factor.
Collapse
Affiliation(s)
- Sara A Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
35
|
Erb I, van Nimwegen E. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters. PLoS One 2011; 6:e24279. [PMID: 21931670 PMCID: PMC3170328 DOI: 10.1371/journal.pone.0024279] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/09/2011] [Indexed: 12/26/2022] Open
Abstract
The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of ‘proximal promoter motifs’ (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.
Collapse
Affiliation(s)
- Ionas Erb
- Bioinformatics and Genomics program, Center for Genomic Regulation and Pompeu Fabra University, Barcelona, Spain
| | - Erik van Nimwegen
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Leeper TC, Qu X, Lu C, Moore C, Varani G. Novel protein-protein contacts facilitate mRNA 3'-processing signal recognition by Rna15 and Hrp1. J Mol Biol 2010; 401:334-49. [PMID: 20600122 DOI: 10.1016/j.jmb.2010.06.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 12/22/2022]
Abstract
Precise 3'-end processing of mRNA is essential for correct gene expression, yet in yeast, 3'-processing signals consist of multiple ambiguous sequence elements. Two neighboring elements upstream of the cleavage site are particularly important for the accuracy (positioning element) and efficiency (efficiency element) of 3'-processing and are recognized by the RNA-binding proteins Rna15 and Hrp1, respectively. In vivo, these interactions are strengthened by the scaffolding protein Rna14 that stabilizes their association. The NMR structure of the 34 -kDa ternary complex of the RNA recognition motif (RRM) domains of Hrp1 and Rna15 bound to this pair of RNA elements was determined by residual dipolar coupling and paramagnetic relaxation experiments. It reveals how each of the proteins binds to RNA and introduces a novel class of protein-protein contact in regions of previously unknown function. These interdomain contacts had previously been overlooked in other multi-RRM structures, although a careful analysis suggests that they may be frequently present. Mutations in the regions of these contacts disrupt 3'-end processing, suggesting that they may structurally organize the ribonucleoprotein complexes responsible for RNA processing.
Collapse
Affiliation(s)
- Thomas C Leeper
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
| | | | | | | | | |
Collapse
|
37
|
A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J 2010; 29:1523-36. [PMID: 20339349 PMCID: PMC2876958 DOI: 10.1038/emboj.2010.42] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 03/03/2010] [Indexed: 12/14/2022] Open
Abstract
We have analysed the sequences required for cleavage and polyadenylation in the intronless melanocortin 4 receptor (MC4R) pre-mRNA. Unlike other intronless genes, 3′end processing of the MC4R primary transcript is independent of any auxiliary sequence elements and only requires the core poly(A) sequences. Mutation of the AUUAAA hexamer had little effect on MC4R 3′end processing but small changes in the short DSE severely reduced cleavage efficiency. The MC4R poly(A) site requires only the DSE and an A-rich upstream sequence to direct efficient cleavage and polyadenylation. Our observation may be highly relevant for the understanding of how human noncanonical poly(A) sites are recognised. This is supported by a genome-wide analysis of over 10 000 poly(A) sites where we show that many human noncanonical poly(A) signals contain A-rich upstream sequences and tend to have a higher frequency of U and GU nucleotides in their DSE compared with canonical poly(A) signals. The importance of A-rich elements for noncanonical poly(A) site recognition was confirmed by mutational analysis of the human JUNB gene, which contains an A-rich noncanonical poly(A) signal.
Collapse
|
38
|
Pancevac C, Goldstone DC, Ramos A, Taylor IA. Structure of the Rna15 RRM-RNA complex reveals the molecular basis of GU specificity in transcriptional 3'-end processing factors. Nucleic Acids Res 2010; 38:3119-32. [PMID: 20097654 PMCID: PMC2875009 DOI: 10.1093/nar/gkq002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rna15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3′-end processing factor from Saccharomyces cerevisiae. CFIA is required for polyA site selection/cleavage targeting RNA sequences that surround polyadenylation sites in the 3′-UTR of RNA polymerase-II transcripts. RNA recognition by CFIA is mediated by an RNA recognition motif (RRM) contained in the Rna15 subunit of the complex. We show here that Rna15 has a strong and unexpected preference for GU containing RNAs and reveal the molecular basis for a base selectivity mechanism that accommodates G or U but discriminates against C and A bases. This mode of base selectivity is rather different to that observed in other RRM-RNA structures and is structurally conserved in CstF64, the mammalian counterpart of Rna15. Our observations provide evidence for a highly conserved mechanism of base recognition amongst the 3′-end processing complexes that interact with the U-rich or U/G-rich elements at 3′-end cleavage/polyadenylation sites.
Collapse
Affiliation(s)
- Christina Pancevac
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
39
|
Seoane S, Lamas-Maceiras M, Rodríguez-Torres AM, Freire-Picos MA. Involvement of Pta1, Pcf11 and a KlCYC1 AU-rich element in alternative RNA 3'-end processing selection in yeast. FEBS Lett 2009; 583:2843-8. [PMID: 19646984 DOI: 10.1016/j.febslet.2009.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/24/2022]
Abstract
This work reports the involvement of yeast RNA processing factors Pta1 and Pcf11 in alternative 3'-end RNA processing. The pta1-1 and pcf11-2 mutations changed the predominance of KlCYC1 1.14 and 1.5 kb transcript isoforms. Mutation of the KlCYC1 3'-UTR AU-rich sequence at positions 679-690 (mutant M1) altered transcript predominance. Moreover, expression of M1 in the yeast mutants partially suppressed their effects in the predominance pattern. The combination of the M1 and M2 (694-698 deletion) mutations abolished the alternative processing. Pta1 involvement in this selection was confirmed using the Pta1-td degron strain.
Collapse
Affiliation(s)
- Silvia Seoane
- Universidade da Coruña, Facultad de Ciencias, Campus da Zapateira S/N, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
42
|
Bucheli ME, He X, Kaplan CD, Moore CL, Buratowski S. Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI. RNA (NEW YORK, N.Y.) 2007; 13:1756-64. [PMID: 17684230 PMCID: PMC1986811 DOI: 10.1261/rna.607207] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 06/25/2007] [Indexed: 05/16/2023]
Abstract
Multiple steps in mRNA processing and transcription are coupled. Notably, the processing of mRNA 3' ends is linked to transcription termination by RNA polymerase II. Previously, we found that the yeast hnRNP protein Npl3 can negatively regulate 3' end mRNA formation and termination at the GAL1 gene. Here we show that overexpression of the Hrp1 or Rna14 subunits of the CF IA polyadenylation factor increases recognition of a weakened polyadenylation site. Genetic interactions of mutant alleles of NPL3 or HRP1 with RNA15 also indicate antagonism between these factors. Npl3 competes with Rna15 for binding to a polyadenylation precursor and inhibits cleavage and polyadenylation in vitro. These results suggest that an important function of hnRNP proteins is to ensure the fidelity of mRNA processing. Our results support a model in which balanced competition of Npl3 with mRNA processing factors may promote recognition of proper polyadenylation sites while suppressing cryptic sites.
Collapse
Affiliation(s)
- Miriam E Bucheli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
43
|
Gain and loss of polyadenylation signals during evolution of green algae. BMC Evol Biol 2007; 7:65. [PMID: 17442103 PMCID: PMC1868727 DOI: 10.1186/1471-2148-7-65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 04/18/2007] [Indexed: 11/24/2022] Open
Abstract
Background The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence) 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE). However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. Results We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs) from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza) and one streptophyte (Closterium peracerosum). Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Conclusion Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA) was invented in derived chlorophytes and replaced not only the A-rich NUE but the complete poly(A) signal in all chlorophytes investigated except Scherffelia (only NUE replaced) and Pyramimonas (UGUAA completely missing). The UGUAA element is completely absent from streptophytes. However, the structure of the poly(A) signal was often modified in streptophyte algae. In most species investigated, an A-rich NUE is missing; instead, these species seem to rely mainly on U-rich elements.
Collapse
|
44
|
Van Bogaert INA, De Maeseneire SL, De Schamphelaire W, Develter D, Soetaert W, Vandamme EJ. Cloning, characterization and functionality of the orotidine-5′-phosphate decarboxylase gene (URA3) of the glycolipid-producing yeastCandida bombicola. Yeast 2007; 24:201-8. [PMID: 17351910 DOI: 10.1002/yea.1448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Candida bombicola is a yeast species known to synthesize glycolipids. Although these glycolipids find several industrial, cosmetic and pharmaceutical applications, very little is known about the genetics of C. bombicola. A basic tool for genetic study and modification is the availability of an efficient transformation and selection system. In order to develop such a system, the URA3 gene of Candida bombicola was isolated using degenerate PCR and genomic walking. The gene encodes for an enzyme of 262 amino acids and shows high homology with the known orotidine-5'-phosphate decarboxylases of several other yeast species. The functionality of the gene was proved by complementation of a URA3-negative Saccharomyces cerevisiae strain.
Collapse
Affiliation(s)
- Inge N A Van Bogaert
- Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, B-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Noble CG, Beuth B, Taylor IA. Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor. Nucleic Acids Res 2006; 35:87-99. [PMID: 17151076 PMCID: PMC1761425 DOI: 10.1093/nar/gkl1010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 01/10/2023] Open
Abstract
Pcf11 and Clp1 are subunits of cleavage factor IA (CFIA), an essential polyadenylation factor in Saccahromyces cerevisiae. We have determined the structure of a ternary complex of Clp1 together with ATP and the Clp1-binding region of Pcf11. Clp1 contains three domains, a small N-terminal beta sandwich domain, a C-terminal domain containing a novel alpha/beta-fold and a central domain that binds ATP. The arrangement of the nucleotide binding site is similar to that observed in SIMIBI-class ATPase subunits found in other multisubunit macromolecular complexes. However, despite this similarity, nucleotide hydrolysis does not occur. The Pcf11 binding site is also located in the central domain where three highly conserved residues in Pcf11 mediate many of the protein-protein interactions. We propose that this conserved Clp1-Pcf11 interaction is responsible for maintaining a tight coupling between the Clp1 nucleotide binding subunit and the other components of the polyadenylation machinery. Moreover, we suggest that this complex represents a stabilized ATP bound form of Clp1 that requires the participation of other non-CFIA processing factors in order to initiate timely ATP hydrolysis during 3' end processing.
Collapse
Affiliation(s)
- Christian G. Noble
- Division of Molecular Structure, National Institute for Medical ResearchThe Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Barbara Beuth
- Division of Molecular Structure, National Institute for Medical ResearchThe Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ian A. Taylor
- Division of Molecular Structure, National Institute for Medical ResearchThe Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
46
|
Souto G, Giacometti R, Silberstein S, Giasson L, Cantore ML, Passeron S. Expression of TPK1 and TPK2 genes encoding PKA catalytic subunits during growth and morphogenesis in Candida albicans. Yeast 2006; 23:591-603. [PMID: 16823887 DOI: 10.1002/yea.1377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcript levels of Candida albicans TPK1 and TPK2 genes, encoding PKA catalytic subunits, as well as phosphotransferase activity, were measured in the parental strain CAI4 and in homozygous tpk1Delta and tpk2Delta mutants during vegetative growth and during yeast-to-mycelial transition in N-acetylglucosamine liquid inducing medium at 37 degrees C. We observed two TPK2 transcripts, a major one of 1.8 kb and a minor one of 1.4 kb, and established by 3'-RACE that they originate from the recognition of the three polyadenylation signals present in the 3' untranslated region of the gene. During vegetative growth of CAI4 strain, the expression profiles of TPK1 and TPK2 varied similarly, reaching maximal expression at the late logarithmic phase. TPK1 mRNA levels were lower than those of TPK2 at all stages measured. In the corresponding homozygous tpk mutants, mRNA levels and the expression patterns of TPK1 and TPK2 were similar to those of CAI4, suggesting that the loss of one catalytic isoform is not compensated by overexpression of the other. Changes in PKA specific activity roughly correlated with fluctuations of mRNA expression levels. During yeast-to-mycelial transition, a sharp increase in TPK1 mRNA levels and in PKA-specific activity correlated with the onset of germ-tube formation in strain tpk2Delta. We also showed that tpk1Delta strain exhibited a delayed morphogenetic shift in comparison with CAI4 and tpk2Delta strains in several liquid inducing media, reinforcing the idea that Tpk1p is important for faster germ-tube appearance.
Collapse
Affiliation(s)
- Guadalupe Souto
- Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, IBYF-CONICET, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Pérez-Cañadillas JM. Grabbing the message: structural basis of mRNA 3'UTR recognition by Hrp1. EMBO J 2006; 25:3167-78. [PMID: 16794580 PMCID: PMC1500993 DOI: 10.1038/sj.emboj.7601190] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 05/18/2006] [Indexed: 11/09/2022] Open
Abstract
The recognition of specific signals encoded within the 3'-untranslated region of the newly transcribed mRNA triggers the assembly of a multiprotein machine that modifies its 3'-end. Hrp1 recognises one of such signals, the so-called polyadenylation enhancement element (PEE), promoting the recruitment of other polyadenylation factors in yeast. The molecular bases of this interaction are revealed here by the solution structure of a complex between Hrp1 and an oligonucleotide mimicking the PEE. Six consecutive bases (AUAUAU) are specifically recognised by two RNA-binding domains arranged in tandem. Both protein and RNA undergo significant conformational changes upon complex formation with a concomitant large surface burial of RNA bases. Key aspects of RNA specificity can be explained by the presence of intermolecular aromatic-aromatic contacts and hydrogen bonds. Altogether, the Hrp1-PEE structure represents one of the first steps towards understanding of the assembly of the cleavage and polyadenylation machinery at the atomic level.
Collapse
|
48
|
Steinmetz EJ, Ng SBH, Cloute JP, Brow DA. cis- and trans-Acting determinants of transcription termination by yeast RNA polymerase II. Mol Cell Biol 2006; 26:2688-96. [PMID: 16537912 PMCID: PMC1430333 DOI: 10.1128/mcb.26.7.2688-2696.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 12/23/2005] [Accepted: 01/13/2006] [Indexed: 11/20/2022] Open
Abstract
Most eukaryotic genes are transcribed by RNA polymerase II (Pol II), including those that produce mRNAs and many noncoding functional RNAs. Proper expression of these genes requires efficient termination by Pol II to avoid transcriptional interference and synthesis of extended, nonfunctional RNAs. We previously described a pathway for yeast Pol II termination that involves recognition of an element in the nascent transcript by the essential RNA-binding protein Nrd1. The Nrd1-dependent pathway appears to be used primarily for nonpolyadenylated transcripts, such as the small nuclear and small nucleolar RNAs (snoRNAs). mRNAs are thought to use a distinct pathway that is coupled to cleavage and polyadenylation of the transcript. Here we show that the terminator elements for two yeast snoRNA genes also direct polyadenylated 3'-end formation in the context of an mRNA 3' untranslated region. A selection for cis-acting terminator readthrough mutations identified conserved features of these elements, some of which are similar to cleavage and polyadenylation signals. A selection for trans-acting mutations that induce readthrough of both a snoRNA and an mRNA terminator yielded mutations in the Rpb3 and Rpb11 subunits of Pol II that define a remarkably discrete surface on the trailing end of the enzyme. Our results suggest that, at least in budding yeast, protein-coding and noncoding Pol II-transcribed genes use similar mechanisms to direct termination and that the termination signal is transduced through the Rpb3/Rpb11 heterodimer.
Collapse
Affiliation(s)
- Eric J Steinmetz
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin 53706-1532, USA
| | | | | | | |
Collapse
|
49
|
Lakshman DK, Liu C, Mishra PK, Tavantzis S. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Curr Genet 2006; 49:166-77. [PMID: 16479402 DOI: 10.1007/s00294-005-0005-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/19/2005] [Accepted: 06/11/2005] [Indexed: 10/25/2022]
Abstract
The quinate pathway is induced by quinate in the wild-type virulent Rhizoctonia solani isolate Rhs 1AP but is constitutive in the hypovirulent, M2 dsRNA-containing isolate Rhs 1A1. Constitutive expression of the quinate pathway results in downregulation of the shikimate pathway, which includes the pentafunctional arom gene in Rhs 1A1. The arom gene has 5,323 bp including five introns as opposed to a single intron found in arom in ascomycetes. A 199-bp upstream sequence has a GC box, no TATAA box, but two GTATTAGA repeats. The largest arom transcript is 5,108 nucleotides long, excluding the poly(A) tail. It contains an open reading frame of 4,857 bases, coding for a putative 1,618-residue pentafunctional AROM protein. A Kozak sequence (GCGCCATGG) is present between +127 and +135. The 5'-end of the arom mRNA includes two nucleotides (UA) that are not found in the genomic sequence, and are probably added post-transcriptionally. Size and sequence heterogeneity were observed at both 5'- and 3'-end of the mRNA. Northern blot and suppression subtractive hybridization analyses showed that presence of a low amount of quinate, inducer of the quinate pathway, resulted in increased levels of arom mRNA, consistent with the compensation effect observed in ascomycetes.
Collapse
Affiliation(s)
- Dilip K Lakshman
- Department of Biological Sciences, University of Maine, Orono, ME 04469-5735, USA
| | | | | | | |
Collapse
|
50
|
Chen IH, Chou WJ, Lee PY, Hsu YH, Tsai CH. The AAUAAA motif of bamboo mosaic virus RNA is involved in minus-strand RNA synthesis and plus-strand RNA polyadenylation. J Virol 2006; 79:14555-61. [PMID: 16282455 PMCID: PMC1287560 DOI: 10.1128/jvi.79.23.14555-14561.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bamboo mosaic virus (BaMV) has a single-stranded positive-sense RNA genome with a 5'-cap structure and a 3' poly(A) tail. Deleting the internal loop that contains the putative polyadenylation signal (AAUAAA) in the 3' untranslated region (UTR) of BaMV genomic RNA appeared to diminish coat protein accumulation to 2% (C. P. Cheng and C. H. Tsai, J. Mol. Biol. 288:555-565, 1999). To investigate the function of the AAUAAA motif, mutations were introduced into an infectious BaMV cDNA at each residue except the first nucleotide. After transfection of Nicotiana benthamiana protoplasts with RNA transcript, the accumulations of viral coat protein and RNAs were determined. Based on the results, three different categories could be deduced for the mutants. Category 1 includes two mutants expressing levels of the viral products similar to those of the wild-type virus. Six mutations in category 2 led to decreased to similar levels of both minus-strand and genomic RNAs. Category 3 includes the remaining seven mutations that also bring about decreases in both minus- and plus-strand RNA levels, with more significant effects on genomic RNA accumulation. Mutant transcripts from each category were used to infect N. benthamiana plants, from which viral particles were isolated. The genomic RNAs of mutants in category 3 were found to have shorter poly(A) tails. Taken together, the results suggest that the AAUAAA motif in the 3' UTR of BaMV genomic RNA is involved not only in the formation of the poly(A) tail of the plus-strand RNA, but also in minus-strand RNA synthesis.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|